

Nuclear Structure Studies with Lepton Probes

Guy Ron INT, June 2018

Caveat/Disclaimer....

- I am not a neutrino scatterer, nor do I do I study PDFs/DIS/ parity/etc...
- My talk will be limited to what I do know.
- Because if I talk about everything you'll still be listening to me tonight.
- I will talk about:
 - Charged lepton scattering (muons/electrons).
 - Elastic (and Quasi-Elastic?) scattering.
- With that, the issues we face...

My \$0.02 on the main problems (that we can study with lepton scattering scattering)

- Proton radius puzzle and how it relates to experimental analysis, theory, and lepton universality.
- Medium modification of bound nuclei seen through g_A quenching, EMC effect, CSR, and polarization ratio modifications.
 Maybe....

if I have time, and if I feel like an argument

The proton radius puzzle

H-Like Lamb Shift Nuclear Dependence

$$\Delta E_{Nucl}(nl) = \frac{2}{3} \frac{(Z\alpha)^4}{n^3} (mR_N)^2 \delta_{l0} \left(1 + (Z\alpha)^2 \ln \frac{1}{Z\alpha mR_N} \right)$$
$$\Delta E_{Nucl}(2p_{1/2}) \frac{1}{16} (Z\alpha)^6 m (mR_N)^2$$
$$\Delta E_{Nucl}(2p_{3/2}) = 0$$

$$L_{1S}^{\text{Hyd}}(\boldsymbol{r_p}) = 8171.636(4) + 1.5645 \langle \boldsymbol{r_p^2} \rangle \text{ MHz}$$

 $\Delta E_{\text{Lamb}}(1S) = 8172.582(40) \text{ MHz}$

 $\Delta E_{\text{Nucl}}(1S) = 1.269 \text{ MHz for } rp = 0.9 \text{ fm}$ $\Delta E_{\text{Nucl}}(1S) = 1.003 \text{ MHz for } rp = 0.8 \text{ fm}$

 $\Delta E_{Nucl}(2S) = 0.1586 \text{ MHz for } rp = 0.9 \text{ fm}$ $\Delta E_{Nucl}(2S) = 0.1254 \text{ MHz for } rp = 0.8 \text{ fm}$

 $\Delta E_{Lamb}(2S) = 1057.8450(29) \text{ MHz}$

$L_{1S}(r_p) = 8171.030(4) + 1.5645 \langle r_p^2 \rangle \text{ MHz}$

 $\Delta E_{Lamb}(1S) = 8172.582(40) \text{ MHz}$

 $\Delta E_{\text{Nucl}}(1S) = 1.269 \text{ MHz for } rp = 0.9 \text{ fm}$ $\Delta E_{\text{Nucl}}(1S) = 1.003 \text{ MHz for } rp = 0.8 \text{ fm}$

 $\Delta E_{Nucl}(2S) = 0.1586 \text{ MHz for } rp = 0.9 \text{ fm}$ $\Delta E_{\text{Nucl}}(2S) = 0.1254 \text{ MHz for } rp = 0.8 \text{ fm}$

 $\Delta E_{\text{Lamb}}(2S) = 1057.8450(29) \text{ MHz}$

Time evolution of the Radius from H Lamb Shift

Two ways to measure the proton radius
$$\frac{d\sigma_R}{d\Omega} = \frac{\alpha^2}{Q^2} \left(\frac{E'}{E}\right)^2 \frac{\cot^2 \frac{\theta_e}{2}}{1+\tau}$$
(2)
Rutherford - Point-Like

$$\tau = \frac{Q^2}{4M^2}, \ \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta_e}{2}\right]^{-1}$$

Two ways to measure the proton radius $\frac{d\sigma_R}{d\Omega} = \frac{\alpha^2}{Q^2} \left(\frac{E'}{E}\right)^2 \frac{\cot^2 \frac{\theta_e}{2}}{1+\tau} \qquad (2)$ Rutherford - Point-Like $\frac{d\sigma_M}{d\Omega} = \frac{d\sigma_R}{d\Omega} \times \left[1 + 2\tau \tan^2 \frac{\theta}{2}\right] \qquad \text{Mott - Spin-1/2}$

$$\tau = \frac{Q^2}{4M^2}, \ \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta_e}{2}\right]^{-1}$$

Two ways to measure the proton radius $\frac{d\sigma_R}{d\Omega} = \frac{\alpha^2}{Q^2} \left(\frac{E'}{E}\right)^2 \frac{\cot^2 \frac{\theta_e}{2}}{1+\tau} \quad (2)$ Rutherford - Point-Like $\frac{d\sigma_M}{d\Omega} = \frac{d\sigma_R}{d\Omega} \times \left| 1 + 2\tau \tan^2 \frac{\theta}{2} \right| \quad \text{Mott - Spin-1/2}$ $\frac{d\sigma_{Str}}{d\Omega} = \frac{d\sigma_M}{d\Omega} \times \left[G_E^2(Q^2) + \frac{\tau}{\varepsilon}G_M^2(Q^2)\right] \begin{array}{c} \text{Rosenbluth} & - \\ \text{Spin-1/2 with} \end{array}$ Structure $\tau = \frac{Q^2}{4M^2}, \ \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta_e}{2}\right]^{-1}$ $G_E^p(0) = 1$ $G_E^n(0) = 0$ $G_M^p = 2.793$ $G_M^n = -1.91$ Sometimes $G_E = F_1 - \tau F_2$ written using: $G_M = F1 + F_2$

Two ways to measure the proton radius $\frac{d\sigma_R}{d\Omega} = \frac{\alpha^2}{Q^2} \left(\frac{E'}{E}\right)^2 \frac{\cot^2 \frac{\theta_e}{2}}{1+\tau}$ Everything we don't know goes here! $\frac{d\sigma_M}{d\Omega} = \frac{d\sigma_R}{d\Omega} \times \left[1 + 2\tau \tan^2 \frac{\theta}{2}\right]$ $\frac{d\sigma_{Str}}{d\Omega} = \frac{d\sigma_M}{d\Omega} \times \left[G_E^2(Q^2) + \frac{\tau}{\varepsilon}G_M^2(Q^2)\right] \quad \begin{array}{l} \text{Rosenbluth} \\ \text{Spin-1/2 with} \end{array}$ Structure $\tau = \frac{Q^2}{4M^2}, \ \varepsilon = \left| 1 + 2(1+\tau) \tan^2 \frac{\theta_e}{2} \right|^{-1}$ $G_E^p(0) = 1$ $G_E^n(0) = 0$ $G_M^p = 2.793$ $G_M^n = -1.91$ Sometimes $G_E = F_1 - \tau F_2$ written using: $G_M = F1 + F_2$

Form Factor Moments

$$\int e^{-i\vec{k}\cdot\vec{r}}\rho(\vec{r})d^3r \propto \int r^2\rho(r)j_0(kr)dr$$

3d Fourier Transform for isotropic density

$$G_{E,M}(Q^2) = 1 - \frac{1}{6} \left\langle r_{E,M}^2 \right\rangle Q^2 + \frac{1}{120} \left\langle r_{E,M}^4 \right\rangle Q^4 - \frac{1}{5040} \left\langle r_{E,M}^6 \right\rangle Q^6 + \cdots$$

Non-relativistic assumption (only) = k=Q; G is F.T. of density

$$-6\frac{dG_{E,M}}{dQ^2}\Big|_{Q^2=0} = \left\langle r_{E,M}^2 \right\rangle \equiv r_{E,M}^2$$

Slope of $G_{E,M}$ at Q²=0 defines the radii. This is what FF experiments quote.

Notes

• In NRQM, the FF is the 3d Fourier transform (FT) of the Breit frame spatial distribution, but the Breit frame is not the rest frame, and doing this confuses people who do not know better. The low Q² expansion remains.

Boost effects in relativistic theories destroy our ability to determine 3D rest frame spatial distributions. The FF is the 2d FT of the transverse spatial distribution.

The slope of the FF at $Q^2 = 0$ continues to be called the radius for reasons of history / simplicity / NRQM, but it is not the radius.

Nucleon magnetic FFs crudely follow the dipole formula, $G_D = (1+Q^2/0.71 \text{ GeV}^2)^{-2}$, which a) has the expected high Q^2 pQCD behavior, and b) is amusingly the 3d FT of an exponential, but c) has no theoretical significance

Measurement Techniques Rosenbluth Separation

$$\frac{d\sigma_{Str}}{d\Omega} = \frac{d\sigma_M}{d\Omega} \times \left[G_E^2(Q^2) + \frac{\tau}{\varepsilon} G_M^2(Q^2) \right] \; ; \; \tau \equiv \frac{Q^2}{4M^2}$$

$$\sigma_R = (d\sigma/d\Omega)/(d\sigma/d\Omega)_{\rm Mott} = \tau G_M^2 + \varepsilon G_E^2$$

- Measure the reduced cross section at several values of ε (angle/beam energy combination) while keeping Q² fixed.
- Linear fit to get intercept and slope.

- A single measurement gives ratio of form factors.
- Interference of "small" and "large" terms allow measurement at practically all values of Q².

Measurement Techniques

Measure asymmetry at two different target settings, say $\theta^*=0$, 90. Ratio of asymmetries gives ratio of form factors. Functionally identical to recoil polarimetry measurements.

Mainz ep J. Bernauer et al PRL 105, 242001 (2010) $r_{p} = 0.879 \pm 0.008 \text{ fm}$

Left: Cross sections relative to standard dipole

Right: variation in fits to data – some fits have poor χ^2 , so uncertainty is overestimated.

JLab ep E08-007 Part I (GR,...)

X. Zhan et al PLB 705, 59 (2011) r_p = 0.875 ± 0.009 fm

Time evolution of the Radius from eP data

Time evolution of the Radius from H Lamb Shift + eP

ELEMENTARY JE. R C A Leptons Quark photon charm top up down gluon strange bottom electron neutrino muon neutrino tau neutrino Z boson electron muon W boson tau **Three Generations of Matter**

ELEMENTARY **SIJES** RT 1 A Leptons Quark photon charm top up down gluon strange bottom electron neutrino muon neutrino tau neutrino Z boson electron muon W boson tau **Three Generations of Matter**

ELEMENTARY PARTICIES eptons **Oual** photon strang electron neutrino muon neutrino tau neutrino Z boson **Three Generations of Matter**

In the standard model the muon is just a heavier version (~200 times) of the electron. The muon decays into an electron (and some neutrinos) with a lifetime of ~2.2 uS.

It has exactly the same interactions...

Fermilab 95-759

Why atomic physics to learn proton radius? Why μ H?

Probability for lepton to be inside the proton: proton to atom volume ratio $\sqrt{3}$

$$\sim \left(\frac{r_p}{a_B}\right)^3 = (r_p \alpha)^3 m^3$$

Lepton mass to the **third** power!

Muon to electron mass ratio ~205 -> factor of about 8 million!

Proton charge radius and muonic hydrogen 🐼

muonic hydrogen = $\mu^- p$ mass m_{μ} = 207 m_e

$$\begin{array}{c} \Rightarrow \mbox{ Bohr: } \langle r^{\rm orbit} \rangle \sim \frac{\hbar}{Z \, \alpha \, m_r \, c} n^2 \qquad \mu p (n=2) \mbox{ levels: } 2P_{\mu_2} & p_{\mu_2} & p_{\mu_2}$$

• μ from π E5 beamline at PSI (20 keV)

• μ from π E5 beamline at PSI (20 keV)

• μ from π E5 beamline at PSI (20 keV)

- μ from π E5 beamline at PSI (20 keV)
- μ 's with 5 keV kinetic energy after carbon foils S1-2
- Arrival of the pulsed beam is timed by secondary electrons in PMI-3

- μ from π E5 beamline at PSI (20 keV)
- μ 's with 5 keV kinetic energy after carbon foils SI-2
- Arrival of the pulsed beam is timed by secondary electrons in PM1-3
- μ 's are absorbed in the H_2 target at high excitation followed by decay to the 2S metastable level (which has a 1 μ s lifetime)

- μ from π E5 beamline at PSI (20 keV)
- μ 's with 5 keV kinetic energy after carbon foils SI-2
- Arrival of the pulsed beam is timed by secondary electrons in PM1-3
- μ 's are absorbed in the H_2 target at high excitation followed by decay to the 2S metastable level (which has a 1 μ s lifetime)
- A laser pulse timed by the PMs excites the $2S_{1/2}^{F=1}$ to $2P_{3/2}^{F=2}$ transition
- The 2 keV X-rays from 2P to 1S are detected.

"delayed" ($t \sim 1 \ \mu$ s)

time spectrum of 2 keV x-rays (\sim 13 hours of data)

Time evolution of the Radius from H Lamb Shift + eP

Time evolution of the Radius from H Lamb Shift + eP

Time evolution of the Radius from H Lamb Shift + eP

Proton Radius Puzzle

Muonic hydrogen disagrees with atomic physics and electron scattering determinations of slope of FF at $Q^2 = 0$

#	Extraction	<r<sub>E>2 [fm]</r<sub>	Sick	ζ.			•	_
1	Sick	0.895±0.018	CODA	ТА				
2	CODATA	0.8768±0.0069	Bernau	Jer				
3	Mainz	0.879±0.008	Zhan		-			
4	Zhan	0.875±0.010	Combii	ned				
5	Combined 2-4	0.8764±0.0047	Poh	н				
6	Pohl	0.84184 ± 0.00067	Antogr	nini •				
7	Antognini	0.84087 ± 0.00039						
_			0.82	0.84	0.86 <i>I</i> ch	0.88 [fm]	0.90	

Experimental Error in the electron (Lamb shift) measurements?

The 1S-2S transition in H has been measured to 34 Hz, that is, 1.4×10^{-14} relative accuracy. Only an error of about 1,700 times the quoted experimental uncertainty could account for our observed discrepancy.

2S1/2-2P1/2 However..... 251/2-2P1/2 251/2-2P3/2 15-25+25-45_{1/2} 15-25+25-4D_{5/2} 1S-2S+2S-4P1/2 15-25+25-4P 1S-2S+2S-651/2 15-25+25-6Ds/2 15-25+25-85_{1/2} 15-25+25-8D 15-25+25-8Dec $H_{avg} = 0.8779 \pm 0.0094 \text{ fm}$ 15-25+25-12Dava 15-25+25-12Der 1S-2S+15-351/2 0.80 1.00 0.85 0.90 0.95

Proton charge radius (fm)

Experimental Error in the electron (Lamb shift) measurements?

The 1S-2S transition in H has been measured to 34 Hz, that is, 1.4×10^{-14} relative accuracy. Only an error of about 1,700 times the quoted experimental uncertainty could account for our observed discrepancy.

Important note: This is NOT what CODATA uses to extract the radius!

However.....

The plot thickens New eH 2s-4P measurement (Beyer et al.)

New eH measurement consistent with muonic hydrogen and inconsistent with all previous hydrogen spectroscopy measurements.

A word about Quantum Interference

Line shape distortions due to quantum interference of neighboring atomic resonances lead to a break-down of the simple approximation of natural atomic line shapes by Lorentz functions. They result in apparent geometry-dependent shifts of the observed line centers if not properly taken into account when fitting the experimental data. In the 2s-4p measurement the effect can be several times larger than the proton radius puzzle!

Slide courtesy R. Pohl.

Beyer, RP et al., submitted (2016)

And thickens again New 1S-3S measurement (Fluerbaey)

The Scattering Experiments

The scattering knowledge is dominated by the recent Bernauer et al Mainz experiment, plus (our) JLab polarization data and older cross section experiments.

Extracting a radius from the scattering data has been a challenge. Until recently, all analyses ignored most of the following issues:

- Coulomb corrections
- Two-photon exchange
- Truncation offsets
- World data fits vs radius fits
- Model dependence
- Treatment of systematic uncertainties
- Fits with unphysical poles
- Including time-like data to ``improve" radius

The good modern analyses tend to have fewer issues.

Experimental Error in the electron scattering measurements?

Essentially all (newer) electron scattering results are consistent within errors, hard to see how one could conspire to change the charge radius without doing something very strange to the FFs.

Examples of Bad Theory Explanations

- De Rujula: large 3rd Zemach moment
- Thorns / lumps in form factor
- Quantum gravity!
- Non-commutative geometry
- Starge extra dimensions!
- Mart & Sulaksono: oscillating protons
- Robson: rest frame form factor is not scattering form factor
- Giannini & Santopinto: frame dependence of charge radii

Possible Theory Explanations

What are viable theoretical explanations of the Radius Puzzle?

- Novel Beyond Standard Model Physics: Pospelov, Yavin, Carlson, ...: the electron is measuring an EM radius, the muon measures an (EM+BSM) radius
- Novel Hadronic Physics: G. Miller: two-photon correction
 No explanation with majority support in the community
 See fall 2012 Trento Workshop on PRP for more details:
 http://www.mpq.mpg.de/~rnp/wiki/pmwiki.php/Main/WorkshopTrento

Theory Explanations: Novel Hadronic Physics

- There is a polarizibility correction that depends on m_l⁴, affecting muons but not electrons
- Evaluation uses a model for the Q² dependence of the forward virtual Compton tensor for subtractions in dispersion relations
- Prediction: enhanced 2γ exchange in μ scattering: 2-4%
- Calculations using chiral perturbation theory for the low Q² behavior coupled to a pQCD inspired inspired Q-4 falloff suggest correction is far too small
- Infinite set of possible models allow constraints to be evaded.

Theory Explanations: Novel Beyond Standard Model Physics

 Ideally (?), one new particle explains (dark photon?) Proton Radius Puzzle, μ g-2, cosmological positron excess / excess γ's from galactic center

But many constraints from existing physics and the 3 issues may be unrelated

- Most constraints relaxed if you allow flavor dependent coupling.
- Sexamples follow...

Theory Explanations: Novel BSM Physics

Pospelov: effect on form factors of new dark photon – would explain scattering vs. atom difference, but not hydrogen vs. muonic hydrogen

Newest idea – Ralston (2016)

A global fit to everything, permitting an alternative

 $\begin{aligned} a_e^{theory} &= 1.7147 \times 10^{-12} + 0.159155\alpha - 0.0332818\alpha^2 + 0.0380966\alpha^3 \\ &- 0.0196046\alpha^4 + 0.0299202\alpha^5 + 0.027706\,\xi m_X^2 f(m_X/m_\ell) \end{aligned}$

Newest idea – Ralston (2016)

The (surviving) Theory Explanations

• Novel Hadronic Physics

- There is a polarizibility correction that depends on m₁⁴, affecting muons but not electrons
- Part of the correction is not (strongly) constrained by data or theory; it might resolve puzzle

 Novel Beyond Standard Model Physics

- There could be unknown particles that couple μp but not ep, in addition to γ
- Evading impacts on known physics requires 2 new particles for cancellations

Status

- Op to 2010, we were all happy that atomic hydrogen and electron scattering gave the same proton radius.
- Now we are even happier that muonic hydrogen gives a different proton radius!
- Many possible explanations are ruled out, and the remaining explanations all seem unlikely
 - Seems unlikely
 - BSM: not ruled out, but somewhat contrived models
 - Hadronic: not ruled out, but much bigger than most theorists find palatable.
- New data are needed

How do we Resolve the Radius Puzzle?

Theorists keep checking theories

Experiments check old results, test e / μ differences, new particles, scattering modified for Q² up to m²_{BSM} (typically expected to be MeV to 10s of MeV), enhanced parity violation, enhanced 2γ exchange

Service Experiments include:

- Redoing atomic hydrogen
- Substitution Light muonic atoms for radius comparison in heavier systems
- Redoing electron scattering at lower Q² Mainz ISR, JLab PRAD, Several more efforts.
- Muon scattering!
- Rare K decays, etc etc

Where to now? Mainz ISR Experiment

- Use initial state radiation to get effective low Q² at vertex.
- Q² downto 10⁻⁴ GeV².
- Requires highly accurate radiative models.
- Aiming for 1% cross sections.
- Already took data.

dσ

Where to now? Mainz ISR Experiment

$$r_p = (0.810 \pm 0.035_{\text{stat}} \pm 0.074_{\text{syst}} \pm 0.003_{\Delta a, \Delta b}) \,\text{fm}.$$

nated by systematic effects. Due to the limiting backgrounds and corresponding systematic uncertainties, we are unable to distinguish convincingly between the CO-DATA and the muonic hydrogen radii. However, we have proven the technique of initial state radiation to be a viable method for investigating the electromagnetic struc-

JLab PRad

The PRad Experimental Approach

- Experimental goals:
 - reach to very low Q² range (~ 10⁻⁴ GeV/C²)
 - reach to sub-percent precision in cross section
 - large Q² range in one experimental setting
- Suggested solutions:
 - use high resolution high acceptance calorimeter:
 - reach smaller scattering angles: (Θ = 0.7⁰ 7.0⁰) (Q² = 1x10⁻⁴ ÷ 6x10⁻²) GeV/c² large Q² range in one experimental setting! essentially, model independent r_o extraction
 - ✓ Simultaneous detection of ee → ee Moller scattering
 - (best known control of systematics)
 - Use high density windowless H₂ gas flow target:
 - beam background fully under control
 - minimize experimental background
- Two beam energies: E₀ = 1.1 GeV and 2.2 GeV to increase Q² range
- Will reach sub-percent precision in r_p extraction
- Approved by JLab PAC39 (June, 2012) with high "A" scientific rating

Mainz low Q² data set Phys. Rev. C 93, 065207, 2016

JLab PRad

- Proton electric form factor G_E v.s. Q², with 2.2 and 1.1 GeV data (preliminary)
- Systematic uncertainties shown as colored error bars
- Preliminary G_E slope seems to favor smaller radius

Taken from CIPANP PRAD talk (W. Xiong)

ILab PRad

Proton Electric Form Factor G_E

- Proton electric form factor G_E v.s. Q², with 2.2 and 1.1 GeV data (preliminary)
- Systematic uncertainties shown as colored error bars
- Preliminary G_E slope seems to favor smaller radius

Taken from CIPANP PRAD talk (W. Xíong)

ILab PRad

Proton Electric Form Factor G_E

- Proton electric form factor G_E v.s. Q², with 2.2 and 1.1 GeV data (preliminary)
- Systematic uncertainties shown as colored error bars
- Preliminary G_E slope seems to favor smaller radius

Taken from CIPANP PRAD talk (W. Xíong)

Unfortunately

Low Q² Measurements in eP scattering have been pushed about as far as they can go

MUSE – PSI R12–01.1 Technique

r _P (fm)	ер	μρ
atom	0.877±0.007	0.841±0.0004
scattering	0.875±0.006	?

 $d\sigma/d\Omega(Q^2) = counts / (\Delta\Omega N_{beam} N_{target/area} \times corrections \times efficiencies)$ $\left|\frac{d\sigma}{d\Omega}\right| = \left|\frac{d\sigma}{d\Omega}\right|_{\mathrm{res}} \times \left|\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + \left(2\tau - \frac{m^2}{M^2}\right)G_M^2(Q^2)\frac{\eta}{1 - \eta}\right|$ $\left[\frac{d\sigma}{d\Omega}\right]_{ns} = \frac{\alpha^2}{4E^2} \frac{1-\eta}{\eta^2} \frac{1/d}{\left[1 + \frac{2Ed}{M}\sin^2\frac{\theta}{2} + \frac{E}{M}(1-d)\right]} \quad d = \frac{\left[1 - \frac{m^2}{E^2}\right]^{1/2}}{\left[1 - \frac{m^2}{E'^2}\right]^{1/2}}$ following Preedom & Tegen, $\eta = Q^2/4EE'$

PRC36, 2466 (1987)

MUSE – PSI R12-01.1 Technique

r P (fm)	ep	μp
atom	Several new efforts	Heavier light nuclei
scattering	Mainz ISR JLab PRAD LEDEX@JLab	MUSE

e-µ Universality

In the 1970s / 1980s, there were several experiments that tested whether the ep and μp interactions are equal. They found no convincing differences, once the μp data are renormalized up about 10%. In light of the proton "radius" puzzle, the experiments are not as good as one would like.

e-µ Universality

The 12C radius was determined with ep scattering and μ C atoms.

Perhaps carbon is right, e's and μ 's are the same.

Perhaps hydrogen is right, e's and μ 's are different.

Perhaps both are right – opposite effects for proton and neutron cancel with carbon.

But perhaps the carbon radius is insensitive to the nucleon radius, and μd or μHe would be a better choice.

MUSE IS NOT YOUR GARDEN VARIETY SCATTERING EXPERIMENT

Low beam flux Large angle, non-magnetic detectors. Secondary beam (large emittance) Tracking of beam particles to target. Mixed beam Identification of beam particle in trigger.

Experiment Overview

PSI πM1 channel

≈115, 153, 210 MeV/c mixed beams of e[±], μ^{\pm} and π^{\pm}

 $\theta \approx 20^{\circ} - 100^{\circ}$

 $Q^2 \approx 0.002 - 0.07 \text{ GeV}^2$

About 5 MHz total beam flux, ≈2–15% μ's, 10–98% e's, 0–80% π's

Beam monitored with SciFi, beam Cerenkov, GEMs

Scattered particles detected with straw chambers and scintillators

Not run like a normal cross section experiment – 7–8 orders of magnitude lower luminosity. But there are some benefits: count every beam particle, no beam heating of target, low rates in detectors, ...

Experiment Overview

Essentially same coverage for all beam particles.

"Final Design"

Component	Weight (lbs)	Weight (kg)
Frame	4200	1680
Table	716	325
Target	508	231
STT	550	250
Large SPS (2 @ 842lb each)	1684	766
Small SPS (2 @ 262lb each)	524	238
Beam Monitor	100	40
Electronics Racks (4 @ 500kg each)	4400	2000
Cables & Misc. (250kg per side)	1100	500
TOTAL	13782	6030

Experiment on movable (craneable) platform to allow for other uses of the experimental area.

"Final Design"

Physics

Radius extraction from J Arrington.

Left: independent absolute extraction.

Right: extraction with only relative uncertainties.

The Real Bottom Line

Charge radius extraction limited by systematics, fit uncertainties

Comparable to existing e-p extractions, but not better

Many uncertainties are common to all extractions in the experiments: Cancel in e+/e-, m+/m-, and m/e comparisons

Precise tests of TPE in e-p and m-p or other differences for electron, muon scattering

Comparing e/mu gets rid of most of the systematic uncertainties as well as the truncation error.

Projected uncertainty on the difference of radii measured with e/mu is 0.0045.

Test radii difference to the level of 7.7 σ (the same level as the current discrepancy)!

The Real Real Botton Line

Spectroscopy eP Scattering	MUSE
----------------------------	------

	Spectroscopy	eP Scattering	MUSE
State	bound	unbound	unbound

	Spectroscopy	eP Scattering	MUSE
State	bound	unbound	unbound
Q² range	limited	large	large

	Spectroscopy	eP Scattering	MUSE
State	bound	unbound	unbound
Q² range	limited	large	large
charge state	_	-/+ (+ not in relevant range)	-/+

	Spectroscopy	eP Scattering	MUSE
State	bound	unbound	unbound
Q² range	limited	large	large
charge state	-	-/+ (+ not in relevant range)	-/+
lepton	e/µ	e	μ

	Spectroscopy	eP Scattering	MUSE
State	bound	unbound	unbound
Q² range	limited	large	large
charge state	_	<pre>-/+ (+ not in relevant range)</pre>	-/+
lepton	e/µ	e	μ
Sensitivity to 2	none	very partial	complete

	Spectroscopy	eP Scattering	MUSE
State	bound	unbound	unbound
Q² range	limited	large	large
charge state	_	-/+ (+ not in relevant range)	-/+
lepton	e/ µ	e	μ
Sensitivity to 2	none	very partial	complete
Control of systematics in e/µ comparison	none	none	near complete

Even though new hydrogen results agree with μ H we still have a problem.

	Spectroscopy	eP Scattering	MUSE
State	bound	unbound	unbound
Q² range	limited	large	large
charge state	_	-/+ (+ not in relevant range)	-/+
lepton	e/ µ	e	μ
Sensitivity to 2	none	very partial	complete
Control of systematics in e/µ comparison	none	none	near complete

Even though new hydrogen results agree with μ H we still have a problem. Why are the scattering results inconsistent?

	Spectroscopy	eP Scattering	MUSE
State	bound	unbound	unbound
Q² range	limited	large	large
charge state	-	-/+ (+ not in relevant range)	-/+
lepton	e/µ	e	μ
Sensitivity to 2	none	very partial	complete
Control of systematics in e/µ comparison	none	none	near complete

Even though new hydrogen results agree with µH we still have a problem. Why are the scattering results inconsistent? What are we actually measuring?

	Spectroscopy	eP Scattering	MUSE
State	bound	unbound	unbound
Q² range	limited	large	large
charge state	-	-/+ (+ not in relevant range)	-/+
lepton	e/µ	e	μ
Sensitivity to 2	none	very partial	complete
Control of systematics in e/µ comparison	none	none	near complete

Even though new hydrogen results agree with µH we still have a problem. Why are the scattering results inconsistent? What are we actually measuring? MUSE still has to happen.

	Spectroscopy	eP Scattering	MUSE
State	bound	unbound	unbound
Q² range	limited	large	large
charge state	_	-/+ (+ not in relevant range)	-/+
lepton	e/µ	e	μ
Sensitivity to 2	none	very partial	complete
Control of systematics in e/µ comparison	none	none	near complete

Medium Modification of bound nuclei

The Atom

Standard picture of the atom:

- Electrons zooming around at high velocity, drive the chemistry, interactions of the atom.
- Nuclei are small, static, and uninteresting.

Nuclei are actually complex, dynamic systems.

The Nucleus

Different Things to Different People

· Chemists > Slow, Heavy, and Boring.

Low Energy Nucl. Phys → Protons + Neutrons,
 Complex Shell Structure, Angular Momentum.

Medium Energy Nucl. Phys. >> Protons + Neutrons
 (typically non-interacting).

* High Energy Phys. → Bag of Free Quarks.

Nuclei - Complex, Energetic and Dense

Nuclei are incredibly dense

- >99.9% of the mass of the atom
- <1 trillionth of the volume
- ~10¹⁴ times denser than normal matter (close to neutron star densities)

•Nuclei are extremely energetic

- "Fast" nucleons moving at ~50% the speed of light
- "Slow" nucleons still moving at ~10° cm/s, in an object ~10⁻¹² cm in size

Simple picture is totally false, but extremely effective

Nuclei - Complex, Energetic and Dense

Nuclei are incredibly dense

- >99.9% of the mass of the atom
- <1 trillionth of the volume
- ~10¹⁴ times denser than normal matter (close to neutron star densities)

Nuclei are extremely energetic

- "Fast" nucleons moving at ~50% the speed of light
- "Slow" nucleons still moving at ~10⁹ cm/s, in an object ~10⁻¹² cm in size

Simple picture is totally false, but extremely effective

What happens to the nucleons under these conditions?

1. Neutron lifetime:

1. Neutron lifetime:

$$\tau_{1/2}^{free} \sim 15 \min \rightarrow \tau_{1/2}^{bound} = \infty$$

1. Neutron lifetime: $\tau_{1/2}^{free} \sim 15 \min \rightarrow \tau_{1/2}^{bound} = \infty$ But this is of course $M_p + M_e < M_n$ a binding effect: $(M_n - M_p - M_e) < B_d$

1. Neutron lifetime: $\tau_{1/2}^{free} \sim 15 \min \rightarrow \tau_{1/2}^{bound} = \infty$ But this is of course $M_p + M_e < M_n$ a binding effect: $(M_n - M_p - M_e) < B_d$

2. Coulomb Sum Rule Quenching

Coulomb Sum Rule Quenching?

$$S_L(Q^2) = \frac{1}{Z} \int_{0^+}^{\infty} \frac{R_L(\vec{q},\omega)}{\tilde{G}_E(Q^2)} d\omega \to 1$$
$$\tilde{G}_E(Q^2) = \left(G_E^p(Q^2) + \frac{N}{Z}G_E^n(Q^2)\right)\zeta$$

Sum rule counts the number of interacting components in the nucleus using the longitudinal response function.

515, 269 (2001).

1. Neutron lifetime: $\tau_{1/2}^{free} \sim 15 \min \rightarrow \tau_{1/2}^{bound} = \infty$ But this is of course $M_p + M_e < M_n$ a binding effect: $(M_n - M_p - M_e) < B_d$

- 2. Coulomb Sum Rule Quenching
- 3. The EMC Effect

The EMC Effect

The EMC Effect

$$F_2(x) = \sum_i q_i^2 x f(x)$$

Probability of finding a quark with momentum fraction x in the nucleon.

Naive Expectation:

$$\left[AF_2^A = ZF_2^P + (A - Z)F_2^n\right]$$

The EMC Effect

The EMC Effect

The EMC Effect A new result

JLab experiment E03-103 (J. Arrington) measured the EMC for light nuclei (and medium-large x).

The EMC Effect A new result

JLab experiment E03-103 (J. Arrington) measured the EMC for light nuclei (and medium-large x).

The EMC Effect

A new result

JLab experiment E03-103 (J. Arrington) measured the EMC for light nuclei (and medium-large x).

- Plot shows slope of ratio σ_A/σ_D at EMC region.
- EMC effect correlated with ρ not A.
- Local density is important, not average density.

The EMC Effect

A new result

JLab experiment E03-103 (J. Arrington) measured the EMC for light nuclei (and medium-large x).

- Plot shows slope of ratio σ_A/σ_D at EMC region.
- EMC effect correlated with ρ not A.
- Local density is important, not average density.

The EMC Effect A Even Newer "Result"

Is EMC related to Short Range Correlations?

The EMC Effect A Even Newer "Result"

Is EMC related to Short Range Correlations?

The EMC Effect A Even Newer "Result"

Is EMC related to Short Range Correlations?

E. Piasetzky et al., Nuclear Physics A 855, 245 (2011)

E. Piasetzky et al., Nuclear Physics A 855, 245 (2011)

A Way out? What we need is...

- Observables sensitive to nucleon structure/size.
- Effect of O(10%) require observable we can measure to 2-3% or better.
- "Different" than previous measurements.

Polarízation observables are...

- Related to form factors (Ch/M distributions) for a free nucleon.
- Can be measured to great precision (<1%).
- Can be shown from calculations to be somewhat insensitive to nuclear effects (*MEC*, *etc...*).

J. M. Laget, