Parity Violation in Nuclei with Large N_c

Matthias R. Schindler

in collaboration with H. Singh, R.P. Springer, J. Vanasse

Fundamental Physics with Electroweak Probes of Light Nuclei July 6, 2018

Beyond the Standard Model physics at low energies

- New physics at scale Λ_{new}
- Below Λ_{new} : effective interactions with SM degrees of freedom
- In particular: local 4-quark operators

 $\bar{q}\mathcal{O}_1 q \; \bar{q}\mathcal{O}_2 q$

- In nuclei: isolate through symmetry violations
- QCD nonperturbative

Manifestation of 4-quark operators at hadronic level?

Prototype: Weak Interactions

- Mediated by W, Z exchange
- Short-ranged \sim 0.002 fm
- Parity violating
- Well-tested in leptonic and semileptonic sectors
- Strangeness-conserving hadronic sector at low energies

$$\mathcal{L}_{weak}^{\Delta S=0} = \frac{G}{\sqrt{2}} \left[\underbrace{\cos^2 \theta_C J_W^{0,\dagger} J_W^0}_{\Delta I=0,2} + \underbrace{\sin^2 \theta_C J_W^{1,\dagger} J_W^1}_{\Delta I=1} + J_Z^{\dagger} J_Z \right]$$

- $\Delta I = 1$ dominated by neutral current J_Z (sin² $\theta_C \sim 0.05$)
- Neutral currents highly suppressed in flavor-changing hadronic decays

Hadronic parity violation

- Parity-violating component in NN interactions
- Manifestation of PV quark interactions at hadronic level
- Interplay of weak and nonperturbative strong interactions
- Short range of weak interactions \Rightarrow
 - Sensitive to quark-quark correlations inside nucleon
 - No need to go to high energy
 - "Inside-out probe"
- Relative strength for NN case: $\sim \textit{G}_{\textit{F}}\textit{m}_{\pi}^2 \approx 10^{-7}$
- Isolate through pseudoscalar observables $(\vec{p} \cdot \vec{\sigma})$

PV NN interactions

- Approaches
 - Meson-exchange models

- EFT(π): Pionless effective field theory

- Chiral effective field theory
- \rightarrow PV meson-nucleon and/or nucleon-nucleon couplings

Danilov (1965,'71); Desplanques, Donoghue, Holstein (1980); Kaplan, Savage (1993); Savage, Springer (1998); Zhu et al. (2005)

Parity violation in $EFT(\not \tau)$

Structure of interaction

- At very low energies: pion exchange not resolved
- Only nucleons as explicit degrees of freedom
- Contact terms with increasing number of derivatives
- Parity determined by orbital angular momentum $L: (-1)^L$
- Simplest parity-violating interaction: $L \rightarrow L \pm 1$
- Leading order: *S P* wave transitions
- Spin, isospin: 5 independent structures

Danilov (1965, '71, '72); Girlanda (2008)

Lowest-order parity-violating Lagrangian

Partial wave basis

$$\begin{split} \mathcal{L}_{PV} &= -\left[\mathcal{C}^{(^{3}\!S_{1}-^{1}\!P_{1})}\left(N^{T}\sigma_{2}\,\vec{\sigma}\tau_{2}N\right)^{\dagger}\cdot\left(N^{T}\sigma_{2}\tau_{2}i\overset{\leftrightarrow}{\nabla}N\right)\right.\\ &+ \mathcal{C}^{(^{1}\!S_{0}-^{3}\!P_{0})}_{(\Delta l=0)}\left(N^{T}\sigma_{2}\tau_{2}\vec{\tau}N\right)^{\dagger}\left(N^{T}\sigma_{2}\,\vec{\sigma}\cdot\overrightarrow{\nabla}\tau_{2}\vec{\tau}N\right)\right.\\ &+ \mathcal{C}^{(^{1}\!S_{0}-^{3}\!P_{0})}_{(\Delta l=1)}\,\epsilon^{3ab}\left(N^{T}\sigma_{2}\tau_{2}\tau^{a}N\right)^{\dagger}\left(N^{T}\sigma_{2}\,\vec{\sigma}\cdot\overset{\leftrightarrow}{\nabla}\tau_{2}\tau^{b}N\right)\\ &+ \mathcal{C}^{(^{1}\!S_{0}-^{3}\!P_{0})}_{(\Delta l=2)}\,\mathcal{I}^{ab}\left(N^{T}\sigma_{2}\tau_{2}\tau^{a}N\right)^{\dagger}\left(N^{T}\sigma_{2}\,\vec{\sigma}\cdot\overrightarrow{\nabla}\tau_{2}\tau^{b}N\right)\\ &+ \mathcal{C}^{(^{3}\!S_{1}-^{3}\!P_{1})}\,\epsilon^{ijk}\left(N^{T}\sigma_{2}\sigma^{i}\tau_{2}N\right)^{\dagger}\left(N^{T}\sigma_{2}\sigma^{k}\tau_{2}\tau_{3}\overset{\leftrightarrow}{\nabla}N\right)\right] + h.c.\end{split}$$

Phillips, MRS, Springer (2009)

PV low-energy couplings

- 5 independent LECs at leading order
- Parameterize short-distance details
- Determine from
 - Underlying theory \rightarrow Nonperturbative QCD calculation
 - Experimental results
 - Suite of observables in unified framework
 - High-precision measurements
 - Few-nucleon systems
 - Low energies
- Currently only weakly constrained
- Additional theoretical constraints?

Large-N_c QCD

QCD in limit $N_c ightarrow \infty$

- Taken with $g^2 N_c$ fixed
- Simplifications
 - Color-singlet physical states
 - Mesons, glueballs: Weakly interacting $\sim 1/\sqrt{N_c}$
- Systematic expansion in 1/N_c
- Seems to work well phenomenologically
- Baryons
 - Baryon mass $M \sim N_c$
 - SU(4) spin-flavor symmetry: $u \uparrow$, $u \downarrow$, $d \uparrow$, $d \downarrow$

^{&#}x27;t Hooft (1974); Witten (1979); Dashen, Jenkins, Manohar (1994)

NN potential in large- N_c expansion

$$V(ec{
ho}_{-},ec{
ho}_{+}) = \langle (ec{
ho}_{1}',C), (ec{
ho}_{2}',D) | H | (ec{
ho}_{1},A), (ec{
ho}_{2},B)
angle$$

with $ec{
ho}_{\pm}=ec{
ho}^{\,\prime}\pmec{
ho}$

- Effective Hamiltonian

$$H = N_c \sum_{s,t,u} v_{stu} \left(\frac{S}{N_c}\right)^s \left(\frac{I}{N_c}\right)^t \left(\frac{G}{N_c}\right)^u$$

- Building blocks

$$S^i=q^\daggerrac{\sigma^i}{2}q\,,\quad I^a=q^\daggerrac{ au^a}{2}q\,,\quad G^{ia}=q^\daggerrac{\sigma^i au^a}{4}q$$

- Coefficients vstu
 - Momentum dependent
 - Constrained by symmetries

Witten (1979); Kaplan, Savage (1996); Kaplan, Manohar (1997); Cohen et al. (2002)

Large-*N*_c scaling

- Nucleon matrix elements

$$\langle N'|S^i|N
angle \sim \langle N'|I^a|N
angle \sim 1,$$

 $\langle N'|G^{ia}|N
angle \sim \langle N'|\mathbb{1}|N
angle \sim N_c$

- Momenta (in t-channel)

$$ec{
ho}_- \sim 1$$

 $ec{
ho}_+ \sim 1/M_N \sim 1/N_c$

- Coefficients excluding momenta

$$\tilde{v}_{stu} \sim 1$$

Dashen, Jenkins, Manohar (1994,95); Kaplan, Savage (1996); Kaplan, Manohar (1997)

1/N_c expansion of NN potential

Comparison large-N_c scaling vs Nijmegen potential

Large-N_c expansion and pionless EFT

- Leading-order parity-conserving $EFT(\pi)$ interactions

$$\mathcal{L} = -\frac{1}{2}C_{\mathcal{S}}(N^{\dagger}N)(N^{\dagger}N) - \frac{1}{2}C_{\mathcal{T}}(N^{\dagger}\sigma^{i}N)(N^{\dagger}\sigma^{i}N)$$

