

A NEW LEADING MECHANISM FOR NEUTRINOLESS DOUBLE-BETA DECAY

Bira van Kolck Institut de Physique Nucléaire d'Orsay and University of Arizona

with V. Cirigliano (LANL), W. Dekens (LANL), J. de Vries (Nikhef), M.L. Graesser (LANL),

E. Mereghetti (LANL), S. Pastore (LANL)

Supported by CNRS and US DOE

Outline

- Introduction
- Neutrinoless Double-Beta Decay
- □ The Way of Effective Field Theory
- Renormalization
- Estimate of Low-Energy Constant
- "Ab Initio" Example
- Discussion
- **Conclusion**

Introduction

Two mechanisms

1) (light) right-handed neutrinos $v_R \neq v_R^c \equiv C \gamma^{0T} (v_L)^{\dagger}$ $C = i\gamma_2\gamma_0$ $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{\nu_R} + \dots \qquad \mathcal{L}_{\nu_R} = -y_{\nu} \left(\overline{\ell}_L \tilde{\varphi} \nu_R + \text{H.c.} \right)$ $\langle \varphi \rangle \sim v/\sqrt{2} \times \frac{\varphi}{v_R} = -\frac{y_v v}{\sqrt{2}} (\overline{v}_L v_R + \text{H.c.}) + \dots$ $v \simeq 246 \text{ GeV}$ Dirac mass $m_{\nu} \sim 0.1 \,\mathrm{eV} \implies y_{\nu} \sim 10^{-12}$ possible but why? $V_D \equiv V_L + V_R$ cf. - $y_e \sim 3 \cdot 10^{-6}$ different from quark mixing pattern

Two mechanisms

 $M_R \leq y_v v$ can explain some of the experimental anomalies possible but why²?

Two mechanisms

1) (light) right-handed neutrinos $v_R \neq v_R^c \equiv C \gamma^{0T} (v_L)^{\dagger}$ Majorana '37 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{\nu_R} + \dots \qquad \mathcal{L}_{\nu_R} = -y_{\nu} \left(\overline{\ell}_L \tilde{\varphi} \nu_R + \text{H.c.} \right) - \frac{M_R}{2} \left(\overline{\nu}_L^c \nu_R + \text{H.c.} \right)$ $\langle \varphi \rangle \sim v/\sqrt{2} \times (v_L v_R) = -\frac{y_v v}{\sqrt{2}} (\overline{v}_L v_R + \text{H.c.}) + \dots (v_R v_R) \times (M_R)$ mass scale! $v \simeq 246 \text{ GeV}$ new Dirac mass Majorana mass $|\Delta L| = 2$ $V_{M} = V_{L} + V_{R}^{c} + \dots$ $M_{R} \geq y_{v} v \qquad M \rightarrow U^{\dagger} M U \approx \begin{pmatrix} (y_{v} v)^{2} / M_{R} & 0 \\ 0 & M_{R} \end{pmatrix}$ $(U^{\dagger} W U \approx \begin{pmatrix} (y_{v} v)^{2} / M_{R} & 0 \\ 0 & M_{R} \end{pmatrix}$ $\mathbf{N} = \boldsymbol{\nu}_R + \boldsymbol{\nu}_L^c + \dots$ $m_v \sim 0.1 \,\mathrm{eV} \implies y_v \sim y_e \sqrt{M_R/v}$ decouples at low energies alleviates fine-tuning

Natural possibility:
$$M_R \sim M_{\not L} \gg v \implies (y_v v)^2 / M_R \ll v$$

Minkowski '77 (type I) see-saw mechanism
...

More generally, independent on details of high-energy physics:

Not exclusive mechanisms!

- B, L accidental symmetries at classical level
- non-perturbative effects break B+L, but conserve B-L
- unless B-L is exact, dim-5 op is allowed and will be there; it should be the most important effect of new physics

 \rightarrow coincidence that it can explain shortcoming of the SM?

N.B. In some models, $c_5 \sim y_e^2 \sim 10^{-11}$ \rightarrow higher-dim ops could be important *Talk by Dekens next week Prézeau, Ramsey-Musolf togel '09 Graesser '17 Cirigliano et al. '17'18*

Here: only light neutrinos and dim-5 op

neutrino oscillations: $U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$ not a symmetry is $U(1)_{B-L}$?

