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Neutrinos produced as secondary decay products of hadrons from 
primary reactions of protons with nuclei

           neutrino energy must be reconstructed event-by-event from 
the final state of the reaction

Long-baseline neutrino experiments

production method of neutrinos as secondary decay products of hadrons, mostly pions and

kaons, that were produced in primary reactions of protons with nuclei. The neutrino energy

thus must be reconstructed event by event from the final state of the reaction, at both the

near and the far detectors.

Because all modern experiments use nuclear targets, such as H2O, CHn and 40Ar, the

energy reconstruction depends not only on the initial neutrino-nucleus interaction but also

on the final-state interactions (FSI) of all particles. The precision with which neutrino

oscillation properties can be extracted from such experiments then depends directly on the

description of the final state of the neutrino-nucleus interaction.

To get a sense for the accuracy needed for the energy reconstruction in oscillation exper-

iments, it is helpful to look at Fig. 1. The figure shows the expected oscillation signal for

DUNE as as a function of neutrino energy E⌫ for some values of two neutrino properties: the

mixing angle ✓13 and the CP-violating phase �CP . The three curves under the flux profile
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FIG. 1. Appearance probability of ⌫e in a ⌫µ beam at a distance of 1300 km, calculated for standard

oscillation mixing angles. The four colored curves illustrate the sensitivity of the expected signal to

the neutrino mixing angle ✓13 and the CP-violating phase �CP . The black peak shows the expected

energy distribution for the µ-neutrino beam. From Reference [3].

can be distinguished from one another only if the neutrino energy can be determined to
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DUNE 
Need energy 
reconstruction to better 
than 100 MeV
 
Robust understanding of 
both nucleon and nuclear 
level amplitudes essential
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For LBNEs neutrino energy 
distributions peak at 1-10 GeV

Challenging region: several 
processes contribute

Quasielastic lepton scattering

Inelastic continuum / shallow-
inelastic region
Resonances

Lattice QCD can provide direct 
non-perturbative QCD 
predictions of nucleon and 
nuclear matrix elements

Constraining 𝜈-nucleus interactions

Neutrino charged-current  
cross-section 22
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FIG. 9 Total neutrino and antineutrino per nucleon CC cross sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figures 28, 11, and 12 with the inclusion of additional lower energy
CC inclusive data from N (Baker et al., 1982), ⇤ (Baranov et al., 1979), ⌅ (Ciampolillo et al., 1979), and ? (Nakajima et al.,
2011). Also shown are the various contributing processes that will be investigated in the remaining sections of this review.
These contributions include quasi-elastic scattering (dashed), resonance production (dot-dash), and deep inelastic scattering
(dotted). Example predictions for each are provided by the NUANCE generator (Casper, 2002). Note that the quasi-elastic
scattering data and predictions have been averaged over neutron and proton targets and hence have been divided by a factor
of two for the purposes of this plot.

J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307



LQCD input for 𝜈-nucleus interactions

Directly access QCD single-nucleon form 
factors without nuclear corrections

Reliable calculations with fully-controlled 
uncertainties

Calculate matrix elements in light nuclei 
from first principles

        EFT to reach heavy nuclear targets 
relevant to experiment

First calculations of axial charge of light 
nuclei

1.

2.

� Quark-antiquark pairs
from the vacuum
xx

� Sea quarks
xx

� Non-valence quarks
xx

� Disconnected
quark-line
contributions



Constraining 𝜈-nucleus interactions

Neutrino charged-current  
cross-section
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FIG. 9 Total neutrino and antineutrino per nucleon CC cross sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figures 28, 11, and 12 with the inclusion of additional lower energy
CC inclusive data from N (Baker et al., 1982), ⇤ (Baranov et al., 1979), ⌅ (Ciampolillo et al., 1979), and ? (Nakajima et al.,
2011). Also shown are the various contributing processes that will be investigated in the remaining sections of this review.
These contributions include quasi-elastic scattering (dashed), resonance production (dot-dash), and deep inelastic scattering
(dotted). Example predictions for each are provided by the NUANCE generator (Casper, 2002). Note that the quasi-elastic
scattering data and predictions have been averaged over neutron and proton targets and hence have been divided by a factor
of two for the purposes of this plot.

J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307
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Well-determined from electron scattering expts


can be related to        by pion pole dominance

Cross-section for quasi-elastic neutrino-nucleon scattering

Quasi-elastic scattering
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When considering neutrino scattering from nucleons, an axial current comes into play.  The 

total nucleon current coupling to the charged weak leptonic current is an isovector one 

body nucleon current with both vector and axial‐vector components: 

. The full nucleon weak current had been written down by 

Llewellyn‐Smith (1) but for our purposes it suffices to write the axial current of the nucleon 

as 

jA
µ
(Q

2
) = u (p ') GA (Q

2
)γ µ

+
1

2M
GP (Q

2
)q

µ⎛
⎝⎜

⎞
⎠⎟
γ 5
u(p)          (4) 

where the induced pseudoscalar GP(Q
2
)=4mN

2
GA/(mπ

2
+Q

2
)

 
is determined by PCAC and the 

axial-vector form factor GA(Q
2
) is established from experiment. 

 

The weak leptonic current is 

                                                              
 

jµ
l
=ψ

l
−

l
+

(1 γ 5 )γ µψν
ν

             (5) 

The lepton‐nucleon coupling is the scalar product of the two currents.  The change in sign 

for the axial coupling arises from the opposite helicity of neutrinos and anti‐neutrinos 

leading to constructive interference between the transverse vector and axial vector 

amplitudes for neutrino cross sections and destructive interference for anti‐neutrinos.   

 

It follows that the differential cross section for neutrino QE scattering off free nucleons can 

be expressed in the form (1):  

 

 

dσ

dQ
2
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2
M

2
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8πEν
2
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M
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M
4

C
⎡

⎣
⎢

⎤

⎦
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GA

3

Figure 2. The percent change in the neutrino
cross section for a 1% change in the form factors.

cross sections from deuterium. We plan to study
the nuclear corrections, adopting models which
have been used in precision electron scattering
measurements from nuclei at SLAC and JLab.

4. Extraction of FA(q2)

A substantial fraction of the cross section
comes from the form factor FA(q2). Therefore,
we can extract FA(q2) from the differential cross
section. Figure 2 and 3 show the contribution
of FA(q2) to dσ/dQ2. Figure 2 shows the per-
cent change in the neutrino cross section for a 1%
change in the form factors. Figure 3 shows the
fractional contribution of the form factor deter-
mined by setting the form factor to zero and by
determining the fractional decrease in the differ-
ential cross section. Since some terms are prod-
ucts of different form factors, the sum of the
curves do not have be 1.

To extract FA, we write the equation for
dσ/dq2(q2, Eν) in terms of a quadratic function
of FA(q2).

a(q2, Eν)FA(q2)2 + b(q2, Eν)FA(q2)

+ c(q2, Eν) −
dσ

dq2
(q2, Eν) = 0

Figure 3. Fractional contribution of the form
factor determined by setting the form factor
to zero and by determining the fractional de-
crease in the differential cross section, 1 −
(dσ/dQ2(formfactor = 0))/(dσ/dQ2).

For each q2 bin, we integrate the above equation
over the q2 bin and the neutrino flux.
∫∫

dq2dEν{a(q2, Eν)FA(q2)2 + b(q2, Eν)FA(q2)

+c(q2, Eν) −
dσ

dq2
(q2, Eν)} = 0

The above equation can be written as a
quadratic equation in FA at the bin value q2

bin.

αFA(q2
bin)2 + βFA(q2

bin) + γ − ∆ − NData
Bin = 0

The terms of this equation are given below:

α =

∫∫

dq2dEνa(q2, Eν)

β =

∫∫

dq2dEνb(q2, Eν)

γ =

∫∫

dq2dEνc(q2, Eν)

F1,2

GP
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where (‐)+ refers to (anti)neutrino scattering, (s ‐ u) = 4MEν ‐ Q2 ‐ m2, and m is the lepton 

mass. The factors A, B, and C are functions of the Q2‐dependent vector, axial‐vector, and 

pseudoscalar form factors:  

 

A =
(m

2
+Q

2
)

M
2

[(1+ τ )G
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2
+ F

1

2
+ τF

2

2
)

    (7) 

 

and F1 and F2 are the aforementioned isovector Dirac and Pauli vector form factors. With 

the vector form factors determined from electron scattering and small contributions from 

the pseudoscalar form factor for νµ scattering, early studies of neutrino QE scattering 

focused on investigating the axial‐vector form factor of the nucleon. 

 

2.2 – Early Investigations of the Weak Hadronic Current 

Some of the earliest experimental investigations of neutrino QE scattering,  vµ + n→ µ−
+ p , 

were performed in the late 1960's using spark chambers (aluminum, iron) (2,3) and bubble 

chambers (propane, freon) (4) as neutrino detectors.   These early experiments provided 

the first neutrino QE scattering event samples from which initial determinations of the 

underlying nucleon form factors were made.   In the early 1970's, many experiments 

dominant contribution

largest uncertainty

GA

Budd, Bodek, Arrington
Nucl.Phys.Proc.Suppl. 139 (2005) 90-95 

N

ν

l

N



Traditionally assumed to have dipole form 
 

                    determined with high 
precision from nuclear beta decay

axial mass        must be determined 
experimentally 

Electromagnetic FFs show significant 
deviation from dipole parametrisation form

More general alternatives
Model-indep z-expansion

Direct LQCD results

Axial form factor

In this case the axial form factor’s shape is determined by only one parameter, the axial

mass MA. While Eq. 5 indeed fulfills the asymptotic requirement, in the experimentally

relevant region of low Q
2 the form factor could have a di↵erent shape [16–19].

Nearly all analyses of neutrino QE data have used the dipole form factor. The axial mass

extracted usually shows large error bars because all the experiments with elementary targets

(p,D) were done approximately 35 years ago with relatively weak neutrino currents. The

world average for the extracted axial mass is 1.03 GeV; the value extracted from charged

pion electroproduction experiments, which are also sensitive to FA, is close [1]. Figure 2

illustrates the sensitivity of the total QE cross section as a function of neutrino energy to

the axial mass.
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FIG. 2. Charged-current quasi-elastic cross section for ⌫µ scattering o↵ neutrons. The experimental

error bars are clearly much larger than the uncertainties due to using di↵erent values for MA; the

large error bars also lead to a correspondingly large uncertainty in the shape. Data are from

References [20–22]. From Reference[11]

B. Pion Production

At energies above approximately 200 MeV the first inelastic excitations of the nucleon

connected with pion production become possible. Most of the nucleon resonances have spin

1/2 and 3/2. The transition currents to the spin-1/2 resonances have the same form as

given above for the nucleon. The hadronic transition currents to the 3/2-resonances, by

contrast, have a much more complicated structure. Among these at the lower energies pion

7

Total QE cross-section sensitive 
to the axial mass:

MA

BUT

Mosel, Ann. Rev. Nucl. Part. Sci. 66, 171 (2016)
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employed simpler targets, such as deuterium (5), recognizing that they provided cleaner 

measurements less influenced by nuclear effects. The primary focus of these experiments 

was measuring free nucleon form factors. At the time, these form factors were recognized 

as an important ingredient in the analysis of neutral currents ( vµ + p→ vµ + p and 

vµ + p→ vµ + p ) so careful study of the charged‐current component of this reaction began. 

 

Equations [6‐7] were typically used to analyze the experimental data on deuterium, subject 

to minor effects of Fermi motion and Pauli blocking in deuterium.  The vector form factors 

could be determined from electron scattering, thus leaving the neutrino experiments to 

measure the axial‐vector form factor of the nucleon. Traditionally, the axial‐vector form 

factor is assumed to have a dipole form:  

GA (Q
2
) =

gA

1+Q
2
/MA

2( )             (8) 

dependent on two empirical parameters: the value of the axial‐vector form factor at Q2=0 

(gA=FA(0)=1.2671 determined with high precision from nuclear beta decay (6)) and an 

axial mass, MA which must be determined experimentally.  Values of MA ranging from 0.65 

to 1.09 GeV were obtained from fitting both the total rate of CCQE events and their 

measured Q2 dependence.   Refs. (7,8) provide an excellent review of these early 

experimental MA determinations.  By the end of this period, it was concluded that the 

neutrino QE cross section could be accurately and consistently described by V‐A theory 

assuming a dipole axial‐vector form factor with MA=1.026 ± 0.021 GeV (9).  These 

conclusions were largely driven by experimental measurements on deuterium, but less‐

precise data on other heavier targets also contributed (see Table 1).  More recently, this 

gA = 1.2671

Hill & Paz (2010), Bhattacharya (2011)

2



                             is a historically difficult calculation
Recent calculations in agreement with experiment with fully-controlled 
uncertainties
      -dependence well-determined in LQCD — competitive with experiment
z-parameterisations remove assumption of dipole form

Nucleon Axial FFs from LQCD
gA = GA(Q

2 = 0)

Q2

Isovector charges gA = �u ≠ �d
—-decay, gA/gV = 1.2723(23) PDG 2015.

Benchmark quantity sensitive to systematics.
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Figure: Sara Collins, Lattice 2016



                             is a historically difficult calculation
Recent calculations in agreement with experiment with fully-controlled 
uncertainties
      -dependence well-determined in LQCD — competitive with experiment
z-parameterisations remove assumption of dipole form

Nucleon Axial FFs from LQCD
gA = GA(Q

2 = 0)

Q2
16

on the right hand side. Using CVC in reverse, our predic-
tions for (MN � MP )QCD, using lattice QCD estimates
for mu and md, are given in Table X. The uncertainty in
these estimates is dominated by that in g

u�d

S
.

MN �MP Nf {md,mu}
QCD

(MeV) Flavors (MeV)

2.58(32) 2+1 md = 4.68(14)(7),mu = 2.16(9)(7) [50]

2.73(44) 2+1+1 md = 5.03(26),mu = 2.36(24) [50]

2.41(27) 2+1 md �mu = 2.41(6)(4)(9) [51]

2.63(27) 2+1+1 md = 4.690(54),mu = 2.118(38) [52]

TABLE X. Results for the mass di↵erence (MN � MP )
QCD

obtained using the CVC relation with our estimate gu�d

S
=

1.022(80)(60) and lattice results for the up and down quark
masses from the FLAG review [50] and recent results [51, 52].

VII. COMPARISON WITH PREVIOUS WORK

A summary of lattice results for the three isovector
charges for Nf = 2�, 2+1- and 2+1+1-flavors is shown
in Figs. 5, 6 and 7. They show the steady improvement in
results from lattice QCD. In this section we compare our
results with two calculations published after the analysis
and comparison presented in Ref. [3], and that include
data from physical pion mass ensembles. These are the
ETMC [36, 37, 53] and CalLat results [47].

The ETMC results gu�d

A
= 1.212(40), gu�d

S
= 0.93(33)

and g
u�d

T
= 1.004(28) [36, 37, 53] were obtained from a

single physical mass ensemble generated with 2-flavors of
maximally twisted mass fermions with a clover term at
a = 0.0938(4) fm, M⇡ = 130.5(4) MeV and M⇡L = 2.98.
Assuming that the number of quark flavors and finite
volume corrections do not make a significant di↵erence,
one could compare them against our results from the
a09m130W ensemble with comparable lattice parame-
ters: g

u�d

A
= 1.249(21), gu�d

S
= 0.952(74) and g

u�d

T
=

1.011(30). We remind the reader that this comparison
is at best qualitative since estimates from di↵erent lat-
tice actions are only expected to agree in the continuum
limit.

Based on the trends observed in our CCFV fits shown
in Figs. 2–4, we speculate where one may expect to see a
di↵erence due to the lack of a continuum extrapolation in
the ETMC results. The quantities that exhibit a signifi-
cant slope versus a are g

u�d

A
and g

u�d

S
. Again, under the

assumptions stated above, we would expect ETMC val-
ues gu�d

A
= 1.212(40) to be larger and g

u�d

S
= 0.93(33) to

be smaller than our extrapolated values given in Eq. (13).
We find that the scalar charge fits the expected pattern,
but the axial charge does not.

We also point out that the ETMC error estimates are
smaller because the lattice values are taken from a single
ensemble and a single value of the source-sink separation

PNDME ’18
CalLat ’18
PNDME ’16
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Mainz ’17
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RBC ’08
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COMPASS ’15

Brown ’17
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Liu ’10
Abele ’02
Mostovoi ’01
Liaud ’97
Yerozolimsky’97
Bopp ’86
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O
th
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FIG. 5. A summary of results for the axial isovector charge,
gu�d

A
, for Nf = 2- 2+1- and 2+1+1-flavors. Note the much

finer x-axis scale for the plot showing experimental results for
gu�d

A
. The lattice results (top panel) are from: PNDME’18

(this work); PNDME’16 [3]; CalLat’18 [47]; LHPC’12 [54];
LHPC’10 [55]; RBC/UKQCD’08 [56]; Lin/Orginos’07 [57];
RQCD’14 [58]; QCDSF/UKQCD’13 [59]; ETMC’17 [37, 53];
ETMC’15 [60]; CLS’12 [61] and RBC’08 [62]. Phenomenol-
ogy and other experimental results (middle panel) are from:
AWSR’16 [63] and COMPASS’15 [64]. The results from neu-
tron decay experiments (bottom panel) have been taken from:
Brown’17 [9]; Mund’13 [10]; Mendenhall’12 [8]; Liu’10 [65];
Abele’02 [66]; Mostovoi’01 [67]; Liaud’97 [68]; Yerozolim-
sky’97 [69] and Bopp’86 [70].

using the plateau method. Our results for gu�d

A
and g

u�d

T

from the comparable calculations on the a09m130W en-
semble with ⌧ = 14 (see Figs. 10 and 16), are similar to
the ETMC values, but with less than half the errors.
The more detailed comparison we make is against the

CalLat result gu�d

A
= 1.271(13) [47] that agrees with the

latest experimental value gu�d

A
= 1.2766(20). The impor-

tant question is, since the CalLat calculations were also
done using the same 2+1+1-flavor HISQ ensembles, why
are the two results, after CCFV fits, di↵erent?
To understand why the results can be di↵erent, we first

review the notable di↵erences between the two calcula-
tions. CalLat uses (i) Möbius domain wall versus clover
for the valence quark action. This means that their dis-
cretization errors start at a2 versus a for PNDME. They
also have no uncertainty due to the renormalization fac-
tor since ZA/ZV = 1 for the Möbius domain wall on
HISQ formalism. (ii) They use gradient flow smearing
with tgf/a = 1 versus one HYP smearing to smooth high
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FIG. 11. Results for GA(Q
2) (left) and Gp(Q

2) (right) for momentum Q2 = 0.2848 GeV2. The notation is as in Fig. 10.

FIG. 12. Results for Gu�d
A (Q2) (left) and Gu�d

p (Q2) (right) as a function of Q2 for three source-sink time separations, namely
ts = 0.94 fm (red filled circles), ts = 1.13 fm (blue crosses) and ts = 1.31 fm (green filled triangles). We also show results
extracted from the summation method (open brown diamonds) and two-state fit (open magenta pentagons). The experimental
value of gA is shown with the black asterisk. Results are slightly shifted to the right for clarity.

results for Gu�d
A that calls for a further study of excited states and volume e↵ects on the lattice determination of

Gu�d
p (Q2).
In order to compute the individual light quark axial form factors one needs, besides the isovector form factors, the

Alexandrou et al., arXiv:1705.03399, Phys.Rev. D96 (2017), 054507
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FIG. 9. The 8-point fit using Eq. (23) without the finite volume correction (c4 = 0) to the data for the axial radius hrAi. The
grey band in the bottom row is the fit neglecting both the lattice spacing and the finite volume corrections. The rest is the
same as in Fig 8.
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FIG. 10. (Left) The data for GA(Q
2)/gA from the eight ensembles is plotted versus Q2 (GeV2). We show the dipole fit with the

phenomenological estimates of the axial mass, MA = 1.026 GeV and with our best estimate MA = 1.39 GeV corresponding
to hrAi|dipole = 0.49(10) given in Eq. 24. The experimental data have been provided by Ulf Meissner [9]. (Right) A zoomed in
view of the data and the two dipole fits in the region Q2 < 0.5 GeV2.

for the four ensembles a12m310, a09m130, a06m220 and
a06m135. Including the O(a) improvement of the axial

current, the ratios in Eqs (29)–(32) become

R
I
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Q
2

4M2
N
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I
P (Q

2)

GA(Q2)
, (34)

R
I
2 =

2bm
2MN

GP (Q2)

GA(Q2)
, (35)

R
I
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Q
2 +M

2
⇡

4M2
N

G̃
I
P (Q

2)

GA(Q2)
, (36)

R
I
4 =

2bm2MN

M2
⇡

GP (Q2)

G̃I
P (Q

2)
, (37)
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FIG. 14. Our results for Gu�d
A (Q2) (left) and Gu�d

p (Q2) (right) using the plateau method for ts = 1.31 fm (filled blue squares).
In the left panel, the solid blue (orange) line shows the fit to our lattice QCD results extracted from the plateau at ts = 1.31 fm
(from the two-state fit) using Eq. (32). The experimental value of gA is shown with the black asterisk. The purple, red and
green bands are experimental results for Gu�d

A (Q2) taken from Refs. [59], [60] and [61] respectively. In the right panel, the
open blue squares show the prediction for Gu�d

p (Q2) assuming pion-pole dominance and using Eq. (34) to extract Gu�d
p (Q2)

from our lattice results for Gu�d
A (Q2) shown in the left panel, together with the corresponding fits, blue (orange) band is a fit

to the predicted Gu�d
p (Q2) using Gu�d

A (Q2) extracted from the plateau (two-state). The two fits are overlapping. The filled
blue squares show Gu�d

p (Q2) extracted directly from the nucleon matrix element with a fit to Eq. (39) (solid black line) after
omitting the two lowest Q2 values. The filled black circles are direct measurements of Gu�d

p (Q2) from Ref. [5]. The purple, red
and green bands use the experimental results for Gu�d

A (Q2) and pion pole to infer Gu�d
p (Q2).

FIG. 15. Gu�d
A (Q2) extracted from the plateau method at ts = 1.31 fm, fitted to the dipole form (grey band) and to the

z-expansion (blue band).

values are available, we plot, in Fig. 17, the sink-source separation ts = 1.31 fm and two-state fit methods alone for
better clarity. The disconnected contributions reduce the value of Gu+d

A (Q2) and for zero momentum transfer result
in a value compatible with the experimental one. As already mentioned, the disconnected contributions to Gu+d

p (Q2)
are particularly large and reduce its value especially at low values of Q2. Adding the connected and disconnected
contributions obtained using ~p 0 = ~0 for which common Q2-values are available, yields the result shown in Fig. 18.
We note that, due to the fact that the disconnected part is computed with much higher statistics as compared to the



                             is a historically difficult calculation
Recent calculations in agreement with experiment with fully-controlled 
uncertainties
      -dependence well-determined in LQCD — competitive with experiment
z-parameterisations remove assumption of dipole form

Nucleon Axial FFs from LQCD
gA = GA(Q

2 = 0)

Q2

Hasan et al., arXiv:1711.11385,  
Phys.Rev. D97 (2018), 034504

14

FIG. 6: The induced pseudoscalar form factor at Q2 = 0 (left) and nucleon axial radius (right). For both GP (0) and r2A/a2, results from
ratio method are shown using source-sink separations T/a 2 {10, 13, 16}, as well as the summation method.
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FIG. 7: Nucleon axial (top row) and induced pseudoscalar (bottom row) form factors using both the ratio method for T = 10 a (left
column) and the summation method (right column). The blue points show results from the standard method and the red bands show
a z-expansion fit to those points. The green band (top) and point (bottom) show the slope and value of the respective form factor at
Q2 = 0, computed using the momentum derivative method.
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µv (r2E)
v [fm]2 GP (0) r2A [fm]2

T/a = 10 Summation T/a = 10 Summation T/a = 10 Summation T/a = 10 Summation

Traditional method 3.899(38) 4.75(15) 0.608(15) 0.787(87) 75(1) 137(7) 0.249(12) 0.295(68)

Derivative method 3.898(54) 4.46(33) 0.603(29) 0.753(273) 69(1) 137(15) 0.288(61) �0.120(492)

TABLE II: Numerical results for the four di↵erent nucleon observables at Q2 = 0, computed with the traditional method (via z expansion
fit to the form factor shape) and with the derivative method.

A comparison between our results using the derivative method and the traditional method for both r
2
A and G

v
P (0)

is shown in Fig. 7, top and bottom row, respectively. Shown are results from both the ratio method with T/a = 10
and the summation method. Both G

v
A(Q2) and G

v
P (Q2) increase when going to the summation method indicating the

significant excited-state contributions for the ratio method with T/a = 10. The extracted value for the axial radius
using the derivative method has a much larger statistical error compared to its value from the traditional approach.
For G

v
P in Fig. 7, before fitting we remove the pion pole that is present in the form factor, and then restore it in the

final fit curve as was discussed in Sec. III. At T/a = 10, there is a significant disagreement between GP (0) from the
traditional and the derivative approaches which is likely due to excited-state e↵ects. The value for G

v
P (0) using the

summation method and the derivative approach seems to be in good agreement with its value from the traditional
approach despite the large extrapolation caused by the inclusion of the pion pole in the fit. However, G

v
P (0) obtained

from the derivative method has statistical uncertainties roughly twice as large as the traditional approach. Our results
for the axial form factors are reported in Table II.
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For G

v
P in Fig. 7, before fitting we remove the pion pole that is present in the form factor, and then restore it in the

final fit curve as was discussed in Sec. III. At T/a = 10, there is a significant disagreement between GP (0) from the
traditional and the derivative approaches which is likely due to excited-state e↵ects. The value for G

v
P (0) using the

summation method and the derivative approach seems to be in good agreement with its value from the traditional
approach despite the large extrapolation caused by the inclusion of the pion pole in the fit. However, G

v
P (0) obtained

from the derivative method has statistical uncertainties roughly twice as large as the traditional approach. Our results
for the axial form factors are reported in Table II.
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FIG. 12. Isovector and light isoscalar axial form factors Gu�d
A (Q2) (left) and Gu+d

A (Q2) (right), and z-expansion fits to them.
The lattice data and the inner error band for the fit show statistical uncertainties, whereas the outer error band for the fit
shows the quadrature sum of statistical and systematic uncertainties. In addition, for the light isoscalar axial form factor, the
corresponding form factors from the renormalized connected and disconnected diagrams are also shown.
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FIG. 13. Disconnected axial form factors. Left: strange form factor, both with the full renormalization matrix and after setting
the mixing with light quarks to zero. Right: strange and disconnected light-quark axial form factors, including z-expansion fits
to them. See the caption of Fig. 12.

uncertainties is clearly visible, particularly at low Q2: the data that are strongly correlated form clusters of nearby
points, but there are large fluctuations between di↵erent clusters. This e↵ect was previously seen in the disconnected
electromagnetic form factors computed using the same dataset [4]. Fits using the z expansion to the strange and
light disconnected form factors are shown in the right plot. From these fits we obtain gs

A
= �0.0240(21)(8)(2)(7)

and gl,disc
A

= �0.0430(28)(46)(6)(8). The fit has the e↵ect of averaging over several uncorrelated clusters of data,
and produces a considerably smaller uncertainty than the value taken directly from the form factor at Q2 = 0.
The leading uncertainties are statistical and (for the light-quark case) excited-state e↵ects. The uncertainty due to
renormalization is dominated by uncertainty in the o↵-diagonal part of the renormalization matrix. We also obtain
the radii (r2

A
)s = 0.155(73)(57)(7)(2) fm2 and (r2

A
)l,disc = 0.248(57)(28)(18)(0) fm2. Within their uncertainties, all of

the squared axial radii are compatible with 0.2 fm2.
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Strange quark contributions determined separately and can 
be isolated

m⇡ = 317MeV
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Also physical-point strange quark axial charge: Gupta et al., EPJ Web Conf. 175 (2018) 06029,
Form factors Alexandrou et al., arXiv:1705.03399, Phys.Rev. D96 (2017), 054507
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FIG. 13. Our results for Gu�d
A (Q2) (left) and Gu�d

p (Q2) (right) using the plateau method for ts = 1.31 fm (filled blue squares).
In the left panel, the solid blue (orange) line shows the fit to our lattice QCD results extracted from the plateau at ts = 1.31 fm
(from the two-state fit) using Eq. (28). The experimental value of gA is shown with the black asterisk. The purple, red and
green bands are experimental results for Gu�d

A (Q2) taken from Refs. [44], [45] and [46] respectively. In the right panel, the
open blue squares show the prediction for Gu�d

p (Q2) assuming pion-pole dominance and using Eq. (29) to extract Gu�d
p (Q2)

from our lattice results for Gu�d
A (Q2) shown in the left panel, together with the corresponding fits, blue (orange) band is a fit

to the predicted Gu�d
p (Q2) using Gu�d

A (Q2) extracted from the plateau (two-state). The two fits are overlapping. The filled
blue squares show Gu�d

p (Q2) extracted directly from the nucleon matrix element with a fit to Eq. (32) (solid black line) after
omitting the two lowest Q2 values. The filled black circles are direct measurements of Gu�d

p (Q2) from Ref. [5]. The purple, red
and green bands use the experimental results for Gu�d

A (Q2) and pion pole to infer Gu�d
p (Q2).

FIG. 14. Results for the connected contribution to Gu+d
A (Q2) (left) and Gu+d

p (Q2) (right). The notation is the same as in
Fig. 12.

isoscalar combination. In Fig. 14 we illustrate our results for the connected contributions to Gu+d
A (Q2) and Gu+d

p (Q2)

using the same analysis as for the isovector. Once more, excited states are clearly more severe for Gu+d
p (Q2) at low

Q2 where the pion pole dominates and tends to decrease its value leading to a milder Q2-dependence.
In Fig. 15 we show the disconnected contributions to Gu+d

A (Q2), which are clearly non-zero and negative. The
disconnected contributions reduce the value of Gu+d

A (Q2) and for zero momentum transfer result in a value compatible
with the experimental one. As already mentioned, the disconnected contributions to Gu+d

p (Q2) are particularly large
and reduce its value especially at low values of Q2. Adding the connected and disconnected contributions yield the
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FIG. 11. The data for (mµ/2MN )GP (Q
2)/gA from the eight

ensembles is plotted versus Q2 in units of GeV2. It shows
little dependence on the lattice spacing a or M⇡.
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FIG. 12. Plot of the ratio (Q2 +M2

⇡)G̃P (Q
2)/(4M2

pGA(Q
2))

versus Q2 for the data from the eight ensembles. This ratio
should be unity for all Q2 to validate the pion-pole dominance
hypothesis given in Eq. (11). Our data show significant devi-
ations, especially for Q2 . 0.2 GeV2.

The four improved ratios R
I
1,2,3,4 are shown in Fig. 14

(right). Note that R[I]
1 +R

[I]
2 = 1 checks the PCAC rela-

tion given in Eq. (26); R[I]
3 = 1 tests the pion-pole dom-

inance ansatz Eq. (11); and R
[I]
4 = 1 tests the relation

Eq. (28). Comparing the two sets of panels shows that
improving the axial current has a very small e↵ect. This
is because the value of the improvement coe�cient cA,

that multiplies the correction term R
[I]
5 , is small. Thus,

improving the axial current to O(a) does not explain the

large deviation of R
[I]
1 + R

[I]
2 from unity illustrated in

Fig. 14.
For all four ensembles, data in Fig. 14 show that

R
[I]
1 +R

[I]
2 ⇡ R

[I]
3 for small Q2, however, both R

[I]
1 +R

[I]
2

and R
[I]
3 are much smaller than unity. The deviation of

R
[I]
4 from unity grows with Q

2, but decreases as a ! 0

and M⇡ ! M
Physical
⇡ . This pattern is, in general, con-

sistent with these being discretization e↵ects. Note that
the corrections to 2bmGP (Q2) = (M2

⇡/2MN )G̃P (Q2), or

R
[I]
4 = 1, do not significantly impact R

[I]
1 + R

[I]
2 ⇡ R

[I]
3

because the dominant contribution to both sides comes
from R

[I]
1 .

The data for R3 from all eight ensembles is plotted in
Fig. 12 and show that the deviations from unity increase
with decreasing Q

2, a and M
2
⇡ . For the physical pion

mass ensembles, theO(50%) deviation forQ2
< 0.2 GeV2

is surprisingly large. Such Q
2 dependent deviations from

the PCAC relation are, generically, indicators of dis-
cretization artifacts. The increase in the deviations with
a does not support this expectation, and as shown in
Fig. 14, the O(a) improvement of the axial current does
not reduce the deviations. Therefore, the observed large
deviation remains to be explained.
Taking the data at face value, to obtain estimates at

Q
2
⌘ Q

⇤ 2 = 0.88m2
µ and at Q

2 = �M
2
⇡ , from which

g
⇤
P /gA and g⇡NN/gA are determined, we show, in Fig. 15,
the data for (Q2+M

2
⇡)G̃P (Q2)/gA and the fit to it using

Eq. (25) by the solid line. The extrapolated values are
shown using the symbol star at Q2

⌘ Q
⇤ 2 = 0.88m2

µ and
the symbol plus at Q2 = �M

2
⇡ . It is clear from Fig. 15,

that there are enough free parameters in Eq. (25) to fit
the data and the values obtained at Q2

⌘ Q
⇤ 2 = 0.88m2

µ

and Q
2 = �M

2
⇡ by extrapolation are reasonable. How-

ever, the contributions of terms proportional to c2 and
c3 (see Table VIII) increase as the lattice spacing a ! 0
and M⇡ ! 135 MeV. The quantitative change in behav-
ior is already clear in all three M⇡ ⇡ 220 MeV ensembles.
Thus, it is unlikely that the change in behavior between
the M⇡ ⇡ 310 MeV ensembles and those at lighter M⇡

is a statistical fluctuation. Because of this change in be-
havior, we get low estimates of g⇤P /gA and g⇡NN/gA.
Given the data in Table VIII, to estimate g

⇤
P in the

limit a ! 0 and M⇡ ! 135 MeV, we make a fit using the
ansatz

g
⇤
P (a,M⇡)/gA = d1+d2a+

d3

M2
⇡ + 0.88m2

µ

+d4M
2
⇡ , (38)

where the leading behavior in M
2
⇡ is taken to be the pion

pole term evaluated at the experimental momentum scale
of muon capture. We neglect possible finite volume cor-
rections in the data in obtaining the final estimates since
the data do not show an obvious dependence on M⇡L.
The simultaneous fits in a and M⇡ are shown in Fig. 16.
They give

g
⇤
P /gA = 3.48(14) ,

g
⇤
P = 4.44(18) , (39)

where the final value of g
⇤
P is obtained by multiplying

the ratio obtained from the fit by the experimental value
gA = 1.276.
We summarize lattice QCD results for g

⇤
P in Fig. 17.