- Large-N_c scaling

$$C_{S} \sim N_{c}, \quad C_{T} \sim 1/N_{c}$$

- In partial-wave basis

$$C_0^{({}^1\!S_0)}=(C_S-3C_T), \quad C_0^{({}^3\!S_1)}=(C_S+C_T)$$

In large-N_c limit

$$C_0^{(^1S_0)} = C_0^{(^3S_1)}$$

Kaplan, Savage (1996)

Parity-conserving S-wave couplings

- In field theory LECs renormalization-scale dependent
- In PDS renormalization

$$\frac{C_0^{({}^{1}S_0)}}{C_0^{({}^{3}S_1)}} = \frac{\frac{1}{a^{({}^{3}S_1)}} - \mu}{\frac{1}{a^{({}^{1}S_0)}} - \mu}$$
$$\xrightarrow{\mu \to 0} \frac{a^{({}^{1}S_0)}}{a^{({}^{3}S_1)}} \approx -4.4$$

- Magnitude \neq 1
- Wrong sign

Kaplan, Savage (1996); Kaplan, Savage, Wise (1998)

Parity-conserving S-wave couplings

- Large- N_c + EFT(\neq) requires suitable renormalization scale
- Agreement with large- N_c predicted errors for $\mu\gtrsim m_\pi$

Two-derivative interactions

- Next order in EFT(*f*): two-derivative interactions
- Apply large-N_c constraints

$$\begin{split} \mathcal{L}_{\text{LO-in-}\textit{N}_{c}} &= \textit{C}_{1\cdot 1} \nabla_{i} (\textit{N}^{\dagger}\textit{N}) \nabla_{i} (\textit{N}^{\dagger}\textit{N}) \\ &+ \textit{C}_{\textit{G}\cdot\textit{G}} \nabla_{i} (\textit{N}^{\dagger}\sigma_{j}\tau_{a}\textit{N}) \nabla_{i} (\textit{N}^{\dagger}\sigma_{j}\tau_{a}\textit{N}) \\ &+ \textit{C}_{\textit{G}\cdot\textit{G}} \nabla_{i} (\textit{N}^{\dagger}\sigma_{i}\tau_{a}\textit{N}) \nabla_{j} (\textit{N}^{\dagger}\sigma_{j}\tau_{a}\textit{N}) \end{split}$$

$$\begin{split} \mathcal{L}_{\mathsf{N}^{2}\mathsf{LO-in-}N_{c}} &= C_{\tau\cdot\tau}\nabla_{i}(N^{\dagger}\tau_{a}N)\nabla_{i}(N^{\dagger}\tau_{a}N) \\ &+ \overset{\leftrightarrow}{C}_{1\cdot1}(N^{\dagger}\overset{\leftrightarrow}{\nabla}_{i}N)(N^{\dagger}\overset{\leftrightarrow}{\nabla}_{i}N) \\ &+ C_{\sigma\cdot\sigma}\nabla_{i}(N^{\dagger}\sigma_{j}N)\nabla_{i}(N^{\dagger}\sigma_{j}N) \\ &+ \overset{\leftrightarrow}{C}_{G\cdot G}(N^{\dagger}\overset{\leftrightarrow}{\nabla}_{i}\sigma_{j}\tau_{a}N)(N^{\dagger}\overset{\leftrightarrow}{\nabla}_{i}\sigma_{j}\tau_{a}N) \\ &- \frac{i}{2}\overset{\leftrightarrow}{C}_{1\cdot\sigma}\epsilon_{ijk}\left[\nabla_{j}(N^{\dagger}\sigma_{i}N)(N^{\dagger}\overset{\leftrightarrow}{\nabla}_{k}N) + \nabla_{j}(N^{\dagger}N)(N^{\dagger}\overset{\leftrightarrow}{\nabla}_{k}\sigma_{i}N)\right] \\ &- \frac{i}{2}\overset{\leftrightarrow}{C}_{G\cdot\tau}\epsilon_{ijk}\left[\nabla_{j}(N^{\dagger}\sigma_{i}\tau_{a}N)(N^{\dagger}\overset{\leftrightarrow}{\nabla}_{k}\tau_{a}N) + \nabla_{j}(N^{\dagger}\tau_{a}N)(N^{\dagger}\overset{\leftrightarrow}{\nabla}_{k}\sigma_{i}\tau_{a}N)\right] \\ &+ C'_{\sigma\cdot\sigma}\nabla_{i}(N^{\dagger}\sigma_{i}N)\nabla_{j}(N^{\dagger}\sigma_{j}N) \\ &+ \overset{\leftrightarrow}{C}'_{G\cdot G}(N^{\dagger}\overset{\leftrightarrow}{\nabla}_{i}\sigma_{i}\tau_{a}N)(N^{\dagger}\overset{\leftrightarrow}{\nabla}_{j}\sigma_{j}\tau_{a}N) \end{split}$$

S-waves At LO-in-*N_c*:

$$\left. \frac{C_2^{(^3S_1)}}{C_2^{(^1S_0)}} \right|_{\text{LO-in-}N_c} = 1$$

P-waves

- No renormalization scale dependence
- At LO-in-*N_c*:

$$\frac{C^{(^{3}P_{0})} - \frac{4}{3}C^{(^{3}P_{2})}}{-C^{(^{3}P_{1})} + 2C^{(^{3}P_{2})}}\bigg|_{\text{LO-in-}N_{c}} = 1$$

- Using values extracted from NN scattering

$$\frac{C^{(^{3}P_{0})}-\frac{4}{3}C^{(^{3}P_{2})}}{-C^{(^{3}P_{1})}+2C^{(^{3}P_{2})}}\approx0.82$$

S-D mixing

- At LO-in-Nc

$$\left. \frac{1}{3} \frac{C^{(SD)}}{C^{(3P_1)} - 2C^{(3P_2)}} \right|_{\text{LO-in-}N_c} = 1$$

S-D mixing

- S-D term unnaturally small?
- Increase S-D term by factor 3

- Additional physics can impact large-N_c analysis

PV operators in $1/N_c$ expansion

- Leading order $[\mathcal{O}(N_c)]$

 $\vec{p}_{-} \cdot (\vec{\sigma}_1 \times \vec{\sigma}_2) \vec{\tau}_1 \cdot \vec{\tau}_2$

- Leading order' $[\mathcal{O}(N_c) \sin^2 \theta_W]$

$$ec{p}_{-} \cdot \left(ec{\sigma}_1 imes ec{\sigma}_2
ight) \left[au_1 au_2
ight]_2^{zz}$$

- Next-to-leading order $[\mathcal{O}(N_c^0) \sin^2 \theta_W]$

$$\begin{split} \vec{p}_{+} \cdot (\vec{\sigma}_{1}\tau_{1}^{3} - \vec{\sigma}_{2}\tau_{2}^{3}) \\ \vec{p}_{-} \cdot (\vec{\sigma}_{1} + \vec{\sigma}_{2}) (\vec{\tau}_{1} \times \vec{\tau}_{2})^{3} \\ \vec{p}_{-} \cdot (\vec{\sigma}_{1} \times \vec{\sigma}_{2}) (\vec{\tau}_{1} + \vec{\tau}_{2})^{3} \\ \left[(\vec{p}_{+} \times \vec{p}_{-}) \cdot \vec{\sigma}_{1} \vec{p}_{-} \cdot \vec{\sigma}_{2} + (\vec{p}_{+} \times \vec{p}_{-}) \cdot \vec{\sigma}_{2} \vec{p}_{-} \cdot \vec{\sigma}_{1} \right] (\vec{\tau}_{1} \times \vec{\tau}_{2})^{3} \end{split}$$

- Multiplied by independent functions $U_i(\vec{p}_-^2) \sim \mathcal{O}(1)$

Phillips, Samart, Schat (2015), MRS, Springer, Vanasse (2016)

Parity violation in pionless EFT

- In 'Girlanda basis'

$$\begin{split} \mathcal{L}_{PV}^{\min} &= \mathcal{G}_{1}(N^{\dagger}\vec{\sigma}N \cdot N^{\dagger}i\stackrel{\leftrightarrow}{\nabla}N - N^{\dagger}NN^{\dagger}i\stackrel{\leftrightarrow}{\nabla}\cdot\vec{\sigma}N) \\ &- \tilde{\mathcal{G}}_{1}\epsilon_{ijk}N^{\dagger}\sigma_{i}N\nabla_{j}(N^{\dagger}\sigma_{k}N) \\ &- \mathcal{G}_{2}\epsilon_{ijk}\left[N^{\dagger}\tau_{3}\sigma_{i}N\nabla_{j}(N^{\dagger}\sigma_{k}N) + N^{\dagger}\sigma_{i}N\nabla_{j}(N^{\dagger}\tau_{3}\sigma_{k}N)\right] \\ &- \tilde{\mathcal{G}}_{5}\mathcal{I}_{ab}\epsilon_{ijk}N^{\dagger}\tau_{a}\sigma_{i}N\nabla_{j}(N^{\dagger}\tau_{b}\sigma_{k}N) \\ &+ \mathcal{G}_{6}\epsilon_{ab3}\vec{\nabla}(N^{\dagger}\tau_{a}N) \cdot N^{\dagger}\tau_{b}\vec{\sigma}N \end{split}$$

Large-*N_c* scaling of LECs?

$$\begin{split} V^{\min} &= - \,\mathcal{G}_1 \vec{p}_+ \cdot (\vec{\sigma}_1 - \vec{\sigma}_2) - i \tilde{\mathcal{G}}_1 \vec{p}_- \cdot (\vec{\sigma}_1 \times \vec{\sigma}_2) \\ &- i \mathcal{G}_2 \vec{p}_- \cdot (\vec{\sigma}_1 \times \vec{\sigma}_2) (\tau_1 + \tau_2)^3 \\ &- i \tilde{\mathcal{G}}_5 \vec{p}_- \cdot (\vec{\sigma}_1 \times \vec{\sigma}_2) \mathcal{I}_{ab} \tau_1^a \tau_2^b \\ &+ \frac{i}{2} \mathcal{G}_6 \vec{p}_- \cdot (\vec{\sigma}_1 + \vec{\sigma}_2) (\tau_1 \times \tau_2)^3 \end{split}$$

Extracted N_c scaling?

$$\begin{split} \tilde{\mathcal{G}}_5 &\sim N_c \sin^2 \theta_W, \\ \mathcal{G}_2 &\sim \mathcal{G}_6 &\sim N_c^0 \sin^2 \theta_W, \\ \mathcal{G}_1 &\sim \tilde{\mathcal{G}}_1 &\sim N_c^{-1} \end{split}$$

- Only one term at LO in N_c?
- Isoscalar coupling suppressed?

Vanasse, MRS, Springer (2016)

Fierz identities and large-Nc scaling

- Minimal form of Lagrangian derived using Fierz identities
- Fierz identities
 - Relate different (iso-)spin and momentum structures
 - Do not change EFT power counting
 - Change large-N_c counting
- Identify large- N_c scaling from non-minimal form of \mathcal{L}
- Example:

$$\begin{aligned} \mathcal{A}_1^+ \vec{p}_+ \cdot (\vec{\sigma}_1 - \vec{\sigma}_2) \\ \mathcal{A}_3^+ \vec{p}_+ \cdot (\vec{\sigma}_1 - \vec{\sigma}_2) \vec{\tau}_1 \cdot \vec{\tau}_2 \\ \mathcal{A}_3^- \vec{p}_- \cdot i (\vec{\sigma}_1 \times \vec{\sigma}_2) \vec{\tau}_1 \cdot \vec{\tau}_2 \end{aligned}$$

- After Fierz transformation contribute to

$$-\mathcal{G}_{1}\vec{p}_{+}\cdot(\vec{\sigma}_{1}-\vec{\sigma}_{2})-i\tilde{\mathcal{G}}_{1}\vec{p}_{-}\cdot(\vec{\sigma}_{1}\times\vec{\sigma}_{2})$$

Non-minimal potential

- Extract N_c-scaling

$$\mathcal{A}_1^+ \sim \textit{N}_c^{-1}, \quad \mathcal{A}_3^+ \sim \textit{N}_c^{-1}, \quad \mathcal{A}_3^- \sim \textit{N}_c$$

- Relations

$$\begin{split} \mathcal{G}_1 &= -\mathcal{A}_1^+ + \mathcal{A}_3^+ - 2\mathcal{A}_3^- \;, \\ \tilde{\mathcal{G}}_1 &= -\mathcal{A}_1^- - 2\mathcal{A}_3^+ + \mathcal{A}_3^- \;, \end{split}$$

- Maintain most dominant scaling

Large- N_c relation

$$\mathcal{G}_1 = -2\tilde{\mathcal{G}}_1[1 + \mathcal{O}(1/N_c^2)]$$

Large-N_c scaling of partial-wave LECs

$$\begin{aligned} \mathcal{C}^{(^{3}S_{1}-^{1}P_{1})} &\sim N_{c} \\ \mathcal{C}^{(^{1}S_{0}-^{3}P_{0})}_{(\Delta I=0)} &\sim N_{c} \\ \mathcal{C}^{(^{1}S_{0}-^{3}P_{0})}_{(\Delta I=2)} &\sim N_{c} \sin^{2}\theta_{W} \\ \mathcal{C}^{(^{1}S_{0}-^{3}P_{0})}_{(\Delta I=1)} &\sim N_{c}^{0} \sin^{2}\theta_{W} \\ \mathcal{C}^{(^{3}S_{1}-^{3}P_{1})}_{(\Delta I=1)} &\sim N_{c}^{0} \sin^{2}\theta_{W} \end{aligned}$$

$$\mathcal{C}^{({}^3\!S_1 - {}^1\!P_1)} = \mathbf{3} \, \mathcal{C}^{({}^1\!S_0 - {}^3\!P_0)}_{(\Delta I = 0)} [\mathbf{1} + \mathcal{O}(\mathbf{1}/N_c^2)]$$

PV LECs

- Renormalization-scale dependent
- Scale dependence driven by S-wave interactions
- "Wrong" choice of scale can hide large-N_c scaling

Application to measurements: LO-in-N_c

Longitudinal asymmetry in $\vec{p}p$ scattering

- Experimental result

$${\cal A}_L^{ar{
ho}p}(E=13.6~{
m MeV})=(-0.93\pm0.21) imes10^{-7}$$

- Constraint on LECs in large-Nc limit

$$(-1.5 \pm 0.3) \times 10^{-10} \text{ MeV}^{-1} = \frac{4 \left[\mathcal{C}_{(\Delta I=0)}^{(1S_0 - 3P_0)} + \mathcal{C}_{(\Delta I=1)}^{(1S_0 - 3P_0)} + \mathcal{C}_{(\Delta I=2)}^{(1S_0 - 3P_0)} \right]}{\mathcal{C}_0^{(1S_0)}} \\ \rightarrow \frac{4 \left[\mathcal{C}^{(3S_1 - 1P_1)}/3 + \mathcal{C}_{(\Delta I=2)}^{(1S_0 - 3P_0)} \right]}{\mathcal{C}}$$

Eversheim et al (1991); Phillips, MRS, Springer (2009)

- Induced circular polarization in $np
ightarrow dec{\gamma}$

$$egin{aligned} & P_{\gamma} = (1.8 \pm 1.8) imes 10^{-7} \ & o - rac{16 M_N}{\mathcal{C}} rac{1}{\kappa_1 (1 - \gamma a^{1S_0})} \left(\mathcal{C}^{(^3S_1 - ^1P_1)} (1 - rac{5}{9} \gamma a^{^1S_0})
ight. \ & - rac{2}{3} \gamma a^{^1S_0} \mathcal{C}^{(^1S_0 - ^3P_0)}_{(\Delta I = 2)} \end{pmatrix} \end{aligned}$$

- In large-N_c limit $\mathcal{C}^{({}^1\!S_0 {}^3\!P_0)}_{(\Delta I=2)} \sim \mathcal{C}^{({}^3\!S_1 {}^1\!P_1)}$
- If $C_{(\Delta l=2)}^{(^1S_0-^3P_0)} \ll C^{(^3S_1-^1P_1)}$ predict P_γ larger than current bound
- $\sin^2 \theta_W$ suppression for $\Delta I = 2$ coupling not significant?

Knyaz'kov et al (1983/84); Vanasse, MRS, Springer (2016)

Conclusion & Outlook

Large-N_c analysis

- Effects of embedding PV quark interactions in hadrons
- Establishes hierarchy of couplings
- Important constraints in absence of experimental data
- Gives trends, not exact predictions

Parity violation

- Two LECs at LO in combined EFT/large- N_c expansion [sin² θ_W for $\Delta I = 2$]
- Relation between two isoscalar LECs
- Isovector coupling suppressed by $\sin^2 \theta_W / N_c$