Ov2B decay

lots of nucleons for lots of time most sensitive probe of B-L violation

single-beta decay
$${}^{A}Z \rightarrow {}^{A}(Z+1) + e^{-} + \overline{v}_{e} \qquad \left(T^{(\beta)}_{1/2}\right)^{-1} \propto \left(G_{F}f_{\pi}^{2}\right)^{2}$$

two-neutrino ${}^{A}Z \rightarrow {}^{A}(Z+2) + 2e^{-} + 2\overline{v} \qquad \left(T^{(2\nu2\beta)}_{1/2}\right)^{-1} \propto \left(G_{-}f^{2}\right)^{4}$

$${}^{A}Z \rightarrow {}^{A}(Z+2) + 2e^{-} + 2\overline{\nu}_{e} \qquad \left(T_{1/2}^{(2\nu 2\beta)}\right)^{-1} \propto \left(G_{F}f_{\pi}^{2}\right)^{4}$$

double-beta decay

all to measure except when natically forbidden

 $) = 1.84^{+0.14}_{-0.10} \cdot 10^{21} \text{ y}$

GERDA Collab. '15

$$\begin{array}{c} 0^{+} \\ 0^{+} \\ 7^{6}Ge \end{array} \end{array} \xrightarrow{7^{6}As} \\ \beta\beta \\ \gamma \\ 2^{+} \\ 7^{6}Se \end{array} \xrightarrow{7^{6}Se} \\ 0^{+} \\ \gamma \\ 2^{+} \\ 7^{6}Se \end{array} \xrightarrow{7^{6}Se} \\ 0^{+} \\ 0^$$

Duerr et al '11

Transition	T ₀ (keV)	Abundance (%)	Excitation energy of first 2 ⁺ state (keV)**	
46Ca → 46Ti	985	0.0035	889	
⁴⁸ Ca → ⁴⁸ Ti†	4272	0.187	984	
⁷⁰ Zn → ⁷⁰ Ge	1001	0.62		
⁷⁶ Ge → ⁷⁶ Se	2045	7.8	559	
⁸⁰ Se → ⁸⁰ Kr	136	49.8		
⁸² Se → ⁸² Kr	3005	9.2	776	
⁸⁶ Kr → ⁸⁶ Sr	1249	17.3	1077	
⁹⁴ Zr → ⁹⁴ Mo	1148	17.4	871	
⁹⁶ Zr → ⁹⁶ Mo†	3350	2.8	778	
98Mr → 98Ru	111	24.1		
¹⁰⁰ Mo → ¹⁰⁰ Ru	3033	9.6	540	
$^{104}Ru \rightarrow ^{104}Pd$	1301	18.7	556	
$^{110}Pd \rightarrow ^{110}Cd$	2014	11.8	658	
114Cd → 114Sn	540	28.7	_	
¹¹⁶ Cd → ¹¹⁶ Sn	2808	7.5	1294	
$^{122}Sn \rightarrow ^{122}Te$	358	4.56		
$^{124}Sn \rightarrow ^{124}Te$	2278	5.64	603	
$^{128}\text{Te} \rightarrow ^{128}\text{Xe}$	869	31.7	443	
¹³⁰ Te → ¹³⁰ Xe	2533	34.5	536	
¹³⁴ Xe → ¹³⁴ Ba	843	10.4	605	
¹³⁶ Xe → ¹³⁶ Ba	2481	8.9	819	
$^{142}Ce \rightarrow ^{142}Nd$	1414	11.1	_	
146Nd → 146Sm‡	61	17.2	-	
$^{148}Nd \rightarrow ^{148}Sm$	1928	5.7	550	
$^{150}Nd \rightarrow ^{150}Sm$	3367	5.6	334	
$^{154}Sm \rightarrow ^{154}Gd$	1250	22.6	123	
¹⁶⁰ Gd → ¹⁶⁰ Dy	1731	21.8	87	
$^{170}\text{Er} \rightarrow ^{170}\text{Yb}$	655	14.9	84	
176 Yb $\rightarrow ^{176}$ Hf	1077	12.6	88	
¹⁸⁶ W → ¹⁸⁶ Os	489	28.6	137	
¹⁹² Os → ¹⁹² Pt	408	41.0	317	
¹⁹⁸ Pt → ¹⁹⁸ Hg	1043	7.2	412	
$^{204}Hg \rightarrow ^{204}Pb$	414	6.9	_	
232 Th $\rightarrow ^{232}$ U§	850	100	48	
²³⁸ U → ²³⁸ Pu¶	1146	99.275	44	

$fable 1 \beta^{-}\beta^{-}d$	lecay transitions f	or naturally o	occurring parer	t isotopes
-------------------------------	---------------------	----------------	-----------------	------------

 $Q \ge 2m_e$

pairing

parent : even-even, $J^P = 0^+$ daughter: even-even, typically $J^P = 0^+$ (g.s.)

 $\Delta I = 2$

Haxton + Stephenson '84

Racah '37 Furry '39

even rarer: e.g.,
$$T_{1/2}^{(0\nu 2\beta)} \left({}^{76}\text{Ge} \rightarrow {}^{76}\text{Se} \right) > 8.0 \cdot 10^{25} \text{ y}$$

GERDA-II Collab. '18

e.g. Haxton + Stephenson '84

$$m_{\nu i} \leq M_{nuc} \implies (T_{1/2}^{(0\nu 2\beta)})^{-1} \propto |M^{(0\nu)}|^2 |m_{\beta\beta}|^2$$

major uncertainty: nuclear matrix element

uncontrolled many-body approximations

enormous progress in *ab initio* calculations: ⁴⁸Ca in horizon

input?

$$\begin{array}{c|c} \mbox{momentum} & \mbox{Effective Field Theory} & \mbox{org} \\ \mbox{scales} & \mbox{non-analytic functions, from solution of dynamical eq. (e.g. Lippmann-Schwinger)} \\ \mbox{M}_{hi} & \mbox{A}_{hi} & \mbox{org} & \mbox{from solution of dynamical eq. (e.g. Lippmann-Schwinger)} \\ \mbox{A}_{hi} & \mbox{A}_{hi} & \mbox{from solution of dynamical eq. (e.g. Lippmann-Schwinger)} \\ \mbox{A}_{hi} & \mbox{from solution of dynamical eq. (e.g. Lippmann-Schwinger)} \\ \mbox{A}_{hi} & \mbox{F}_{LO} & \mbox{A}_{hi} & \mbox{F}_{V} & \mbox{O}_{V} & \mbox{Ommonselence} & \mbox{from solution of dynamical eq. (e.g. Lippmann-Schwinger)} \\ \mbox{A}_{hi} & \mbox{V}_{i} & \mbox{Controlled} & \mbox{F}_{V} & \mbox{Ommonselence} & \mbox{M}_{hi} & \mbox{Controlled} & \mbox{RG invariance} & \mbox{Controlled} & \mbox{Contro$$

 $Q \sim M_{QCD}$

 $Q \ll M_{QCD}$

 $\propto G_F^2 \frac{m_{\beta\beta}}{O^2}$

 $\propto G_F^2 \frac{m_{etaeta}}{2^2}$

$$\begin{aligned} Q \sim m_{\pi} \ll M_{QCD} & \text{Chiral EFT} \\ \text{d.o.f.s} & \text{nucleons: } N = \begin{pmatrix} p \\ n \end{pmatrix} & \text{pions: } \pi = \begin{pmatrix} (\pi^{+} + \pi^{-})/\sqrt{2} \\ i(\pi^{+} - \pi^{-})/\sqrt{2} \\ \pi^{0} \end{pmatrix} & (+ \text{ photon: } A_{\mu}) \\ + \text{ Deltas + Roper + ...?} \end{aligned}$$

$$\begin{aligned} \text{symmetries} & \text{SO(3,1) global, SU(3)}_{c} (+U(1)_{em}) \text{ gauge, } \underline{SU(2)} \times \underline{SU(2)} \text{ global} \\ (\text{trivial}) \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{\chi EFT} &= \frac{1}{2} \Big(\partial_{\mu} \pi \cdot \partial^{\mu} \pi - m_{\pi}^{2} \pi^{2} \Big) + N^{\dagger} \Big(i \partial_{0} + \frac{\nabla^{2}}{2m_{N}} \Big) N + \frac{g_{A}}{2f_{\pi}} N^{\dagger} \vec{\sigma} \tau N \cdot \vec{\nabla} \pi \\ & + C_{0} N^{\dagger} N N^{\dagger} N + (\dots) \end{aligned}$$

$$\begin{aligned} \text{expansion in:} \\ \text{other spin/isospin,} \\ \text{chiral partners,} \\ \text{more derivatives and fields,} \\ \text{powers of pion mass} \end{aligned}$$

$$\begin{aligned} Q \\ M_{QCD} &\sim \begin{cases} Q/m_{N} & \text{non-relativistic} \\ Q/m_{p}, \dots & \text{multipole} \\ Q/4\pi f_{\pi} & \text{pion loop} \end{cases}$$

and fields, isospin violation

Classically the same as Chiral EFT minus pions, but renormalization different in general

Chiral EFT for definiteness:

$$\mathcal{L}_{\chi EFT} = \dots - \frac{m_{\beta\beta}}{2} v_{eL}^{T} C v_{eL} + g_{v} G_{F}^{2} V_{ud}^{2} m_{\beta\beta} \left\{ \overline{e}_{L} C \overline{e}_{L}^{T} N^{\dagger} \tau^{+} N N^{\dagger} \tau^{+} N + \text{H.c.} \right\} + \dots$$

$$\overset{v}{\downarrow}_{v} \qquad \qquad e \qquad \overset{p}{\downarrow}_{n} \overset{p}{\downarrow}_{n} e$$

$$e \longrightarrow p = e \longrightarrow p + e \longrightarrow n$$

$$G_{F}V_{ud} = -g_{V}v_{ud}f_{\pi}Q \frac{1}{Q^{2}}\frac{Q}{f_{\pi}}$$

$$G_{F}V_{ud} = -g_{V}v_{ud}f_{\pi}Q \frac{1}{Q^{2}}\frac{Q}{f_{\pi}}$$

$$G_{F}V_{ud} = -g_{V}v_{ud}f_{\pi}Q \frac{1}{Q^{2}}\frac{Q}{f_{\pi}}$$

$$G_{F}V_{ud} = -g_{V}v_{ud}f_{\pi}Q \frac{1}{Q^{2}}\frac{Q}{f_{\pi}}$$

$$S_{12}(\hat{q}) = \bar{\sigma}_{1}\cdot\hat{q}\bar{\sigma}_{2}\cdot\hat{q} - \frac{1}{3}\bar{\sigma}_{1}\cdot\bar{\sigma}_{2}$$

$$V_{v}^{(0)}(\bar{q}) = \frac{\tau_{1}^{+}\tau_{2}^{+}}{\bar{q}^{2}}\left\{1 + g_{A}^{2}\left[S_{12}(\hat{q}) - \frac{2}{3}\bar{\sigma}_{1}\cdot\bar{\sigma}_{2}\right] - \frac{g_{A}^{2}m_{\pi}^{4}}{(\bar{q}^{2} + m_{\pi}^{2})^{2}}\left[S_{12}(\hat{q}) + \frac{1}{3}\bar{\sigma}_{1}\cdot\bar{\sigma}_{2}\right]\right\}$$

$$Cirigliano et al. '17$$

Ant

naive
dimensional
analysis
(NDA)
$$perturbative
renormalization
$$c_{i} = \mathcal{O}\left(\frac{(4\pi)^{N-2}}{M}c_{i}^{\text{red}}\right)$$

$$c_{i} = \mathcal{O}\left(\frac{(4\pi)^{N-2}}{M}c_{i}^{\text{red}}\right)$$

$$c_{i}^{\text{red}} = \mathcal{O}\left(\left(g^{\text{red}}\right)^{\#}\right)$$
reduced
underlying theory parameter
$$c_{i}^{\text{red}} = \mathcal{O}\left(\left(g^{\text{red}}\right)^{\#}\right)$$
reduced
underlying theory parameter
$$g_{\nu}G_{F}^{2}V_{ud}^{2}m_{\beta\beta} = \mathcal{O}\left(\frac{(4\pi)^{4}}{M_{QCD}^{5}}\left(g_{\nu}G_{F}^{2}V_{ud}^{2}m_{\beta\beta}\right)^{\text{red}}\right)$$

$$\left(g_{\nu}G_{F}^{2}V_{ud}^{2}m_{\beta\beta}\right)^{\text{red}} = \mathcal{O}\left(\left(G_{F}^{2}V_{ud}^{2}\right)^{\text{red}}\left(m_{\beta\beta}\right)^{\text{red}}\right)$$

$$\left(G_{F}V_{ud}\right)^{\text{red}} = \mathcal{O}\left(\frac{M_{QCD}^{2}}{(4\pi)^{2}}G_{F}V_{ud}\right)$$

$$\left(m_{\beta\beta}\right)^{\text{red}} = \mathcal{O}\left(\frac{m_{\beta\beta}}{M_{QCD}}\right)$$$$

BUT... NUCLEAR AMPLITUDES NONPERTURBATIVE!

Renormalization

$$LO$$

$$Weinberg '91 \qquad S = 0, 1 \\ l = 0 \qquad For Wise '96 \qquad For Wise '$$

$$V_{\nu}^{(0)}(\vec{q}) = \frac{\tau_1^+ \tau_2^+}{\vec{q}^2} \left\{ 1 + 2g_A^2 + \frac{g_A^2 m_{\pi}^4}{(\vec{q}^2 + m_{\pi}^2)^2} \right\}$$

$$= \dots + \bigvee_{N} x \left(\bullet^{-1} - \bigvee_{N} \right)^{-1} x \bullet^{-1} x + x \bullet^{-1} x + x \bullet^{-1} x \left(\bullet^{-1} - \bigvee_{N} \right)^{-1} x \left(\bullet^{-1} - \bigvee_{N} \right)^{-1} x \left(\underbrace{s_{Y}} \right)^{-1}$$

Alternative: numerical solution of Schrödinger equation in coordinate space

$$\tilde{C} \,\delta^{(3)}(\vec{r}) \rightarrow \tilde{C}(R) \,\delta_{R}^{(3)}(\vec{r}) \implies \tilde{C}(R) = \#R + \# \frac{m_{\pi}^{2}}{M_{NN}} R^{2} \ln\left(\frac{R}{R}\right) + \dots \quad \text{Beane, Bedaque, Savage + vK '02}$$
here $\delta_{R}^{(3)}(\vec{r}) = \frac{e^{-r^{2}/R^{2}}}{\pi^{3/2}R^{3}}$
determined from scattering length
 $g_{\nu} \,\delta^{(3)}(\vec{r}) \rightarrow g_{\nu}(R) \,\delta_{R}^{(3)}(\vec{r})$

$$A_{\Delta L=2}^{(\nu)} = -\int d^{3}r \,\psi_{\vec{p}'}^{-}(\vec{r}) \,V_{\nu}^{(0)}(\vec{r}) \,\psi_{\vec{p}}^{+}(\vec{r})$$
 $A_{\Delta L=2}^{(NN)} = -\int d^{3}r \,\psi_{\vec{p}'}^{-}(\vec{r}) \,V_{ct}^{(0)}(\vec{r}) \,\psi_{\vec{p}}^{+}(\vec{r})$
 $A_{\Delta L=2}^{(NN)} = -\int d^{3}r \,\psi_{\vec{p}'}^{-}(\vec{r}) \,V_{ct}^{(0)}(\vec{r}) \,\psi_{\vec{p}}^{+}(\vec{r})$
 $A_{\Delta L=2}^{(NN)} = -\int d^{3}r \,\psi_{\vec{p}'}^{-}(\vec{r}) \,V_{ct}^{(0)}(\vec{r}) \,\psi_{\vec{p}}^{+}(\vec{r})$
 $A_{\Delta L=2}^{(N)} = -\int d^{3}r \,\psi_{\vec{p}'}^{-}(\vec{r}) \,V_{ct}^{(N)}(\vec{r}) \,\psi_{\vec{p}}^{-}(\vec{r}) \,\psi_{\vec{p}'}^{-}(\vec{r}) \,\psi_{\vec{p}'$

higher waves well defined without enhanced counterterms

Perturbative pions? LO same as Pionless EFT

Renormalization in Pionless EFT Cirigliano et al. '18

$$V_{2}^{(0)} = \frac{4\pi}{m_{N}M_{lo}}C_{0}$$

$$V_{\nu}^{(0)}(\vec{q}) = \frac{\tau_{1}^{+}\tau_{2}^{+}}{\vec{q}^{2}}(1+3g_{A}^{2})$$

$$= -\left(\frac{m_{N}}{4\pi}\right)^{2}\frac{1+3g_{A}^{2}}{2}\left[\Delta + \ln\frac{\mu^{2}}{-\left(|\vec{p}|+|\vec{p}'|\right)^{2}+i0^{+}}\right] + \dots$$

$$V_{\rm ct}^{(0)} = -g_{\nu} \tau_1^+ \tau_2^+ \implies \mu \frac{d}{d\mu} \frac{M_{lo}^2 g_{\nu}(\mu)}{C_0^2(\mu)} = 1 + 3g_A^2 \implies g_{\nu} = \mathcal{O}\left(\frac{1}{M_{lo}^2}\right) \gg \mathcal{O}\left(\frac{1}{M_{hi}^2}\right)$$

LEC Estimate

Shanahan et al. '17 eventually, match to lattice QCD L-violating amplitude as done in strong-interacting sector

cf. Barnea et al. '15

cf. Nicholson et al. '16'18

For now, estimate from connection with isospin violation

$$g_{\nu} \propto \left\langle pp \left| \frac{1}{\vec{q}^{2}} \right| nn \right\rangle \quad \text{same as electromagnetism for } I = 2$$

$$O_{1} = N^{\dagger} u^{\dagger} Q_{L} uN N^{\dagger} u^{\dagger} Q_{L} uN - \frac{1}{6} \operatorname{Tr} \left(u^{\dagger 2} Q_{L} u^{2} Q_{L} \right) N^{\dagger} \tau N \cdot N^{\dagger} \tau N + (L \leftrightarrow R)$$

$$O_{2} = 2 \left[N^{\dagger} u^{\dagger} Q_{L} uN N^{\dagger} u Q_{R} u^{\dagger} N - \frac{1}{6} \operatorname{Tr} \left(u^{\dagger 2} Q_{L} u^{2} Q_{R} \right) N^{\dagger} \tau N \cdot N^{\dagger} \tau N \right]$$

$$u = \exp(i \tau \cdot \pi/2 f_{\pi}) \qquad \left\{ \begin{array}{c} \mathsf{E\&M} \qquad Q_{L} = Q_{R} = \frac{\tau_{3}}{2} \\ \mathsf{L violation} \qquad Q_{L} = \tau^{+} \quad Q_{R} = 0 \end{array} \right\}$$

$$\Rightarrow \quad \mathcal{L}_{\chi EFT} = \ldots + \frac{\pi}{4} \alpha \left(C_{1} + C_{2} \right) \left[N^{\dagger} \tau_{3} N N^{\dagger} \tau_{3} N - \frac{1}{3} N^{\dagger} \tau N \cdot N^{\dagger} \tau N \right]$$

$$+ G_{F}^{2} V_{ud}^{2} m_{\beta\beta} (C) \quad \overline{e}_{L} C \quad \overline{e}_{L}^{T} N^{\dagger} \tau^{+} N N^{\dagger} \tau^{+} N + \left(\ldots \right)$$

 $=g_{v}$

multi-pion E&M interactions can separate C_1 and C_2

Ab Initio Example

cf. Pastore et al. '18

orthogonality initial/final states

robust feature of realistic transitions

Discussion

why "new"?

correlations at distances $\leq 1/M_{QCD}$

not accounted for internucleon potential

not the same as correlations missed in single-particle basis cf. Miller + Spencer '76 Haxton + Stephenson '84

why "leading"? needed for the model-independent definition of light-neutrino exchange

• not the same as a model for a form-factor refinement Vergados '81 (e.g. a ~10% in ab initio calculations) Pastore et al. '18

However,

exactly how important depends on effective scale in (consistently derived) strong-interaction potential in many-body environment

> *N.B.* Range of effect NOT smaller than that of the internucleon interaction

perspectives for implementation in realistic nuclei?

Conclusion

Effective field theory allows us to connect B - L-violating physics beyond the Standard Model and nuclear physics in a controlled and systematic way

A leading QCD-range contribution to neutrinoless double-beta decay can be identified from renormalization

Proper determination requires matching with lattice QCD, but an estimate can be obtained from electromagnetic nuclear processes

Ab initio calculations in light nuclei are consistent with power-counting expectations