The results g⇤P = 7.68±1.03 (Lin(2008) [29]), g⇤P = 6.4±
1.2 (Yamazaki(2009) [30]), and g

⇤
P = 8.47(21)(87)(2)(7)

3

Aµ

�µ�5 gA

Aµ

�µ�5 GA(Q2)

Aµ

p
2 g⇡NN �5

p
2 qµF⇡

⇠
1

Q2+M2
⇡

FIG. 1. The Feynman diagrams illustrating the decomposition of the matrix element of the axial current is Aµ = u�µ�5d
within a nucleon state in terms of form factors. The plot on the left represents the interation at Q2 = 0 in which case the axial
current interacts with the nucleon with strength gA. The middle panel shows one of the lowest order Feynman diagrams that
contributes to GA(Q

2), and provides the basis for the dipole ansatz. The diagram on the right is the leading contribution to
the induced pseudoscalar form factor G̃P (Q

2) that is mediated by a pion intermediate state. Its coupling to the nucleon at the
pion pole defines g⇡NN.

value of the constant t0 is typically chosen to be in
the middle of the range of Q

2 of interest to minimize
zmax. Reducing zmax could improve the convergence of
the z-expansion. This is important in our calculation
because we have data at only the five lowest values of
momenta for most ensembles and can, therefore, keep
terms only upto O(z3). Our analysis of the data with

t0 = 0 and t0 = t
mid
0 = {0.12, 0.20, 0.40} GeV2, cor-

responding to the approximate midpoint value of Q2 on
the M⇡ ⇡ {130, 220, 310} MeV ensembles, respectively,
shows that the quality of the fits and the results are in-
sensitive to the choice of t0. We choose the midpoint

values, t
mid
0 , for presenting our final results.

The requirement that GA(Q2) ! Q
�4 as Q

2
! 1

requires Q
n
GA(Q2) ! 0 for n = 0, 1, 2, 3 [13]. These

constraints can be expressed as four sum rules

kmaxX

k=n

k(k�1) . . . (k�n+1)ak = 0 n = 0, 1, 2, 3 . (10)

Incorporating these sum rule conditions ensures that the
ak are not only bounded but must also decrease at large
k [13]. For all but the two physical quark mass ensembles,
a09m130 and a06m135, we have six data points (zero and
five non-zero momentum cases). We, therefore, analyzed
the data using kmax = 5, 6, 7 and 8. Including the
four sum rules, these values of kmax correspond to 4, 3,
2, and 1 degrees of freedom, respectively. We use the
quality of the fits and the stability of the value of the axial
charge radius hr2Ai obtained from them as checks on the
consistency of the analysis, ensemble by ensemble. Based
on these checks, we drop kmax = 5 fits as the associated
�
2
/d.o.f. are not good and the kmax = 8 fits, as they have

only one degree of freedom.
Our final result, hrAi = 0.47(7)(2) fm, is obtained as

an average of the kmax = 6 and 7 analyses, which we
label k2+4 and k

3+4 to make explicit that four powers of
z are constrained by the sumrules. This lattice estimate
is smaller than the current phenomenological estimates

given in Eq. (6), but consistent with 0.51(6) fm obtained
by the MiniBooNE collaboration [5].
The induced pseudoscalar form factor G̃P (Q2) is typi-

cally analyzed assuming the pion-pole dominance ansatz:

G̃P (Q
2) = GA(Q

2)


4M2

N

Q2 +M2
⇡

�
. (11)

This follows from the PCAC relation, Eq. (3), if
2bmGP (Q2) = (M2

⇡/2MN )G̃P (Q2). Once the modeling
of the Q

2 behavior of G̃P (Q2) is under control, one can
determine the induced pseudoscalar charge, g⇤P and the
pion-nucleon coupling g⇡NN. Experimentally, G̃P (Q2)
is probed in muon capture by a proton, µ

� + p !

⌫µ + n [14, 15]. From these measurements, g⇤P is defined
to be

g
⇤
P ⌘

mµ

2MN
G̃P (Q

2 = Q
⇤ 2

⌘ 0.88m2
µ) . (12)

Current estimates from the MuCap experiment [14, 15],
and from chiral perturbation theory [9, 16] are

g
⇤
P |MuCap = 8.06(55) ,

g
⇤
P |�PT = 8.29+0.24

�0.13 ± 0.52 . (13)

To compare our lattice QCD estimates to these phe-
nomenological values, we first extract g

⇤
P from fits to

G̃P (Q2) versus Q2 for each ensemble, and then extrapo-
late these data to a = 0 and M⇡ = 135 MeV. We obtain
a surprisingly low value, g⇤P = 4.49(19), compared to the
values given in Eq. (13). This discrepency arises due to
large deviations in the PCAC relation involving the three
form factors as discussed further in Sec. VIII. We also
show that using just a pion-pole ansatz to extrapolate
g
⇤
P (Q

⇤ 2) obtained from simulations at M⇡ > 300 MeV
to M⇡ ! M

Physical
⇡ is not valid.

Lastly, we evaluate the pion-nucleon coupling g⇡NN

using the Goldberger-Treiman (GT) relation g⇡NN =
MNgA/F⇡, and as the residue at the pion-pole at Q

2 =

Deviations from pion-pole 
dominance ansatz at low-Q2

Alexandrou et al., arXiv:1705.03399, Phys.Rev. D96 (2017), 054507
Gupta et al., arXiv:1705.06834, Phys.Rev. D96 (2017), 114503 



LQCD input for the quasi-elastic scattering region:

     dependence of nucleon axial form factor
fully-controlled uncertainties 
competitive with experiment
z parameterisation removes assumption of dipole form

Nucleon pseudo scalar form factor
fully-controlled uncertainties 
competitive with experiment
deviations from pion-pole ansatz observed
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Constraining 𝜈-nucleus interactions
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FIG. 9 Total neutrino and antineutrino per nucleon CC cross sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figures 28, 11, and 12 with the inclusion of additional lower energy
CC inclusive data from N (Baker et al., 1982), ⇤ (Baranov et al., 1979), ⌅ (Ciampolillo et al., 1979), and ? (Nakajima et al.,
2011). Also shown are the various contributing processes that will be investigated in the remaining sections of this review.
These contributions include quasi-elastic scattering (dashed), resonance production (dot-dash), and deep inelastic scattering
(dotted). Example predictions for each are provided by the NUANCE generator (Casper, 2002). Note that the quasi-elastic
scattering data and predictions have been averaged over neutron and proton targets and hence have been divided by a factor
of two for the purposes of this plot.

J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307
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Resonance region

Energies above ~200 MeV, inelastic  
excitations from pion production

Dominant contribution from  
Δ resonance

N*’s also important at high Eν

Very difficult to access experimentally 
Constrained only from PCAC

QCD calculations possible

Need to account for unstable nature of resonance: extract 
N→Nπ transition FFs
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Lattice QCD calculation of axial N ∆ transition form factor :

Resonance region

C Alexandrou et al., Phys.Rev. D83 (2011) 014501 
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FIG. 6: Plot (a) shows the Q
2-dependence of the axial form factor C

A
5 extracted from the coarse and fine

DWF lattices. The corresponding mixed action results [21] have also been included. The solid blue (dashed

black) line is from the dipole (exponential) fit for to the fine DWF lattice results. Note that the error band

corresponds to the dipole fit. The dotted brown line is the dipole fit to the experimental data. The ratio

C
A
6 /C

A
5 versus Q2 is plotted in (b). The dashed black line refers to the fine DWF lattice results and is the

pion pole dominance prediction of Eq. (36). The solid blue line is a fit to a monopole form c0/(1+Q
2
/m

2).

describes satisfactorily the ratio yielding a heavier mass parameter m than the lattice value of

the pion mass (see Table III). Such behavior has been observed also for the hybrid and quenched

Wilson actions [21].

The lattice results for the C
A
6

are plotted on Fig. 7. The curve shown (solid line) in the figure

corresponds to the form

d0 c0

(1 +Q2/m2

A)
2(1 +Q2/m2)

, (41)

where c0 and m are the parameters of the monopole term given in Eq. (36) that are expected to

describe well the CA
6
/C

A
5
ratio provided the pion pole dominance is applicable. The form described

by the expression of Eq. (41), seems to provide the best fit to the fine DWF data. On the other

hand, CA
6

is related to the C
A
5

form factor through the expression

C
A
6 (Q

2) = C
A
5 (Q

2)
m

2

N

m2
⇡ +Q2

.

The curve that corresponds to the dashed line is obtained from fitting the fine DWF data to this
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FIG. 5: In plot (a) we show the Coulomb quadrupole form factor GC2(Q2) extracted from the fine DWF

lattice measurements. Along with it we provide also the result from the hybrid action approach [28]. Plot (b)

depicts the corresponding RSM evaluated in the rest frame of the � baryon. Non-zero values are confirmed,

for the lowest Q2 values accessible on the lattices. We also show results using the hybrid action taken from

Ref. [28]. Experimental results are also included using the same notation as those in Fig. 4.

IV. AXIAL N TO � TRANSITION FORM FACTORS AND THE

GOLDBERGER-TREIMAN RELATION

A. The Electro-weak and Pseudo-scalar transition matrix element

The nucleon to � matrix element of the axial vector current is parameterized in terms of four

dimensionless form factors. In the Adler parameterization [44] it is written as follows

h�(p0, s0)|A3

µ|N(p, s)i = i

r
2

3

✓
m�mN

E�(p0)EN (p)

◆
1/2

ū
�
�+(p0, s0)

✓
C

A
3
(q2)

mN
�
⌫ +

C
A
4
(q2)

m2

N

p
0⌫
◆
(g�µg⇢⌫ � g�⇢gµ⌫) q

⇢ + C
A
5 (q

2)g�µ +
C

A
6
(q2)

m2

N

q�qµ

�
uP (p, s) (27)

with the axial current given in Eq. (6).

The form factors CA
3
(q2) and C

A
4
(q2) belong to the transverse part of the axial current and are

both suppressed [27] relative to the longitudinal form factors C
A
5
(q2) and C

A
6
(q2), which are the

dominant ones and are the ones considered in this work.
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form. In this case C
A
5

is being described by the dipole form shown in Fig. 6(a), while the nucleon

and pion masses are the lattice evaluated ones.

C
A 6

Q2 2

m⇡ = 297

m⇡ = 353
m⇡ = 330

FIG. 7: Lattice results for CA
6 are shown as a function of Q2. The solid blue line is the fit to the form of

Eq. (41), while the dashed black line corresponds to the form C
A
5

� m2
N

m2
⇡+Q2

�
. Note that for the latter fit, the

C
A
5 factor is described by the dipole fit parameters.

C. The Pseudo-scalar transition form factor and Goldberger-Treiman relation

The pseudo-scalar form factor G⇡N�(Q2), defined via the matrix element given in Eq. (28),

is extracted directly from the optimized linear combination S1 with the pseudo-scalar current

operator insertion of Eq. (6). In the large Euclidean time limit where only the nucleon and �

states dominate the corresponding ratio yields

S
P
1 (q ; �5) =

r
2

3

r
EN +mN

EN


q1 + q2 + q3

6mN

f⇡m
2
⇡

2mq(m2
⇡ +Q2)

�
G⇡N�(Q

2) . (42)

Notice that the extraction of G⇡N� from the above equation requires knowledge of the quark

mass mq and the pion decay constant, f⇡, on the given ensembles. Calculation of f⇡ requires the

CAVEAT: Complexities at physical point with unstable resonances, 
               but formalism exists: Lellouch-Lüscher hep-lat/0003023 
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cross-section

22
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FIG. 9 Total neutrino and antineutrino per nucleon CC cross sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figures 28, 11, and 12 with the inclusion of additional lower energy
CC inclusive data from N (Baker et al., 1982), ⇤ (Baranov et al., 1979), ⌅ (Ciampolillo et al., 1979), and ? (Nakajima et al.,
2011). Also shown are the various contributing processes that will be investigated in the remaining sections of this review.
These contributions include quasi-elastic scattering (dashed), resonance production (dot-dash), and deep inelastic scattering
(dotted). Example predictions for each are provided by the NUANCE generator (Casper, 2002). Note that the quasi-elastic
scattering data and predictions have been averaged over neutron and proton targets and hence have been divided by a factor
of two for the purposes of this plot.

J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307
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Shallow inelastic region

In inelastic regime, quark PDFs of the nucleon control scattering 
cross-section
In shallow inelastic region, both resonances and DIS are 
important
Multi-meson channels may become important
Nuclear effects are different in νA vs. eA (MINERνA)
DIS structure functions accessible in lattice QCD

low moments of structure functions  
controlled

x-dependence difficult but promising

Mn =

Z 1

�1
xnf(x)dx, n / 4

ν

ν, l

N
X



Lattice QCD typically calculates low moments of PDFS
Can separate and isolate contributions from

Strangeness
Charge symmetry violation
Gluons

Nucleon PDFs

5

TABLE II: Our results for the intrinsic spin ( 12�⌃), angular
momentum (L) and total (J) contributions to the nucleon
spin and to the nucleon momentum hxi, in the MS-scheme
at 2 GeV, from up (u), down (d) and strange (s) quarks and
from gluons (g), as well as the sum of all contributions (tot.),
where the first error is statistical and the second a systematic
due to excited states.

1
2�⌃ J L hxi

u 0.415(13)(2) 0.308(30)(24) -0.107(32)(24) 0.453(57)(48)
d -0.193(8)(3) 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s -0.021(5)(1) 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g - 0.133(11)(14) - 0.267(22)(27)

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

show schematically the various contributions to the spin
and momentum fraction.

FIG. 3: Left: Nucleon spin decomposition. Right: Nu-
cleon momentum decomposition. All quantities are given in
the MS-scheme at 2 GeV. The striped segments show valence
quark contributions (connected) and the solid segments the
sea quark and gluon contributions (disconnected).

Conclusions: In this work we present a calcula-
tion of the quark and gluon contributions to the pro-
ton spin, directly at the physical point. Individual
components are computed for the up, down, strange
and charm quarks, including both connected (valence)
and disconnected (sea) quark contributions. Our final
numbers are collected in Table II. The quark intrinsic
spin from connected and disconnected contributions is
1
2�⌃u+d+s = 0.299(12)(3)|conn. � 0.098(12)(4)|disc. =
0.201(17)(5), while the total quark spin is Ju+d+s =
0.255(12)(3)|conn. + 0.153(60)(47)|disc. = 0.408(61)(48).
Our result for the intrinsic quark spin contribution agrees
with the upper bound set by a recent phenomenologi-
cal analysis of experimental data from COMPASS [45],
which found 0.13 < 1

2�⌃ < 0.18. The results for Lq

and Jq in Table II are also consistent with an analysis of
generalized parton distributions [45]. Using the spin sum
one would deduce that Jg=

1
2�Jq=0.092(61)(48), which

is consistent with taking Jg = 1
2 hxig = 0.133(11)(14)

via the direct evaluation of the gluon momentum frac-
tion, which suggests that Bg

20(0) is indeed small. Fur-
thermore, we find that the momentum sum is satisfied

P
qhxiq+hxig = 0.497(12)(5)|conn.+0.307(121)(95)|disc.+

0.267(12)(10)|gluon = 1.07(12)(10) as is the spin sum
of quarks and gluons giving JN =

P
q Jq + Jg =

0.408(61)(48) + 0.133(11)(14) = 0.541(62)(49) resolving
a long-standing puzzle.
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First calculations of x-dependence of nucleon PDFs
Rapid progress, but many systematics to be controlled
Will not improve on experimental constraints in near future

Nucleon PDFs
5

to plan improved calculations with total uncertainty less
than 10%. 2) With the promising results shown here, we
can proceed with similar analyses for the less known po-
larized PDFs, such as helicity and transversity (the lon-
gitudinal and transversely polarized PDFs), where the
isovector PDFs needed to make impacts for global anal-
ysis are less demanding than the unpolarized ones.
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x

qu
-
d

CT14
matched PDF

FIG. 4. Our final PDF renormalized at 3 GeV and compared
with CT14 [63] at (µR, p

R
z ) = (3.7, 2.2) GeV. It is consistent

with NNPDF3.1 distribution [64] and CJ15 [65]. Our results
agree nicely with the global-analysis PDF.

Summary and Outlook: In this work, we report the
state-of-the-art isovector unpolarized quark distribution
using lattice QCD directly at physical pion mass. We
use nucleon boosted momenta as large as 3 GeV with
high-statistics analysis. We carefully study excited-state
systematics whose error is reflected in our final distribu-
tion uncertainty. We renormalize our nucleon matrix el-
ement using the nonperturbative RI/MOM renormaliza-
tion, and perform the LaMET one-loop finite-momentum
matching and conversion to MS-scheme to connect lattice
quasi-distribution to lightcone distribution. We found
our final distribution agree well with the global analysis
distribution. We carefully examine all possible system-
atics which will give us better guideline to improve our

future calculations and provide better precision distribu-
tions. Future direction will be investigating smaller lat-
tice spacing ensembles for reaching even higher boosted
momentum such that we can push toward smaller-x re-
gion.
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LQCD input for the resonance region:

First calculations of axial transition form factors 
resonances difficult for lattice QCD
currently: uncontrolled systematic uncertainties,  
unphysical values of quark masses
formalism in place to move to physical case

LQCD input for the inelastic  
scattering region:

Much recent progress, but challenging  
region for direct input to neutrino program

Resonance region
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Targets are nuclei (C, Fe, Ar,  Pb, H2O)  
so how relevant are nucleon FFs, PDFs?

EMC effect
Quenching of gA in GT transitions

Experimental investigations: MINERνA

Nuclear effects

Calculate matrix elements in light nuclei from first principles

        EFT to reach heavy nuclear targets relevant to experiment

First calculations of axial charge of light nuclei

Δ

π

N

ν

l



Gamow-Teller transitions in 
nuclei are a stark example of 
problems

Well-measured

Best nuclear structure calculations 
are systematically off by 20–30%

Large range of nuclei (30<A<60) 
where spectrum is well described

QRPA, shell-model,...

Correct for it by “quenching” axial 
charge in nuclei ...

Nuclear effects

Kumar et al. J. Phys. G43 (2016)

(free-nucleon)

different nuclei 
30<A<60



Nuclear physics from LQCD

Nuclei on the lattice 

Calculations of matrix elements of 
currents in light nuclei just beginning

Deeply bound nuclei: 
use the same techniques as for single 
hadron matrix elements

Near threshold states: 
need to be careful with volume 
effects

Phiala Shanahan

Gluon Structure of Hadrons 
and Nuclei 



Nuclei on the lattice 

Hard problem

Noise:  
Statistical uncertainty grows 
exponentially with number of 
nucleons

Complexity: 
Number of contractions grows 
factorially 

Nuclear physics from LQCD



NPLQCD collaboration  
Nuclei with A<5
QCD with unphysical  
quark masses      
mπ~800 MeV, mN~1,600 MeV
mπ~450 MeV, mN~1,200 MeV

 Unphysical nuclei

Proton-proton fusion  
and tritium β-decay  
[PRL 119, 062002 (2017)]

Double β-decay      
[PRL 119, 062003 (2017),  
PRD 96, 054505 (2017)]

Gluon structure  
of light nuclei       
[PRD 96 094512 (2017)]

Scalar, axial  
and tensor MEs       
[PRL120, 152002 (2018)] 

Nuclear structure: magnetic 
moments, polarisabilities
[PRL 113,  252001 (2014), PRD 92, 114502 (2015)]

First nuclear reaction: np→dγ 
[PRL 115, 132001 (2015)] 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and tritium β-decay  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Double β-decay      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Gluon structure  
of light nuclei       
[PRD 96 094512 (2017)]

Scalar, axial  
and tensor MEs       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Nuclear structure: magnetic 
moments, polarisabilities
[PRL 113,  252001 (2014), PRD 92, 114502 (2015)]

First nuclear reaction: np→dγ 
[PRL 115, 132001 (2015)] 



Spectrum of light nuclei

NPLQCD Phys.Rev. D87 (2013), 034506 
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Hadron/nuclear energies are modified by presence of fixed/constant 
external fields

Example: fixed magnetic field 
 
 
 
 

Calculations with multiple fields        
         extract coefficients of response  
e.g., magnetic moments, polarisabilities, …

Not restricted to simple EM fields 
Axial MEs: uniform axial background field

Background field method

[Detmold, Savage PRL 113,  252001 (2014)]

E( ~B) =
q

M2 + (2n+ 1)|Qe ~B|� ~µ · ~B
landau level mag. mmt

mag. polarisability

�2⇡�M0| ~B|2 � 2⇡�M2TijBiBj + . . .



Example:    fixed magnetic field         moments, polarisabilities 

Axial MEs:  fixed axial background field         axial charges, other matrix elts. 

 

 

 

 
Second order piece: being used for calculations of double-beta decay

Axial background field

[NPLQCD Nucl. Phys. A743,  170 (2004)]

C�u;�d(t) = + +� �2

+ �3
Linear response 
gives axial matrix  
element

Implicit sum over 
current insertion 
times



Simplest semileptonic weak  
decay of a nuclear system  
 

Gamow-Teller (axial current)  
contribution to decays of nuclei  
not well-known from theory
Understand multi-body contributions  
to                 better predictions for  
decay rates of larger nuclei

Kumar et al. J. Phys. G43 (2016)

(free-nucleon)

different nuclei 
30<A<60

Tritium β-decay

    We calculate
gAhGTi = h3He|q�k�5⌧�q|3Hi

hGTi



Form ratios of compound 
correlators to cancel leading  
time-dependence: 
 

“Quenching” of the axial 
charge emerges from LQCD 
calculation

Tritium β-decay

hG
T
i

R3H(t)

Rp(t)

t!1�! gA(3H)

gA
= hGTi 1.10

1.20

1.30

1.40

2 4 6 8 10
0.90

0.94

0.98

1.02

smeared-smeared 
smeared-point

constant fits to  
plateau region

3

FIG. 1. The ratios of correlation functions that determine
the unrenormalized isovector axial charge of the proton. The
orange diamonds (blue circles) correspond to the SS (SP) cor-
relator ratios, Rp(t), as defined in Eq. (4), and the band cor-
responds to a constant fit to the plateau interval of both SS
and SP.

as the proton has two valence up quarks and one va-
lence down quark. Consequently, using at least one(two)
nonzero value(s) of �d(u) enables extraction of the linear
response using simple fits or, in the more general cases
below, by inverting the Vandermonde matrix. The dif-
ference of the up-quark and down-quark matrix elements
can be used to construct the desired three-point function
containing the isovector axial current. This can then be
combined with the zero-field two-point function to form
a ratio that asymptotes to the desired axial charge at late
times, namely

Rp(t) =

⇣
C(p)

�u;�d=0
(t)� C(p)

�u=0;�d
(t)

⌘���
O(�)

C(p)

�u=0;�d=0
(t)

, (3)

where the ratios are averaged over both spins, and
“
��
O(�)

” extracts the coe�cient of � in the preceding ex-

pression. Then,

Rp(t) ⌘ Rp(t+ 1)�Rp(t) �!
gA
ZA

. (4)

The e↵ective-gA plots resulting from the correlator di↵er-
ences are shown in Fig. 1, along with constant fits that
extract gA from the late-time asymptote. The extracted
value is gA/ZA = 1.298(2)(6). Including the renormal-
ization factor, this result yields an axial-current matrix
element of gA = 1.13(2)(7), which is consistent with pre-
vious determinations from standard three-point function
techniques at this pion mass [46, 47].

The GT Matrix Element for Tritium �-decay: The
half-life of tritium, t1/2, is related to the F and GT matrix
elements by [1]

(1 + �R)fV
K/G2

V

t1/2 =
1

hFi2 + fA/fV g2
A
hGTi2

, (5)

FIG. 2. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in 3H (up-
per panel), and the ratio of the isovector axial matrix ele-
ment in 3H to that in the proton (lower panel). The orange
diamonds (blue circles) correspond to the SS (SP) e↵ective
correlator ratios and the bands correspond to constant fits to
the asymptotic behavior.

where the factors on the left-hand side are known pre-
cisely from theory or experiment. On the right-hand
side, fA,V denote Fermi functions [48] and hFi and
hGTi are the F and GT reduced matrix elements, re-
spectively. hFi is constrained to be very close to unity
by the Ademollo-Gatto theorem [49], modified only by
second-order isospin-breaking and electromagnetic cor-
rections. However, gAhGTi = h

3He|q�k�5⌧�q|3Hi is less
constrained, and its evaluation is the focus of this section.
By isospin symmetry, the GT matrix element for

3H!
3He e�⌫ is related to the axial charge of the tri-

ton, gA(3H), when the light quarks are degenerate and
in the absence of electromagnetism. Analogous to Rp

above, the ratio R3H(t) of correlation functions is con-
structed in background fields such that R3H(t) ! gA(3H)
in the large-time limit. The analysis of these correlation
functions is more complex than for the proton because
the triton has four up quarks and five down quarks and
the correlators are thus quartic and quintic polynomi-
als in �u,d, respectively. Acting with the inverse of the
Vandermonde matrix on the calculated correlation func-
tions is su�cient to extract the terms linear in �u,d and
gives results consistent with a polynomial fit. Results for
R3H(t) are shown in Fig. 2 along with a constant fit to
the asymptotic value gA(3H)/ZA. Also shown in Fig. 2
is hGTi(t) = R3H(t)/Rp(t), which is independent of ZA,
and the fit to its asymptotic value, gA(3H)/gA. Analyses
of these ratios lead to

gA(3H)

ZA

= 1.272(6)(17),
gA(3H)

gA
= 0.979(3)(10), (6)

where the first uncertainties are statistical and the sec-
ond arise from systematics of the fits in both the field
strength and temporal separation as well as di↵erences in

half-life
axial MEvector ME

known from theory or expt.



Can access terms with more current insertions from same 
calculations

Recall: background field correlation function

Higher-order insertions

C�u;�d(t) = +

+ �3
Linear response 
gives axial matrix  
element

Implicit sum over 
current insertion 
times

+ �2�



Higher-order insertions

C�u;�d(t) = +

+ �3
Implicit sum over 
current insertion 
times

+ �2�

Quadratic response 
from two insertions 
on different quark lines

Can access terms with more current insertions from same 
calculations

Recall: background field correlation function



Certain nuclei allow  
observable ββ decay  
 
 
 

If neutrinos are massive  
Majorana fermions 0νββ  
decay is possible

Double β-decay 
2 Advances in High Energy Physics
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Figure 1: Representation of the energies of the A = 76 isobars. The single-beta decay (β)—green arrows—
between 76Ge and 76Se is energetically forbidden, hence leaving double beta (ββ)—pink arrow—as the
only decay channel. The two mass parabolas exist because of the pairing interaction that lowers the energy
of even Z—even N nuclei with respect to odd Z—odd N nuclei. For odd A nuclei there is a single mass
parabola, and all single-beta transitions are energetically allowed (taken from J. Menendez’s PhD thesis).

nuclei [3], with lifetimes in the range 1018–1022 y. The alternative is the neutrinoless double-
beta decay (0νββ), proposed by Furry [4]after the Majorana theory of the neutrino [5]. The
neutrinoless decay 0νββ can only take place if the neutrino is a massive Majorana particle
and demands an extension of the standard model of the electroweak interactions, because
it violates the lepton number conservation. Therefore, the observation of the double-beta
decay without emission of neutrinos will sign the Majorana character of the neutrino. The
corresponding nuclear reactions are the following:

A
ZXN−→A

Z+2XN−2 + 2e− + 2νe,

A
ZXN−→A

Z+2XN−2 + 2e−.
(1.1)

Currently, there is a number of experiments either taking place or expected for the
near future—see, for example, [6, 7]and Section 7.3.—devoted to detect this process and to
set up firmly the nature of neutrinos. Most stringent limits on the lifetime are of the order of
1025 y. A discussed claim for the existence of 0νββ decay in the isotope 76Ge (see Section 7.1)
declares that the half-life is about 2.2×1025 y [8]. Furthermore, the 0νββ decay is also sensitive
to the absolute scale of the neutrino masses (if the process is mediated by the so-called mass
mechanism), and hence to themass hierarchy (see Section 2). Since the half-life of the decay is
determined, together with the effective Majorana neutrino mass (defined later in Section 2),
by the nuclear matrix elements for the process NME, its knowledge is essential to predict the
most favorable decays and, once detection is achieved, to settle the neutrino mass scale and
hierarchy.

Another process of interest is the resonant double-electron capture which could
have lifetimes competitive with the neutrinoless double-beta decay ones only if there is a
degeneracy of the atomic mass of the initial and final states at the eV level [9]. For the
moment, high-precision mass measurements have discarded all the proposed candidates
(see [10] for a recent update of the subject). As in the neutrinoless double-beta decay,
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Figure 8: Double-beta decay candidates and their Q-values (adapted from [52]). The “magnificent nine”
are highlighted and two background-relevant energy markers are indicated (see text).

Table 4: Relevant parameters and features of the “magnificent nine” double-beta decay candidates.

Double-beta
candidate

Q-value
(MeV)

Phase space
G01(y−1)

Isotopic abundance
(%)

Enrichable by
centrifugation

Indicative cost
normalized to Ge

48Ca 4.27226 (404) 6.05 × 10−14 0.187 No —
76Ge 2.03904 (16) 5.77 × 10−15 7.8 Yes 1
82Se 2.99512 (201) 2.48 × 10−14 9.2 Yes 1
96Zr 3.35037 (289) 5.02 × 10−14 2.8 No —
100Mo 3.03440 (17) 3.89 × 10−14 9.6 Yes 1
116Cd 2.81350 (13) 4.08 × 10−14 7.5 Yes 3
130Te 2.52697 (23) 3.47 × 10−14 33.8 Yes 0.2
136Xe 2.45783 (37) 3.56 × 10−14 8.9 Yes 0.1
150Nd 3.37138 (20) 1.54 × 10−13 5.6 No —

with some gamma background and with the Radon-induced one; the second group (82Se,
100Mo, and 116Cd) is out of the reach of the bulk of the gamma environmental background but
Radon may be a problem; the candidates of the third group (48Ca, 96Zr, and 150Nd) are in the
best position to realize a background-free experiment. As for the phase space, the situation
is depicted in Figure 9. No great differences are observable among the various candidates,
with the significant exceptions of 76Ge, which presents a small value of only∼ 6 × 10−15 y−1

due to its low Q and, on the other side of 150Nd, characterized by a particularly high value of
∼ 1.5 × 10−13 y−1).

As for the second criterion, natural isotopic abundances are reported in Table 4. Most
of the abundances are in the few % range, with two significant exceptions: the positive case
of 130Te that with its 33.8% value can be studied with high sensitivities even with natural
samples; the negative case of 48Ca, well below 1%. Given the considerations exposed in
Section 6.1, an ambitious experiment (aiming at exploring the inverted hierarchy region of
the neutrino mass pattern) needs at least 100 kg of isotope mass. In order to keep the detector
size reasonable (and recalling that the background scales roughly as the total source, and
not isotope, mass), it is clear that isotopic enrichment is a necessary task for almost all high-
sensitivity searches. The generally available enrichment techniques are reported in Table 5.
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• Double E-decay only appears when regular E-decay is energetically 
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Want to understand 2νββ and 0νββ decay from theory

Double β-decay 

15

weak process and it corresponds to the transition from a
nucleus (A,Z) to its isobar (A,Z + 2) with the emission
of two electrons. In principle, a nucleus (A,Z) can decay
via double beta decay as long as the nucleus (A,Z + 2)
is lighter. However, if the nucleus can also decay by sin-
gle beta decay, (A,Z + 1), the branching ratio for the
0⌫�� will be too di�cult to be observed due to the over-
whelming background rate from the single beta decay.
Therefore, candidate isotopes for detecting the 0⌫�� are
even-even nuclei that, due to the nuclear pairing force,
are lighter than the odd-odd (A,Z + 1) nucleus, making
single beta decay kinematically forbidden (Fig. 9). It is
worth noting that, since the 0⌫�� candidates are even-
even nuclei, it follows immediately that their spin is al-
ways zero.

The theoretical expression of the half-life of the process
in a certain nuclear species can be factorized as:

[t1/2]�1 = G0⌫ |M|2 |f(mi, Uei)|2 (42)

where G0⌫ is the phase space factor (PSF), M is the
nuclear matrix element (NME) and f(mi, Uei) is an adi-
mensional function containing the particle physics be-
yond the SM that could explain the decay through the
neutrino masses mi and the mixing matrix elements Uei.

In this section, we review the crucial role of nuclear
physics in the expectations, predictions and eventual
understanding of the 0⌫��, also assessing the present
knowledge and uncertainties. We mainly restrict to the
discussion of the light neutrino exchange as the candi-
date process for mediating the 0⌫�� transition, but the
mechanism of heavy neutrino exchange is also considered.

In the former case (m . 100MeV, see Eq. (19)), the
factor f is proportional m�� :

f(mi, Uei) ⌘
m��

me
=

1

me

������

X

k=1,2,3

U2
ekmk

������
(43)

where the electron mass me is taken as a reference
value. In the scheme of the heavy neutrino exchange
(m & 100MeV), the e↵ective parameter is instead:

f(mi, Uei) ⌘ mp

⌦
M�1

H

↵
= mp

������

X

I=heavy

U2
eI

1

MI

������
(44)

where the proton mass mp is now used, according to the
tradition, as the reference value.

A. Recent developments on the phase space factor
calculations

The first calculations of PSFs date back to the late
1950s [131] and used a simplified description of the wave
functions. The improvements in the evaluation of the
PSFs are due to always more accurate descriptions and
less approximations [132–134].
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FIG. 10. Most updated NMEs calculations for the 0⌫�� with
the IBM-2 [138], QRPA-Tü [139] and ISM [140] models. The
results somehow di↵er among the models, but are not too far
away. Figure from Ref. [138].

Recent developments in the numerical evaluation of
Dirac wave functions and in the solution of the Thomas-
Fermi equation allowed to calculate accurately the PSFs
both for single and double beta decay. The key ingredi-
ents are the scattering electron wave functions. The new
calculations take into account relativistic corrections, the
finite nuclear size and the e↵ect of the atomic screening
on the emitted electrons. The main di↵erence between
these calculations and the older ones is of the order of a
few percent for light nuclei (Z = 20), about 30% for Nd
(Z = 60), and a rather large 90% for U (Z = 92).
In Refs. [135–137], the most up to date calculations of

the PSFs for 0⌫�� can be found. The results obtained
in these works are quite similar. Throughout this paper,
we use the values from the first reference.

B. Models for the NMEs

Let us suppose that the decay proceeds through an s-
wave. Since we have just two electrons in the final state,
we cannot form an angular momentum greater than one.
Therefore, usually only 0⌫�� matrix elements to final 0+

states are considered. These can be the ground state,
0+1 , or the first excited state, 0+2 . Of course, we consider
as a starting state just a 0+ state, since the double beta
decay is possible only for (Z,A) even-even isobar nuclei.
The calculation of the NMEs for the 0⌫�� is a di�-

cult task because the ground and many excited states
of open-shell nuclei with complicated nuclear structure
have to be considered. The problem is faced by using
di↵erent approaches and, especially in the last few years,
the reliability of the calculations improved a lot. Here,
a list of the main theoretical models is presented. The
most relevant features for each of them are highlighted.

• Interacting Shell Model (ISM), [140, 141]. In the
ISM only a limited number of orbits around the

S. Dell'Oro et al. [arXiv:1601.07512]

Calculate two-current  
nuclear matrix elements 
           dictate half-life

Model calculations have large uncertainties

https://arxiv.org/find/hep-ph/1/au:+DellOro_S/0/1/0/all/0/1


Lattice QCD: Calculate nn→pp transition matrix element

Second order weak interactions
NPLQCD PRL 119, 062003 (2017), PRD 96, 054505 (2017)
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Non-negligible deviation from 
long distance deuteron 
intermediate state contribution

• Multi-body effects can’t be 
neglected!

TBD: connect to models / 
effective field theory for larger 
systems

Second order weak interactions

M2⌫
GT = � |Mpp!d|2

Epp � Ed
+ �(I=2)

A

Isotensor axial polarisability

NPLQCD PRL 119, 062003 (2017), PRD 96, 054505 (2017)
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G
T

�
(I

=
2
)

A

4

deuteron systems, respectively. Here Zn ⇠ h0|�pp|ni and
Zm ⇠ h0|�nn|mi are overlap factors, and El = Enn + �l
and E0

n = Enn + �0n are the energies of the lth and nth
excited states in the 3S1 and 1S0 channels, respectively.

Forming a ratio of Eq. (11) to the zero-field two-point
function,

R(t) =
C(t)

2C(nn)
0;0 (t)

, (12)

it is straightforward [7] (assuming isospin symmetry) to
show that

R̂(t) = R(t)�
|hpp|J+

3 |di|2

�


e�t

� 1

�
� t

�
(13)

= t
X

l6=d

hpp|J+
3 |lihl|J+

3 |nni

El � Enn
+ c+ d e�t +O(e��̂t),

where c and d involve complicated combinations of ex-
cited states, and �̂ is the minimum energy gap between
the ground- and first excited- state in either channel; and,
for these calculations, �̂ � �. Importantly, the coe�-
cient of the linear term determines the axial polarisability
and can be extracted from

R
(lin)(t) =

(e� + 1)R̂(t+ 1)� R̂(t+ 2)� e�R̂(t)

e� � 1
(14)

at late times. Finally, this result can be combined with
the deuteron-pole contribution to give a quantity that
asymptotes to the bare Gamow-Teller matrix element at
late times,

R
(full)(t) = R

(lin)(t)�
|hpp|J+

3 |di|2

�
t!1
�!

M2⌫
GT

6Z2
A

. (15)

The four ratios used to determine M2⌫
GT are shown in

Fig. 1 for both SS and SP source–sink combinations. Fits
are performed to the statistically more precise SP corre-
lators and the values of the total matrix element and
the short-distance contribution, normalised by the naive
deuteron-pole matrix element g2A/�, are given by

�

g2A

X

l6=d

hpp|J+
3 |lihl|J+

3 |nni

El � Enn
= �0.07(4)(3), (16)

1

6

�

g2A
M2⌫

GT = �1.03(5)(3). (17)

In these expressions, the first uncertainties arise from sta-
tistical sampling and from systematic e↵ects from fitting
choices and deviations from Wigner symmetry [7]. The
second uncertainties encompass di↵erences between anal-
ysis methods. The leading discretisation e↵ects, which
are potentially large on the numerically smaller polaris-
ability term, are removed by normalising to the square of
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FIG. 1. Ratios from Eqs. (12)–(15) used in the analysis. In
each panel, the orange diamonds (blue circles) correspond to
the SS (SP) data. The green bands show fits to the SP data
in the lower two panels. The SS data are slightly o↵set in the
horizontal direction for clarity. The di↵erence between the SS
and SP ratios in the upper two panels is due to contamination
that is removed in constructing the subsequent quantities in
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the proton axial charge computed using the same lattice
axial current on the same ensemble.

Discussion: The computed value ofM2⌫
GT that has been

determined above can be used to determine the unknown
EFT(⇡/) low-energy constant H2,S . Taking the values of
gA and the two-body single-current matrix element from
Ref. [6], and using the calculated binding energies and
e↵ective ranges of the two-nucleon systems [20, 28], the
result is H2,S = 4.7(1.3)(1.8) fm. The dominant contri-
bution to M2⌫

GT comes from the deuteron pole with cou-
pling g2A. This is modified by two-body e↵ects in the axial
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What about larger (phenomenologically-relevant) nuclei?

Nuclear effective field theory:

1-body currents are dominant
2-body currents are sub-leading  
but non-negligible

Determine one body contributions from single nucleon

Determine few-body contributions from A=2,3,4... 

Match EFT and many body methods to LQCD to make 
predictions for larger nuclei

Larger nuclei



Larger nuclei
Detmold and Savage, Nucl.Phys.A743 
170-193(2004).

Electroweak matrix elements in the 
two-nucleon sector from lattice QCD

Beane et al(NPLQCD), 
Phys.Rev.Lett.109 172001(2012).

Hyperon-Nucleon Interactions and the 
Composition of Dense Nuclear Matter 
from QCD

Beane et al(NPLQCD), Phys.Rev.D.
87 034506(2013).

Light nuclei and hypernuclei from QCD 
in the limit of SU(3) flavor symmetry 

Beane et al(NPLQCD), Phys.Rev.C.
88 024003(2013).

Nucleon-nucleon scattering parameters 
in the limit of SU(3) flavor symmetry

Beane et al(NPLQCD), Phys.Rev.D 
96 114510(2017).

Baryon-baryon scattering and spin-
flavor symmetry from lattice QCD

SEE PHIALA’S TALK NEXT FOR 
COLLABORATION’S GOOD PROGRESS 

IN MATRIX ELEMENT STUDIES OF 
LIGHT NUCLEI

Beane et al(NPLQCD), Phys.Rev. 
D92 114512 (2015).

Nucleon-nucleon scattering at 
m_pi=450MeV from lattice QCD

LQCD INPUT FOR NUCLEI: 
MATCHING PROGRAM

Effective Field Theory for Lattice 
Nuclei

Barnea at al, Phys.Rev.Lett.114  
052501 (2015).

Bansal et al, arXiv:
1712.10246v1[nucl-th].

Pionless EFT for atomic nuclei and 
lattice nuclei:

Ground-State Properties of 4He and 16O Extrapolated from Lattice QCD with Pionless EFT:

Contessi et al, arXiv:1701.06516.

Predictions Beyond the LQCD calculations 
First Realization of the Dream !!
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Effective Field Theory for Lattice Nuclei 

N. Barnea et al, Phys.Rev.Lett. 114 (2015) no.5, 052501 
Ground-State Properties of 4He and 16 O Extrapolated from Lattice QCD with Pionless EFT 

L. Contessi et al,  e-Print: arXiv:1701.06516

Predictions Beyond the LQCD calculations 
First Realization of the Dream !!
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Effective Field Theory for Lattice Nuclei 

N. Barnea et al, Phys.Rev.Lett. 114 (2015) no.5, 052501 
Ground-State Properties of 4He and 16 O Extrapolated from Lattice QCD with Pionless EFT 

L. Contessi et al,  e-Print: arXiv:1701.06516

Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm

Lorenzo Contessi’s PhD thesis

QCD input Few-body EFT interactions

Many-body calculations of nuclei and hypernuclei
Many-body calculations of nuclei and hypernuclei

e.g., Barnea et al., arXiv:1311.4966 
Effective field theory for lattice nuclei

Contessi et al., arXiv:1701.06516
Ground-State Properties of 4He and16O Extrapolated from Lattice QCD with Pionless EFT  
 
Bansal et al., arXiv:1712.10246
Pion-less effective field theory for atomic nuclei and lattice nuclei 

+Lorenzo Contessi’s PhD thesis



Lattice efforts have potential to impact  
ν energy determinations

Precise determinations with controlled  
percent-level uncertainties within ~5 years

Axial and pseudoscalar FFs determined with momenta less  
than a few GeV 
BUT: large momentum FFs (≳3 GeV) more difficult. Novel ideas exist, need testing

Early results with promising applications
Transition FFs  
Formalism exists but developments still necessary for higher states above Nππ 
inelastic threshold
Application of EFT using 2-, 3- body matrix elements to constrain nuclear effects
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How do we find dark matter?

Dark (does not  
interact with light)

Interacts through  
gravity

Dark matter

Direct detection  
Wait for DM to hit us

Detection rate depends on

Dark matter properties
Probability for interaction 
with nucleus

WIMP 
Weakly-interacting 
massive particles
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FIG. 4. The projected sensitivity (dashed curves) on the spin-
independent WIMP-nucleon cross-sections of a selected num-
ber of upcoming and planned direct detection experiments,
including XENON1T [34], PandaX-4T, XENONnT [34],
LZ [35], DARWIN [36] or PandaX-30T, and SuperCDMS [56].
Currently leading limits in Fig. 1 (see legend), the neutrino
‘floor’ [20], and the post-LHC-Run1 minimal-SUSY allowed
contours [21] are overlaid in solid curves for comparison. The
di↵erent crossings of the experimental sensitivities and the
neutrino floor at around a few GeV/c2 are primarily due to
di↵erent threshold assumptions.
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Spin-independent scattering of many WIMP candidates governed by scalar 
matrix elements
Lattice QCD calculation with mπ~800 MeV shows 10% nuclear effects! 
(Naive expectation determined by baryon#, isospin, spin)
Same calculation gives axial and tensor nuclear effects around ~1%
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TABLE VI. Results for the isoscalar magnetic charge radius
of the nucleon (hr2M i

u+d) and the isoscalar magnetic moment
G

u+d
M (0). The notation is as in Table V.

ts [fm]
dipole z-expansion

hr
2
M i

u+d [fm2] �2

d.o.f hr
2
M i

u+d [fm2] �2

d.o.f

Connected Total Connected Total

Plateau

0.94 0.392(13) 0.302(34) 0.2 0.41(19) 0.32(20) 0.2

1.13 0.419(29) 0.329(47) 0.1 0.84(28) 0.78(32) 0.1

1.31 0.476(59) 0.394(82) 0.4 0.4(1.0) 0.4(1.1) 0.5

Summation

0.9-1.3 0.50(18) 0.42(24) 0.2 1.94(92) 2.0(1.3) 0.2

Two-state

0.9-1.3 0.439(44) 0.353(65) 0.2 0.89(47) 0.83(52) 0.2

ts [fm]
dipole z-expansion

G
u+d
M (0) �2

d.o.f G
u+d
M (0) �2

d.o.f

Connected Total Connected Total

Plateau

0.94 0.838(16) 0.808(18) 0.2 0.867(50) 0.837(50) 0.2

1.13 0.841(29) 0.811(30) 0.1 0.981(90) 0.951(90) 0.1

1.31 0.900(59) 0.870(60) 0.4 0.90(19) 0.87(19) 0.5

Summation

0.9-1.3 0.88(16) 0.85(16) 0.2 1.51(45) 1.48(45) 0.2

Two-state

0.9-1.3 0.861(47) 0.831(48) 0.2 1.01(14) 0.98(14) 0.2

systematic error from the di↵erence of the central values
when comparing with the two-state fit method to account
for excited states e↵ects. Similarly, for the magnetic ra-
dius and moment, we take the result from the dipole fits
to our largest sink-source separation, which for this case
is ts = 14a = 1.31 fm and as in the case of the electric
charge radius, we take the di↵erence with the two-state
fit method as an additional systematic error. In this case,
the values at the two lowest momenta are not included
in the fit. Our final values for the isovector radii and
isovector nucleon magnetic moment are:

hr2Ei
u�d = 0.653(48)(30) fm2,

hr2M i
u�d = 0.536(52)(66) fm2, and

µu�d = 4.02(21)(28), (22)

where the first error is statistical and the second error is a
systematic obtained when comparing the plateau method
to the two-state fit method as a measure of excited state
e↵ects. For the isoscalar radii and moment we follow a
similar analysis after adding the disconnected contribu-
tion from the plateau method for ts = 10a = 0.9 fm. We
obtain

hr2Ei
u+d = 0.537(53)(38) fm2,

hr2M i
u+d = 0.394(82)(42) fm2, and

µu+d = 0.870(60)(39). (23)

FIG. 19. Proton electric Sachs form factor as a function of
the momentum transfer. We show with triangles the sum of
connected and disconnected contributions, with the plateau
result for ts = 18a = 1.7 fm for the connected and for ts =
10a = 0.9 fm for the disconnected. The band is a fit to the
dipole form. The black points show experimental data from
Ref. [29].

C. Proton and neutron form factors

Having the isovector and isoscalar contributions to the
form factors, we can obtain the proton (Gp(Q2)) and
neutron (Gn(Q2)) form factors via linear combinations
taken from Eqs. (2) and (3) assuming isospin symmetry
between up and down quarks and proton and neutron.
Namely, we have:

Gp(Q2) =
1

2
[Gu+d(Q2) +Gu�d(Q2)]

Gn(Q2) =
1

2
[Gu+d(Q2)�Gu�d(Q2)] (24)

where Gp(Q2) (Gn(Q2)) is either the electric or magnetic
proton (neutron) form factor. In Figs. 19 and 20 we show
results for the proton electric and magnetic Sachs form
factors respectively. As for the isoscalar case, the dis-
connected contributions have been included. The bands
are from fits to the dipole form of Eq. (17). In these
plots we compare to experimental results from the A1
collaboration [29]. We observe a similar behavior when
comparing to experiment as for the case of the isovector
form factors. Namely, the dipole fit to the lattice data
has a smaller slope for small values of Q2 as compared to
experiment, while Gp

M (Q2) reproduces the experimental
momentum dependence for Q2 > 0.2 GeV2.

In Figs. 21 and 22 we show the same for the neutron
form factors. For the neutron electric form factor we fit
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FIG. 20. Proton magnetic Sachs form factor as a function of
the momentum transfer. We show with squares the sum of
connected and disconnected contributions, with the plateau
result for ts = 14a = 1.3 fm for the connected and for ts =
10a = 0.9 fm for the disconnected. The band is a fit to the
dipole form. The black points show experimental data from
Ref. [29].

to the form [15]:

Gn
E(Q

2) =
⌧A

1 + ⌧B

1

(1 + Q2

⇤2 )2
(25)

with ⌧ = Q2/(2mN )2 and ⇤2 = 0.71 GeV2 and allow A
and B to vary. This Ansatz reproduces our data well.
We compare to a collection of experimental data from
Refs. [30–44]. For Gn

M (Q2), we agree with the experimen-
tal data for Q2 > 0.2 GeV2, however we underestimate
the magnetic moment by about 20%. Experimental data
for Gn

M (Q2) shown in Fig. 22 are taken from Refs. [45–
50].

We use Eq. (19) to obtain the radii using the dipole
fits. For the case of Gn

E(Q
2), the neutron electric radius is

obtained via: hr2Ei
n = �

3A
2m2

N
, where A is the parameter

of Eq. (25). In all cases we have combined connected and
disconnected. We obtain:

hr2Ei
p = 0.589(39)(33) fm2,

hr2M i
p = 0.506(51)(42) fm2, and

µp = 2.44(13)(14), (26)

for the proton, and:

hr2Ei
n = �0.038(34)(6) fm2,

hr2M i
n = 0.586(58)(75) fm2, and

µn = �1.58(9)(12), (27)

for the neutron, where as in the case of the isoscalar and
isovector, the first error is statistical and the second is a

FIG. 21. Neutron electric Sachs form factor as a function
of the momentum transfer. Triangles are from the sum of
connected and disconnected contributions, with the plateau
result for ts = 18a = 1.7 fm for the connected and for ts =
10a = 0.9 fm for the disconnected. The band is a fit to the
form of Eq. (25). Experimental data are shown with the black
points, obtained from Refs. [30–44].

systematic obtained when comparing the plateau method
to the two-state fit method as a measure of excited state
e↵ects.

IV. COMPARISON WITH OTHER RESULTS

A. Comparison of isovector and isoscalar form
factors

Recent lattice calculations for the electromagnetic
form factors of the nucleon include an analysis from the
Mainz group [51] using Nf = 2 clover fermions down to a
pion mass of 193 MeV, results from the PNDME collabo-
ration [52] using clover valence fermions on Nf = 2+1+1
HISQ sea quarks down to pion mass of ⇠220 MeV and
Nf = 2+1+1 results from the ETM collaboration down
to 213 MeV pion mass [53]. Simulations directly at the
physical point have only been possible recently. The
LHPC has published results in Ref. [54] using Nf = 2+1
HEX smeared clover fermions, which include an ensemble
with m⇡ =149 MeV. Preliminary results for electromag-
netic nucleon form factors at physical or near physical
pion masses have also been reported by the PNDME
collaboration in Ref. [55] using clover valence quarks
on HISQ sea quarks at a pion mass of 130 MeV and
by the RBC/UKQCD collaboration using Domain Wall
fermions at m⇡ = 172 MeV in Ref. [56].
In Fig. 23 we compare our results for Gu�d

E (Q2) from
the plateau method using ts = 18a = 1.7 fm to pub-
lished results. We show results from Ref. [54] extracted
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FIG. 20. Proton magnetic Sachs form factor as a function of
the momentum transfer. We show with squares the sum of
connected and disconnected contributions, with the plateau
result for ts = 14a = 1.3 fm for the connected and for ts =
10a = 0.9 fm for the disconnected. The band is a fit to the
dipole form. The black points show experimental data from
Ref. [29].
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with ⌧ = Q2/(2mN )2 and ⇤2 = 0.71 GeV2 and allow A
and B to vary. This Ansatz reproduces our data well.
We compare to a collection of experimental data from
Refs. [30–44]. For Gn

M (Q2), we agree with the experimen-
tal data for Q2 > 0.2 GeV2, however we underestimate
the magnetic moment by about 20%. Experimental data
for Gn

M (Q2) shown in Fig. 22 are taken from Refs. [45–
50].

We use Eq. (19) to obtain the radii using the dipole
fits. For the case of Gn

E(Q
2), the neutron electric radius is

obtained via: hr2Ei
n = �

3A
2m2

N
, where A is the parameter

of Eq. (25). In all cases we have combined connected and
disconnected. We obtain:

hr2Ei
p = 0.589(39)(33) fm2,

hr2M i
p = 0.506(51)(42) fm2, and

µp = 2.44(13)(14), (26)

for the proton, and:

hr2Ei
n = �0.038(34)(6) fm2,

hr2M i
n = 0.586(58)(75) fm2, and

µn = �1.58(9)(12), (27)

for the neutron, where as in the case of the isoscalar and
isovector, the first error is statistical and the second is a

FIG. 21. Neutron electric Sachs form factor as a function
of the momentum transfer. Triangles are from the sum of
connected and disconnected contributions, with the plateau
result for ts = 18a = 1.7 fm for the connected and for ts =
10a = 0.9 fm for the disconnected. The band is a fit to the
form of Eq. (25). Experimental data are shown with the black
points, obtained from Refs. [30–44].

systematic obtained when comparing the plateau method
to the two-state fit method as a measure of excited state
e↵ects.

IV. COMPARISON WITH OTHER RESULTS

A. Comparison of isovector and isoscalar form
factors

Recent lattice calculations for the electromagnetic
form factors of the nucleon include an analysis from the
Mainz group [51] using Nf = 2 clover fermions down to a
pion mass of 193 MeV, results from the PNDME collabo-
ration [52] using clover valence fermions on Nf = 2+1+1
HISQ sea quarks down to pion mass of ⇠220 MeV and
Nf = 2+1+1 results from the ETM collaboration down
to 213 MeV pion mass [53]. Simulations directly at the
physical point have only been possible recently. The
LHPC has published results in Ref. [54] using Nf = 2+1
HEX smeared clover fermions, which include an ensemble
with m⇡ =149 MeV. Preliminary results for electromag-
netic nucleon form factors at physical or near physical
pion masses have also been reported by the PNDME
collaboration in Ref. [55] using clover valence quarks
on HISQ sea quarks at a pion mass of 130 MeV and
by the RBC/UKQCD collaboration using Domain Wall
fermions at m⇡ = 172 MeV in Ref. [56].
In Fig. 23 we compare our results for Gu�d

E (Q2) from
the plateau method using ts = 18a = 1.7 fm to pub-
lished results. We show results from Ref. [54] extracted
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FIG. 22. Neutron magnetic Sachs form factor as a function
of the momentum transfer. We show with squares the sum of
connected and disconnected contributions, with the plateau
result for ts = 14a = 1.3 fm for the connected and for ts =
10a = 0.9 fm for the disconnected. The band is a fit to the
dipole form. The black points show experimental data from
Refs. [45–50].

FIG. 23. Comparison of Gu�d
E (Q2) between results from this

work (circles) denoted by ETMC and from the LHPC taken
from Ref. [54] (squares). The dashed line shows the parame-
terization of the experimental data.

from the summation method using three sink-source sep-
arations from 0.93 to 1.39 fm for their ensemble at the
near-physical pion mass of m⇡ =149 MeV. We note that
their statistics of 7752 are about six times less than ours
at the sink-source separation we use in this plot (see Ta-
ble II).

In Fig. 24 we plot our results for Gu�d
M (Q2) from the

plateau method using ts = 14a = 1.3 fm and compare
to those from LHPC. At this sink-source separation the
statistics are similar, namely 7752 for the LHPC data and
9248 for the results from this work, however their errors

FIG. 24. Comparison of Gu�d
M (Q2) between results from this

work (circles) and Ref. [54] (squares). The dashed line shows
the parameterization of the experimental data.

FIG. 25. Comparison of Fu�d
1 (Q2) between results from this

work (circles) and Ref. [54] (squares). The dashed line shows
the parameterization of the experimental data.

are larger, possibly due to the fact that the summation
method is used for their final quoted results. Within
errors, we see consistent results at all Q2 values.
In Figs. 25 and 26 we compare our results for the

isovector Dirac and Pauli form factors Fu�d
1 (Q2) and

Fu�d
2 (Q2) with those from Ref. [54]. We use Eq. (6)

to obtain Fu�d
1 (Q2) and Fu�d

2 (Q2) from Gu�d
E (Q2) and

Gu�d
M (Q2) extracted from the plateau method at the

same sink-source separations used in Figs. 23 and 24.
As in the case of Gu�d

E (Q2) and Gu�d
M (Q2) we see agree-

ment between these two calculations. We also note that
the discrepancy with experiment of Gu�d

M (Q2) at low Q2

values carries over to Fu�d
2 (Q2).

For the isoscalar case, we compare the connected con-
tributions to the Sachs form factors with Ref. [54] in
Figs. 27 and 28. The agreement between the two lattice
formulations is remarkable given that the results have not
been corrected for finite volume or cut-o↵ e↵ects. The
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Differentiate terms by their distinct time-dependences in 
correlation function

Second order weak interactions

Expand the summations over different state contributions

Take ratio to two-point correlate
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The matrix elements of the two identical quark-bilinear currents involve the contractions of the
currents with anti-quark (quark) pairs at the source (sink), giving rise to four possibilities, while
the compound-propagator method already enforces the contractions of each quark and anti-quark
pair in the source and sink through only one of the currents, reducing the possibilities to two. Thus,
a factor of 1

2 is required to relate the second-order terms in Eqs. (27)-(29) to the current matrix
elements. The pieces of these correlation functions that are quadratic in the field strength can be
determined exactly, given calculations at a su�ciently large number of values of the background
axial-field strength.6 The correlation function for the nn ! pp transition can be formed utilizing
Eq. (10),

Cnn!pp(t) = 2 C(np(1S0))
�u;�d=0 (t)

���
O(�2

u)
� C(nn)

�u;�d=0(t)
���
O(�2

u)
� C(nn)

�u=0;�d
(t)
���
O(�2

d)
, (30)

where the objects on the right-hand side are extracted from the compound-propagator method and
the correlation function on the left-hand-side encodes the desired matrix element for the nn ! pp
transition. After inserting complete sets of states and using Euclidean time evolution, Cnn!pp(t)
becomes

Cnn!pp(t) =
X

x,y,z

tX

t1=0

tX

t2=0

h0|�pp(x, t)T
�
J+

3 (y, t1)J
+
3 (z, t2)

 
�†

nn(0)|0i

=
2

a2

X

n,m,l0

ZnZ
†

me�Ent hn|J̃
+
3 |l0ihl0|J̃+

3 |mi

El0 � Em

 
e�(El0�En)t � 1

El0 � En
+

e(En�Em)t
� 1

En � Em

!
, (31)

where the summations over time have been performed as integrals (the analysis is not altered
significantly if the discrete summation is used). Here, |ni, |mi and |l0i are zero-momentum energy
eigenstates with the quantum numbers of the pp, nn and deuteron systems, respectively. With
the assumption of isospin symmetry and in the absence of electromagnetism, which is the case for
the calculations presented in this work, the nn and pp states are degenerate. Eq. (31) resembles a
second-order weak correlation function calculated in the kaon system in Ref. [22].

In order to make the matrix element between ground-state dinucleons explicit, the sums over
states in this correlation function are partially expanded, giving

a2Cnn!pp(t) = 2ZppZ
†

nne�Ennt

( 
e�t

� 1

�2
�

t

�

�
hpp|J̃+

3 |dihd|J̃+
3 |nni

+
X

l0 6=d


t

�l0
�

1

�2
l0

�
hpp|J̃+

3 |l0ihl0|J̃+
3 |nni

+
X

n 6=nn,pp


e�t

�(� + �n)
�

1

��n

� 
Zn

Zpp
hn|J̃+

3 |dihd|J̃+
3 |nni +

Z†

n

Z†
nn

hpp|J̃+
3 |dihd|J̃+

3 |ni

!

+
X

n 6=nn,pp

X

l0 6=d

1

�l0�n

 
Zn

Zpp
hn|J̃+

3 |l0ihl0|J̃+
3 |nni +

Z†

n

Z†
nn

hpp|J̃+
3 |l0ihl0|J̃+

3 |ni

!

+
X

n,m 6=nn,pp

e�t

(� + �n)(� + �m)

Zn

Zpp

Z†

m

Z†
nn

hn|J̃+
3 |dihd|J̃+

3 |mi + O(e��t, e��0t)

)
. (32)

The energies and overlap factors are defined as in the previous section, see the discussion after
Eq. (22). To arrive at Eq. (32), the deuteron-dineutron energy splitting is assumed to be modest

6
Isospin symmetry equates C(np(1S0))

�u;�d=0 (t) and C(np(1S0))
�u=0;�d

(t) in the case when �u = �d.

12

compared with the inverse of the time separation between the source and the sink used to ex-
tract the matrix elements, while the energy splittings between ground and exited states in both
channels are assumed to be large, so that e��l0 t ! 0 and e��nt

! 0. If this is not the situation,
the correlation functions with background-field insertions on all timeslices cannot be used to un-
ambiguously extract the terms relevant for this analysis.7 In the numerical calculations discussed
below, the requisite hierarchy is found to be satisfied. As the deuteron is lower in energy than
the dinucleon external states, and hence gives rise to a growing exponential contribution (after the
overall exponential e�Ennt is factored out of Eq. (32)), this contribution has been singled out in the
summation over states in Eq. (32). The deuteron contribution is close to quadratic in t (it would
be exactly quadratic if � = 0), and the coe�cient of this term is known from the first-order axial
response in Eq. (26). Ground-state overlap factors and the overall exponential time dependence
can be removed by forming the ratio

Rnn!pp(t) =
Cnn!pp(t)

2C(nn)
0;0 (t)

, (33)

which will be investigated in Sec. IV. Using Eq. (32), it is easy to show that this ratio has the form

a2
Rnn!pp(t) =


�t +

e�t
� 1

�

�
hpp|J̃+

3 |dihd|J̃+
3 |nni

�
+ t

X

l0 6=d

hpp|J̃+
3 |l0ihl0|J̃+

3 |nni

�l0

+ C + D e�t + O(e��t, e��0t), (34)

where the first term is the long-distance contribution to the matrix element from the deuteron
intermediate state and the second term is the short-distance contribution arising from all excited
intermediate states coupling to the axial current, i.e., the isotensor axial polarizability as defined in
Eq. (4). The coe�cients C and D are complicated terms involving ground-state and excited-state
overlap factors and matrix elements, as can be read from Eq. (32), but have no time dependence.
The critical aspect of Eq. (34) is that both the short-distance and the long-distance contributions
can be isolated from the excited external-state contributions through their distinct dependence on
time. This form will be used to analyze the numerical correlation functions in Section IV.

C. Finite-volume e↵ects

The initial and final states in the nn ! pp transition are deeply bound degenerate states at the
SU(3) flavor-symmetric set of quark masses used in this work, which considerably simplifies the
analysis. In addition, the dominant intermediate state that propagates between the two currents
is the deuteron, which is close in energy to the nn and pp states, with no other intermediate states
able to go on shell at the kinematic threshold. As the deuteron is also a compact bound state in
this calculation, there is no complication with regard to finite-volume two-particle states and only
exponentially small volume e↵ects are anticipated. A similar problem has been studied in detail
in the case of long-distance contributions to the KL–KS mass di↵erence [23]. There, however,
a tower of intermediate two-pion states with energies lower than the initial-state kaon must be
dealt with explicitly, introducing power-law corrections to the relation between the infinite-volume
and finite-volume matrix elements (see also the related discussions of the rare weak processes
K ! ⇡⌫⌫ [24, 26] and K ! ⇡`+`� [25, 54]). Such calculations will become increasingly di�cult as
the large volume limit is approached. As the present calculations of two-nucleon matrix elements are
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The matrix elements of the two identical quark-bilinear currents involve the contractions of the
currents with anti-quark (quark) pairs at the source (sink), giving rise to four possibilities, while
the compound-propagator method already enforces the contractions of each quark and anti-quark
pair in the source and sink through only one of the currents, reducing the possibilities to two. Thus,
a factor of 1

2 is required to relate the second-order terms in Eqs. (27)-(29) to the current matrix
elements. The pieces of these correlation functions that are quadratic in the field strength can be
determined exactly, given calculations at a su�ciently large number of values of the background
axial-field strength.6 The correlation function for the nn ! pp transition can be formed utilizing
Eq. (10),
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���
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d)
, (30)

where the objects on the right-hand side are extracted from the compound-propagator method and
the correlation function on the left-hand-side encodes the desired matrix element for the nn ! pp
transition. After inserting complete sets of states and using Euclidean time evolution, Cnn!pp(t)
becomes
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where the summations over time have been performed as integrals (the analysis is not altered
significantly if the discrete summation is used). Here, |ni, |mi and |l0i are zero-momentum energy
eigenstates with the quantum numbers of the pp, nn and deuteron systems, respectively. With
the assumption of isospin symmetry and in the absence of electromagnetism, which is the case for
the calculations presented in this work, the nn and pp states are degenerate. Eq. (31) resembles a
second-order weak correlation function calculated in the kaon system in Ref. [22].

In order to make the matrix element between ground-state dinucleons explicit, the sums over
states in this correlation function are partially expanded, giving
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The energies and overlap factors are defined as in the previous section, see the discussion after
Eq. (22). To arrive at Eq. (32), the deuteron-dineutron energy splitting is assumed to be modest
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compared with the inverse of the time separation between the source and the sink used to ex-
tract the matrix elements, while the energy splittings between ground and exited states in both
channels are assumed to be large, so that e��l0 t ! 0 and e��nt

! 0. If this is not the situation,
the correlation functions with background-field insertions on all timeslices cannot be used to un-
ambiguously extract the terms relevant for this analysis.7 In the numerical calculations discussed
below, the requisite hierarchy is found to be satisfied. As the deuteron is lower in energy than
the dinucleon external states, and hence gives rise to a growing exponential contribution (after the
overall exponential e�Ennt is factored out of Eq. (32)), this contribution has been singled out in the
summation over states in Eq. (32). The deuteron contribution is close to quadratic in t (it would
be exactly quadratic if � = 0), and the coe�cient of this term is known from the first-order axial
response in Eq. (26). Ground-state overlap factors and the overall exponential time dependence
can be removed by forming the ratio

Rnn!pp(t) =
Cnn!pp(t)

2C(nn)
0;0 (t)

, (33)

which will be investigated in Sec. IV. Using Eq. (32), it is easy to show that this ratio has the form
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where the first term is the long-distance contribution to the matrix element from the deuteron
intermediate state and the second term is the short-distance contribution arising from all excited
intermediate states coupling to the axial current, i.e., the isotensor axial polarizability as defined in
Eq. (4). The coe�cients C and D are complicated terms involving ground-state and excited-state
overlap factors and matrix elements, as can be read from Eq. (32), but have no time dependence.
The critical aspect of Eq. (34) is that both the short-distance and the long-distance contributions
can be isolated from the excited external-state contributions through their distinct dependence on
time. This form will be used to analyze the numerical correlation functions in Section IV.

C. Finite-volume e↵ects

The initial and final states in the nn ! pp transition are deeply bound degenerate states at the
SU(3) flavor-symmetric set of quark masses used in this work, which considerably simplifies the
analysis. In addition, the dominant intermediate state that propagates between the two currents
is the deuteron, which is close in energy to the nn and pp states, with no other intermediate states
able to go on shell at the kinematic threshold. As the deuteron is also a compact bound state in
this calculation, there is no complication with regard to finite-volume two-particle states and only
exponentially small volume e↵ects are anticipated. A similar problem has been studied in detail
in the case of long-distance contributions to the KL–KS mass di↵erence [23]. There, however,
a tower of intermediate two-pion states with energies lower than the initial-state kaon must be
dealt with explicitly, introducing power-law corrections to the relation between the infinite-volume
and finite-volume matrix elements (see also the related discussions of the rare weak processes
K ! ⇡⌫⌫ [24, 26] and K ! ⇡`+`� [25, 54]). Such calculations will become increasingly di�cult as
the large volume limit is approached. As the present calculations of two-nucleon matrix elements are
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(t) used to extract the pp ! d bare transition matrix

element from the constant fit to its late-time region [16]. The right panel is a plot of quantity R
+
3S1,1S0

(t) used
to estimate the magnitude of excited-state contamination to the extraction of pp ! d bare matrix element,
see Sec. III B 2. Blue circles and orange diamonds denote results determined using SP and SS correlation
functions, respectively. The horizontal bands show constant correlated SP-SS fits to the late-time behavior
of the quantities.

transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-
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complished straightforwardly by forming the following combination of R̂nn!pp at three neighboring
timeslices:

R
(lin)
nn!pp(t) =

(ea� + 1)R̂nn!pp(t + a) � R̂nn!pp(t + 2a) � ea�
R̂nn!pp(t)

ea� � 1
t!1
�!

1

aZ2
A

�(2)
A

6
.(36)

As denoted, at large time separations, R
(lin)
nn!pp(t) asymptotes to the bare isotensor axial polariz-

ability, as defined in Eq. (4). This term can now be combined with the deuteron-pole contribution
in a correlated manner to form

R
(full)
nn!pp(t) = R

(lin)
nn!pp(t) �

|hpp|J̃+
3 |di|

2

a�
t!1
�!

1

aZ2
A

M2⌫
GT

6
, (37)

which asymptotes to the bare Gamow-Teller matrix element. The results for both R
(lin)
nn!pp(t) and

R
(full)
nn!pp(t) are shown in Fig. 6, along with fits to the asymptotic behavior of the SP correlation

functions. Constant behavior is observed at late times, with consistent results from the SS and
(significantly more precise) SP combinations, an indication that the assumptions made in deriving
Eq. (32) are valid. An estimate of the finite-volume excited-state spectra of the isosinglet and
isotriplet two-nucleon systems based on the phase shifts extracted in Ref. [48] further validates the
assumed hierarchy of the ground and excited-states gaps, and numerically shows that � ⇠ 8�.

The fits to the SP e↵ective matrix elements shown in Fig. 6 yield the following values of the
long-distance, short-distance and total matrix elements for nn ! pp transition resulting from two
insertions of the axial current:

�

g2
A

|hpp|J̃+
3 |di|

2

�
= 1.00(3)(1), (38)

�

g2
A

X

l0 6=d
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�l0
= �0.04(4)(2), (39)

�

g2
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M2⌫
GT

6
= �1.04(4)(4), (40)

where in order to suppress the O(a) lattice-spacing artifacts from the axial currents, the quantities
are normalized by g2

A/� in a correlated manner to produce combinations that are independent of
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denote results determined using SP and SS correlation functions, respectively. The dashed lines in the
upper-panel plots correspond to twice the mass of the nucleon. In all figures, the horizontal bands show
constant fits to the late-time behavior of the SP quantities. The SS points are slightly o↵set in t for clarity.

required linear and quadratic field-strength dependences of the correlation functions determined,
the remaining task is to isolate the matrix elements of interest through the time dependence of
the combinations of correlation functions derived in Sec. III B. As the first-order responses have
been presented in Ref. [18], the primary focus of this work is the second-order axial matrix element
describing the nn ! pp transition, as discussed in Sec. III B 3. For this matrix element, the
challenge is to isolate both its long-distance and short-distance components. Since the long-distance
contribution can be determined from numerical calculations of the matrix element associated with
a single insertion of the axial current, it can be removed from Rnn!pp(t) in Eq. (34) to leave

R̂nn!pp(t) = Rnn!pp(t) �
|hpp|J̃+

3 |di|
2

a�


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a�l0
+ c + d e�t. (35)

This subtraction is most e↵ectively done in a correlated manner, requiring determinations of the
energy splitting and the pp ! d matrix element.

Plots of the e↵ective-mass functions of the nucleon, deuteron, dineutron, and of the di↵erence
� = Enn�Ed are shown in Fig. IV, along with fits to the late-time behavior of the appropriate ratios
of the correlation functions. This figure shows that the deuteron and dinucleon zero-field correlation
functions are saturated by their ground-state contributions by timeslice 6. Consequently, in the
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Eq. (32) are valid. An estimate of the finite-volume excited-state spectra of the isosinglet and
isotriplet two-nucleon systems based on the phase shifts extracted in Ref. [48] further validates the
assumed hierarchy of the ground and excited-states gaps, and numerically shows that � ⇠ 8�.

The fits to the SP e↵ective matrix elements shown in Fig. 6 yield the following values of the
long-distance, short-distance and total matrix elements for nn ! pp transition resulting from two
insertions of the axial current:
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where in order to suppress the O(a) lattice-spacing artifacts from the axial currents, the quantities
are normalized by g2

A/� in a correlated manner to produce combinations that are independent of

c,d irrelevant constants
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FIG. 3. E↵ective-mass plots for the deuteron (upper-left panel), dineutron (upper-right panel), nucleon
(lower-left panel), and the quantity � = Enn � Ed (lower-right panel). Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The dashed lines in the
upper-panel plots correspond to twice the mass of the nucleon. In all figures, the horizontal bands show
constant fits to the late-time behavior of the SP quantities. The SS points are slightly o↵set in t for clarity.

required linear and quadratic field-strength dependences of the correlation functions determined,
the remaining task is to isolate the matrix elements of interest through the time dependence of
the combinations of correlation functions derived in Sec. III B. As the first-order responses have
been presented in Ref. [18], the primary focus of this work is the second-order axial matrix element
describing the nn ! pp transition, as discussed in Sec. III B 3. For this matrix element, the
challenge is to isolate both its long-distance and short-distance components. Since the long-distance
contribution can be determined from numerical calculations of the matrix element associated with
a single insertion of the axial current, it can be removed from Rnn!pp(t) in Eq. (34) to leave
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This subtraction is most e↵ectively done in a correlated manner, requiring determinations of the
energy splitting and the pp ! d matrix element.

Plots of the e↵ective-mass functions of the nucleon, deuteron, dineutron, and of the di↵erence
� = Enn�Ed are shown in Fig. IV, along with fits to the late-time behavior of the appropriate ratios
of the correlation functions. This figure shows that the deuteron and dinucleon zero-field correlation
functions are saturated by their ground-state contributions by timeslice 6. Consequently, in the
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transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-
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nn!pp(t) that are constructed from the SP and

SS correlation functions, as given in Eq. (31) and Eq. (33) respectively. Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The horizontal bands show
constant correlated SP-SS fits to the late-time behavior of the quantities.
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complished straightforwardly by forming the following combination of R̂nn!pp at three neighboring
timeslices:
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As denoted, at large time separations, R
(lin)
nn!pp(t) asymptotes to the bare isotensor axial polariz-

ability, as defined in Eq. (4). This term can now be combined with the deuteron-pole contribution
in a correlated manner to form
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which asymptotes to the bare Gamow-Teller matrix element. The results for both R
(lin)
nn!pp(t) and

R
(full)
nn!pp(t) are shown in Fig. 6, along with fits to the asymptotic behavior of the SP correlation

functions. Constant behavior is observed at late times, with consistent results from the SS and
(significantly more precise) SP combinations, an indication that the assumptions made in deriving
Eq. (32) are valid. An estimate of the finite-volume excited-state spectra of the isosinglet and
isotriplet two-nucleon systems based on the phase shifts extracted in Ref. [48] further validates the
assumed hierarchy of the ground and excited-states gaps, and numerically shows that � ⇠ 8�.

The fits to the SP e↵ective matrix elements shown in Fig. 6 yield the following values of the
long-distance, short-distance and total matrix elements for nn ! pp transition resulting from two
insertions of the axial current:
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FIG. 3. E↵ective-mass plots for the deuteron (upper-left panel), dineutron (upper-right panel), nucleon
(lower-left panel), and the quantity � = Enn � Ed (lower-right panel). Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The dashed lines in the
upper-panel plots correspond to twice the mass of the nucleon. In all figures, the horizontal bands show
constant fits to the late-time behavior of the SP quantities. The SS points are slightly o↵set in t for clarity.

required linear and quadratic field-strength dependences of the correlation functions determined,
the remaining task is to isolate the matrix elements of interest through the time dependence of
the combinations of correlation functions derived in Sec. III B. As the first-order responses have
been presented in Ref. [18], the primary focus of this work is the second-order axial matrix element
describing the nn ! pp transition, as discussed in Sec. III B 3. For this matrix element, the
challenge is to isolate both its long-distance and short-distance components. Since the long-distance
contribution can be determined from numerical calculations of the matrix element associated with
a single insertion of the axial current, it can be removed from Rnn!pp(t) in Eq. (34) to leave
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This subtraction is most e↵ectively done in a correlated manner, requiring determinations of the
energy splitting and the pp ! d matrix element.

Plots of the e↵ective-mass functions of the nucleon, deuteron, dineutron, and of the di↵erence
� = Enn�Ed are shown in Fig. IV, along with fits to the late-time behavior of the appropriate ratios
of the correlation functions. This figure shows that the deuteron and dinucleon zero-field correlation
functions are saturated by their ground-state contributions by timeslice 6. Consequently, in the
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required linear and quadratic field-strength dependences of the correlation functions determined,
the remaining task is to isolate the matrix elements of interest through the time dependence of
the combinations of correlation functions derived in Sec. III B. As the first-order responses have
been presented in Ref. [18], the primary focus of this work is the second-order axial matrix element
describing the nn ! pp transition, as discussed in Sec. III B 3. For this matrix element, the
challenge is to isolate both its long-distance and short-distance components. Since the long-distance
contribution can be determined from numerical calculations of the matrix element associated with
a single insertion of the axial current, it can be removed from Rnn!pp(t) in Eq. (34) to leave
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This subtraction is most e↵ectively done in a correlated manner, requiring determinations of the
energy splitting and the pp ! d matrix element.

Plots of the e↵ective-mass functions of the nucleon, deuteron, dineutron, and of the di↵erence
� = Enn�Ed are shown in Fig. IV, along with fits to the late-time behavior of the appropriate ratios
of the correlation functions. This figure shows that the deuteron and dinucleon zero-field correlation
functions are saturated by their ground-state contributions by timeslice 6. Consequently, in the
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to estimate the magnitude of excited-state contamination to the extraction of pp ! d bare matrix element,
see Sec. III B 2. Blue circles and orange diamonds denote results determined using SP and SS correlation
functions, respectively. The horizontal bands show constant correlated SP-SS fits to the late-time behavior
of the quantities.

transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-
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FIG. 5. The (a) ratio Rnn!pp(t) and (b) subtracted ratio R(sub)
nn!pp(t) that are constructed from the SP and

SS correlation functions, as given in Eq. (31) and Eq. (33) respectively. Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The horizontal bands show
constant correlated SP-SS fits to the late-time behavior of the quantities.
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structed from the SP and SS correlation functions as prescribed in Eqs. (33) and (35). Blue circles and
orange diamonds denote results determined using SP and SS correlation functions, respectively. The SS
points are slightly o↵set in t for clarity.

complished straightforwardly by forming the following combination of R̂nn!pp at three neighboring
timeslices:

R
(lin)
nn!pp(t) =

(ea� + 1)R̂nn!pp(t + a) � R̂nn!pp(t + 2a) � ea�
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As denoted, at large time separations, R
(lin)
nn!pp(t) asymptotes to the bare isotensor axial polariz-

ability, as defined in Eq. (4). This term can now be combined with the deuteron-pole contribution
in a correlated manner to form

R
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which asymptotes to the bare Gamow-Teller matrix element. The results for both R
(lin)
nn!pp(t) and

R
(full)
nn!pp(t) are shown in Fig. 6, along with fits to the asymptotic behavior of the SP correlation

functions. Constant behavior is observed at late times, with consistent results from the SS and
(significantly more precise) SP combinations, an indication that the assumptions made in deriving
Eq. (32) are valid. An estimate of the finite-volume excited-state spectra of the isosinglet and
isotriplet two-nucleon systems based on the phase shifts extracted in Ref. [48] further validates the
assumed hierarchy of the ground and excited-states gaps, and numerically shows that � ⇠ 8�.

The fits to the SP e↵ective matrix elements shown in Fig. 6 yield the following values of the
long-distance, short-distance and total matrix elements for nn ! pp transition resulting from two
insertions of the axial current:
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where in order to suppress the O(a) lattice-spacing artifacts from the axial currents, the quantities
are normalized by g2

A/� in a correlated manner to produce combinations that are independent of
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transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-
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complished straightforwardly by forming the following combination of R̂nn!pp at three neighboring
timeslices:
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(lin)
nn!pp(t) =

(ea� + 1)R̂nn!pp(t + a) � R̂nn!pp(t + 2a) � ea�
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As denoted, at large time separations, R
(lin)
nn!pp(t) asymptotes to the bare isotensor axial polariz-

ability, as defined in Eq. (4). This term can now be combined with the deuteron-pole contribution
in a correlated manner to form
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which asymptotes to the bare Gamow-Teller matrix element. The results for both R
(lin)
nn!pp(t) and

R
(full)
nn!pp(t) are shown in Fig. 6, along with fits to the asymptotic behavior of the SP correlation

functions. Constant behavior is observed at late times, with consistent results from the SS and
(significantly more precise) SP combinations, an indication that the assumptions made in deriving
Eq. (32) are valid. An estimate of the finite-volume excited-state spectra of the isosinglet and
isotriplet two-nucleon systems based on the phase shifts extracted in Ref. [48] further validates the
assumed hierarchy of the ground and excited-states gaps, and numerically shows that � ⇠ 8�.

The fits to the SP e↵ective matrix elements shown in Fig. 6 yield the following values of the
long-distance, short-distance and total matrix elements for nn ! pp transition resulting from two
insertions of the axial current:
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where in order to suppress the O(a) lattice-spacing artifacts from the axial currents, the quantities
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A/� in a correlated manner to produce combinations that are independent of
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transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
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FIG. 6. (a) The combination R(lin)
nn!pp(t) corresponding at late times to the unrenormalized short-distance

contribution to the matrix element as shown in Eq. (32) and Eq. (33). (b) R(full)
nn!pp(t), the sum of the

long-distance and short-distance contributions to the matrix element. In both panels, the orange diamonds
and blue circles correspond to the SS and SP results, respectively. The horizontal bands denote fits to the
SP results at late times, used to extract the final values of the matrix elements. NORMALISE by g2

A/� ??

alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with external currents, can be systematically studied in the framework
of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,

R
(l

in
)

n
n

!
p
p
(t

)
[g

2 A
/�

]

18

(a) (b)

FIG. 6. (a) The combination R(lin)
nn!pp(t) corresponding at late times to the unrenormalized short-distance

contribution to the matrix element as shown in Eq. (32) and Eq. (33). (b) R(full)
nn!pp(t), the sum of the

long-distance and short-distance contributions to the matrix element. In both panels, the orange diamonds
and blue circles correspond to the SS and SP results, respectively. The horizontal bands denote fits to the
SP results at late times, used to extract the final values of the matrix elements. NORMALISE by g2
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alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].
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of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,
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FIG. 6. The left panel shows R
(lin)
nn!pp(t) (normalized by g2

A/�), corresponding to the bare short-distance

contribution to the nn ! pp matrix element at late times, Eq. (36). The right panel shows R(full)
nn!pp(t)

(normalized by g2
A/�), which sums the long-distance and short-distance contributions to the matrix element,

Eq. (37). In both panels, the orange diamonds and blue circles correspond to the SS and SP results,
respectively. The horizontal bands denote constant fits to the SP results at late times, which are used to
extract the final values of the matrix elements. The SS points are slightly o↵set in t for clarity.

the axial-current renormalization constant, ZA. In each of these expressions, the first uncertainties
arise from statistical sampling, systematic e↵ects from fitting choices, and deviations from Wigner
symmetry as described in Sec. III B 2. The second uncertainties encompass di↵erences between
analysis methods. Clearly, the short-distance contribution is suppressed relative to the deuteron-
pole contribution but it is non-negligible. There are additional systematic uncertainties that are
not included in the above uncertainty estimations, including finite-volume e↵ects, lattice-spacing
artifacts, and electromagnetic and quark-mass e↵ects. At present, it is di�cult to quantify such
uncertainties, although they are not expected to qualitatively alter the results of this exploratory
calculation. In the future, it will be important to investigate such e↵ects by improving upon the
calculations presented here, as discussed further in Sec. VI.

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/) and explicitly used
to determine the coe�cient of a short-distance, two-nucleon, second-order axial-current operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [20, 66–70] is a natural approach
to use at this heavy quark mass as the momenta involved in 2⌫�� decays are small compared with
the start of the two-nucleon t-channel cut when isospin breaking and electromagnetism are included
(in this isospin-symmetric numerical work, the transition is below threshold for massive leptons).
At lighter quark masses, including the physical point, pionful EFTs will likely be required [71].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with background fields, can be systematically studied in the framework
of EFT(⇡/) [20, 67, 69, 70]. As s-wave interactions in the two-nucleon sector are strong, generating
anomalously large two-nucleon scattering lengths, they must be included to all orders. However,
interactions in higher partial waves can be included perturbatively. In the dibaryon formulation of
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(t) used to extract the pp ! d bare transition matrix

element from the constant fit to its late-time region [16]. The right panel is a plot of quantity R
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(t) used
to estimate the magnitude of excited-state contamination to the extraction of pp ! d bare matrix element,
see Sec. III B 2. Blue circles and orange diamonds denote results determined using SP and SS correlation
functions, respectively. The horizontal bands show constant correlated SP-SS fits to the late-time behavior
of the quantities.

transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-
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FIG. 5. The (a) ratio Rnn!pp(t) and (b) subtracted ratio R(sub)
nn!pp(t) that are constructed from the SP and

SS correlation functions, as given in Eq. (31) and Eq. (33) respectively. Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The horizontal bands show
constant correlated SP-SS fits to the late-time behavior of the quantities.
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structed from the SP and SS correlation functions as prescribed in Eqs. (33) and (35). Blue circles and
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complished straightforwardly by forming the following combination of R̂nn!pp at three neighboring
timeslices:

R
(lin)
nn!pp(t) =

(ea� + 1)R̂nn!pp(t + a) � R̂nn!pp(t + 2a) � ea�
R̂nn!pp(t)

ea� � 1
t!1
�!
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aZ2
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�(2)
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6
.(36)

As denoted, at large time separations, R
(lin)
nn!pp(t) asymptotes to the bare isotensor axial polariz-

ability, as defined in Eq. (4). This term can now be combined with the deuteron-pole contribution
in a correlated manner to form

R
(full)
nn!pp(t) = R

(lin)
nn!pp(t) �

|hpp|J̃+
3 |di|

2

a�
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M2⌫
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6
, (37)

which asymptotes to the bare Gamow-Teller matrix element. The results for both R
(lin)
nn!pp(t) and

R
(full)
nn!pp(t) are shown in Fig. 6, along with fits to the asymptotic behavior of the SP correlation

functions. Constant behavior is observed at late times, with consistent results from the SS and
(significantly more precise) SP combinations, an indication that the assumptions made in deriving
Eq. (32) are valid. An estimate of the finite-volume excited-state spectra of the isosinglet and
isotriplet two-nucleon systems based on the phase shifts extracted in Ref. [48] further validates the
assumed hierarchy of the ground and excited-states gaps, and numerically shows that � ⇠ 8�.

The fits to the SP e↵ective matrix elements shown in Fig. 6 yield the following values of the
long-distance, short-distance and total matrix elements for nn ! pp transition resulting from two
insertions of the axial current:

�
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= 1.00(3)(1), (38)
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3 |nni

�l0
= �0.04(4)(2), (39)

�

g2
A

M2⌫
GT

6
= �1.04(4)(4), (40)

where in order to suppress the O(a) lattice-spacing artifacts from the axial currents, the quantities
are normalized by g2

A/� in a correlated manner to produce combinations that are independent of
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functions. Constant behavior is observed at late times, with consistent results from the SS and
(significantly more precise) SP combinations, an indication that the assumptions made in deriving
Eq. (32) are valid. An estimate of the finite-volume excited-state spectra of the isosinglet and
isotriplet two-nucleon systems based on the phase shifts extracted in Ref. [48] further validates the
assumed hierarchy of the ground and excited-states gaps, and numerically shows that � ⇠ 8�.

The fits to the SP e↵ective matrix elements shown in Fig. 6 yield the following values of the
long-distance, short-distance and total matrix elements for nn ! pp transition resulting from two
insertions of the axial current:
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alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with external currents, can be systematically studied in the framework
of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,
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in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].
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FIG. 6. The left panel shows R
(lin)
nn!pp(t) (normalized by g2

A/�), corresponding to the bare short-distance

contribution to the nn ! pp matrix element at late times, Eq. (36). The right panel shows R(full)
nn!pp(t)

(normalized by g2
A/�), which sums the long-distance and short-distance contributions to the matrix element,

Eq. (37). In both panels, the orange diamonds and blue circles correspond to the SS and SP results,
respectively. The horizontal bands denote constant fits to the SP results at late times, which are used to
extract the final values of the matrix elements. The SS points are slightly o↵set in t for clarity.

the axial-current renormalization constant, ZA. In each of these expressions, the first uncertainties
arise from statistical sampling, systematic e↵ects from fitting choices, and deviations from Wigner
symmetry as described in Sec. III B 2. The second uncertainties encompass di↵erences between
analysis methods. Clearly, the short-distance contribution is suppressed relative to the deuteron-
pole contribution but it is non-negligible. There are additional systematic uncertainties that are
not included in the above uncertainty estimations, including finite-volume e↵ects, lattice-spacing
artifacts, and electromagnetic and quark-mass e↵ects. At present, it is di�cult to quantify such
uncertainties, although they are not expected to qualitatively alter the results of this exploratory
calculation. In the future, it will be important to investigate such e↵ects by improving upon the
calculations presented here, as discussed further in Sec. VI.

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/) and explicitly used
to determine the coe�cient of a short-distance, two-nucleon, second-order axial-current operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [20, 66–70] is a natural approach
to use at this heavy quark mass as the momenta involved in 2⌫�� decays are small compared with
the start of the two-nucleon t-channel cut when isospin breaking and electromagnetism are included
(in this isospin-symmetric numerical work, the transition is below threshold for massive leptons).
At lighter quark masses, including the physical point, pionful EFTs will likely be required [71].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with background fields, can be systematically studied in the framework
of EFT(⇡/) [20, 67, 69, 70]. As s-wave interactions in the two-nucleon sector are strong, generating
anomalously large two-nucleon scattering lengths, they must be included to all orders. However,
interactions in higher partial waves can be included perturbatively. In the dibaryon formulation of
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FIG. 3. E↵ective-mass plots for the deuteron (upper-left panel), dineutron (upper-right panel), nucleon
(lower-left panel), and the quantity � = Enn � Ed (lower-right panel). Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The dashed lines in the
upper-panel plots correspond to twice the mass of the nucleon. In all figures, the horizontal bands show
constant fits to the late-time behavior of the SP quantities. The SS points are slightly o↵set in t for clarity.

required linear and quadratic field-strength dependences of the correlation functions determined,
the remaining task is to isolate the matrix elements of interest through the time dependence of
the combinations of correlation functions derived in Sec. III B. As the first-order responses have
been presented in Ref. [18], the primary focus of this work is the second-order axial matrix element
describing the nn ! pp transition, as discussed in Sec. III B 3. For this matrix element, the
challenge is to isolate both its long-distance and short-distance components. Since the long-distance
contribution can be determined from numerical calculations of the matrix element associated with
a single insertion of the axial current, it can be removed from Rnn!pp(t) in Eq. (34) to leave

R̂nn!pp(t) = Rnn!pp(t) �
|hpp|J̃+

3 |di|
2

a�


�

t

a
+

e�t
� 1

a�

�

=
t

a

X

l0 6=d

hpp|J̃+
3 |l0ihl0|J̃+

3 |nni

a�l0
+ c + d e�t. (35)

This subtraction is most e↵ectively done in a correlated manner, requiring determinations of the
energy splitting and the pp ! d matrix element.

Plots of the e↵ective-mass functions of the nucleon, deuteron, dineutron, and of the di↵erence
� = Enn�Ed are shown in Fig. IV, along with fits to the late-time behavior of the appropriate ratios
of the correlation functions. This figure shows that the deuteron and dinucleon zero-field correlation
functions are saturated by their ground-state contributions by timeslice 6. Consequently, in thedetermined from 
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see Sec. III B 2. Blue circles and orange diamonds denote results determined using SP and SS correlation
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of the quantities.

transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-
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nn!pp(t) that are constructed from the SP and
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complished straightforwardly by forming the following combination of R̂nn!pp at three neighboring
timeslices:

R
(lin)
nn!pp(t) =

(ea� + 1)R̂nn!pp(t + a) � R̂nn!pp(t + 2a) � ea�
R̂nn!pp(t)

ea� � 1
t!1
�!

1

aZ2
A

�(2)
A

6
.(36)

As denoted, at large time separations, R
(lin)
nn!pp(t) asymptotes to the bare isotensor axial polariz-

ability, as defined in Eq. (4). This term can now be combined with the deuteron-pole contribution
in a correlated manner to form

R
(full)
nn!pp(t) = R

(lin)
nn!pp(t) �

|hpp|J̃+
3 |di|

2

a�
t!1
�!

1

aZ2
A

M2⌫
GT

6
, (37)

which asymptotes to the bare Gamow-Teller matrix element. The results for both R
(lin)
nn!pp(t) and

R
(full)
nn!pp(t) are shown in Fig. 6, along with fits to the asymptotic behavior of the SP correlation

functions. Constant behavior is observed at late times, with consistent results from the SS and
(significantly more precise) SP combinations, an indication that the assumptions made in deriving
Eq. (32) are valid. An estimate of the finite-volume excited-state spectra of the isosinglet and
isotriplet two-nucleon systems based on the phase shifts extracted in Ref. [48] further validates the
assumed hierarchy of the ground and excited-states gaps, and numerically shows that � ⇠ 8�.

The fits to the SP e↵ective matrix elements shown in Fig. 6 yield the following values of the
long-distance, short-distance and total matrix elements for nn ! pp transition resulting from two
insertions of the axial current:

�

g2
A

|hpp|J̃+
3 |di|

2

�
= 1.00(3)(1), (38)

�

g2
A

X

l0 6=d

hpp|J̃+
3 |l0ihl0|J̃+

3 |nni

�l0
= �0.04(4)(2), (39)

�

g2
A

M2⌫
GT

6
= �1.04(4)(4), (40)

where in order to suppress the O(a) lattice-spacing artifacts from the axial currents, the quantities
are normalized by g2

A/� in a correlated manner to produce combinations that are independent of
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As denoted, at large time separations, R
(lin)
nn!pp(t) asymptotes to the bare isotensor axial polariz-

ability, as defined in Eq. (4). This term can now be combined with the deuteron-pole contribution
in a correlated manner to form
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which asymptotes to the bare Gamow-Teller matrix element. The results for both R
(lin)
nn!pp(t) and
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(full)
nn!pp(t) are shown in Fig. 6, along with fits to the asymptotic behavior of the SP correlation

functions. Constant behavior is observed at late times, with consistent results from the SS and
(significantly more precise) SP combinations, an indication that the assumptions made in deriving
Eq. (32) are valid. An estimate of the finite-volume excited-state spectra of the isosinglet and
isotriplet two-nucleon systems based on the phase shifts extracted in Ref. [48] further validates the
assumed hierarchy of the ground and excited-states gaps, and numerically shows that � ⇠ 8�.

The fits to the SP e↵ective matrix elements shown in Fig. 6 yield the following values of the
long-distance, short-distance and total matrix elements for nn ! pp transition resulting from two
insertions of the axial current:
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nn!pp(t), the sum of the
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alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with external currents, can be systematically studied in the framework
of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,
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FIG. 6. The left panel shows R
(lin)
nn!pp(t) (normalized by g2

A/�), corresponding to the bare short-distance

contribution to the nn ! pp matrix element at late times, Eq. (36). The right panel shows R(full)
nn!pp(t)

(normalized by g2
A/�), which sums the long-distance and short-distance contributions to the matrix element,

Eq. (37). In both panels, the orange diamonds and blue circles correspond to the SS and SP results,
respectively. The horizontal bands denote constant fits to the SP results at late times, which are used to
extract the final values of the matrix elements. The SS points are slightly o↵set in t for clarity.

the axial-current renormalization constant, ZA. In each of these expressions, the first uncertainties
arise from statistical sampling, systematic e↵ects from fitting choices, and deviations from Wigner
symmetry as described in Sec. III B 2. The second uncertainties encompass di↵erences between
analysis methods. Clearly, the short-distance contribution is suppressed relative to the deuteron-
pole contribution but it is non-negligible. There are additional systematic uncertainties that are
not included in the above uncertainty estimations, including finite-volume e↵ects, lattice-spacing
artifacts, and electromagnetic and quark-mass e↵ects. At present, it is di�cult to quantify such
uncertainties, although they are not expected to qualitatively alter the results of this exploratory
calculation. In the future, it will be important to investigate such e↵ects by improving upon the
calculations presented here, as discussed further in Sec. VI.

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/) and explicitly used
to determine the coe�cient of a short-distance, two-nucleon, second-order axial-current operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [20, 66–70] is a natural approach
to use at this heavy quark mass as the momenta involved in 2⌫�� decays are small compared with
the start of the two-nucleon t-channel cut when isospin breaking and electromagnetism are included
(in this isospin-symmetric numerical work, the transition is below threshold for massive leptons).
At lighter quark masses, including the physical point, pionful EFTs will likely be required [71].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with background fields, can be systematically studied in the framework
of EFT(⇡/) [20, 67, 69, 70]. As s-wave interactions in the two-nucleon sector are strong, generating
anomalously large two-nucleon scattering lengths, they must be included to all orders. However,
interactions in higher partial waves can be included perturbatively. In the dibaryon formulation of
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For completeness, the bare nuclear charges are pre-
sented in Table IV, and the ratios shown in Fig. 3 of the
main text are listed in Table V. The bare charges are in
many cases more precise than the renormalised charges
shown in the main text as the renormalisation factors are
less precise than the matrix-element calculations. The
impulse approximation expectations for non-interacting
nucleons are also shown.
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FIG. 1. (Color online) Euclidean electromagnetic longitudinal
(top panel) and transverse (lower panel) response function of
12C at q = 570 MeV. Experimental data are from Ref. [22].

that used in Ref. [3] for the sum rules. As discussed
in Ref. [3], the scaling assumption can be justified by ob-
serving that the high ! (well beyond !qe) region of the
response is dominated by two-nucleon physics, in partic-
ular by deuteron-like np pairs in the ground-state of the
nucleus. It is important to stress that, as ⌧ increases,
the Euclidean response functions become more and more
sensitive to strength in the quasi-elastic and threshold
regions of RL,T (q,!). Indeed, in this limit (⌧ >⇠ 1/!qe)
contributions from unmeasured strength at ! > !max are
exponentially suppressed.

In Fig. 1 we show results obtained by including only
one-body (open circles) or both one- and two-body (solid
circles) terms in the electromagnetic transition operators.
In the longitudinal case, destructive interference between
the matrix elements of the one- and two-body charge op-
erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
sponse. This enhancement is e↵ective over the whole
imaginary-time region we have considered, with the im-
plication that excess transverse strength is generated by
two-body currents not only at ! >⇠ !qe, but also in the
quasi-elastic and threshold regions of RT (q,!). It is re-
assuring to see that the full predictions for both longitu-

dinal and transverse Euclidean response functions are in
excellent agreement with data.
At larger values of ⌧ the statistical errors associated

with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
tial additional computational resources in this type of
calculation. Those presented here were performed with
⇠45 million core hours of Argonne National Laboratory’s
IBM Blue Gene/Q (Mira) parallel supercomputer. The
Automatic Dynamic Load Balancing (ADLB) library [23]
was used to distribute the imaginary time propagation of
O�(q)| V i and the evaluation of the matrix element in
Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean

neutral-weak response functions: the transverse (top
panel) and interference (lower panel) E↵�(q, ⌧), having
respectively ↵� = xx and ↵� = xy in the notation of
Ref. [1]. The Exy(q, ⌧) response is due to interference
between the vector (VNC) and axial (ANC) parts of the
neutral current (NC), and in the inclusive cross section
the corresponding Rxy(q,!) enters with opposite sign de-
pending on whether the process A(⌫l, ⌫0l) or A(⌫l, ⌫

0
l
) is

considered [1]. On the other hand, in the transverse
case the interference of VNC and ANC terms vanishes,
and Exx(q, ⌧) is simply given by the sum of the terms
with both O↵ and O� in Eq. (1) being from the VNC
or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low
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that used in Ref. [3] for the sum rules. As discussed
in Ref. [3], the scaling assumption can be justified by ob-
serving that the high ! (well beyond !qe) region of the
response is dominated by two-nucleon physics, in partic-
ular by deuteron-like np pairs in the ground-state of the
nucleus. It is important to stress that, as ⌧ increases,
the Euclidean response functions become more and more
sensitive to strength in the quasi-elastic and threshold
regions of RL,T (q,!). Indeed, in this limit (⌧ >⇠ 1/!qe)
contributions from unmeasured strength at ! > !max are
exponentially suppressed.

In Fig. 1 we show results obtained by including only
one-body (open circles) or both one- and two-body (solid
circles) terms in the electromagnetic transition operators.
In the longitudinal case, destructive interference between
the matrix elements of the one- and two-body charge op-
erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
sponse. This enhancement is e↵ective over the whole
imaginary-time region we have considered, with the im-
plication that excess transverse strength is generated by
two-body currents not only at ! >⇠ !qe, but also in the
quasi-elastic and threshold regions of RT (q,!). It is re-
assuring to see that the full predictions for both longitu-

dinal and transverse Euclidean response functions are in
excellent agreement with data.
At larger values of ⌧ the statistical errors associated

with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
tial additional computational resources in this type of
calculation. Those presented here were performed with
⇠45 million core hours of Argonne National Laboratory’s
IBM Blue Gene/Q (Mira) parallel supercomputer. The
Automatic Dynamic Load Balancing (ADLB) library [23]
was used to distribute the imaginary time propagation of
O�(q)| V i and the evaluation of the matrix element in
Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean

neutral-weak response functions: the transverse (top
panel) and interference (lower panel) E↵�(q, ⌧), having
respectively ↵� = xx and ↵� = xy in the notation of
Ref. [1]. The Exy(q, ⌧) response is due to interference
between the vector (VNC) and axial (ANC) parts of the
neutral current (NC), and in the inclusive cross section
the corresponding Rxy(q,!) enters with opposite sign de-
pending on whether the process A(⌫l, ⌫0l) or A(⌫l, ⌫

0
l
) is

considered [1]. On the other hand, in the transverse
case the interference of VNC and ANC terms vanishes,
and Exx(q, ⌧) is simply given by the sum of the terms
with both O↵ and O� in Eq. (1) being from the VNC
or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low
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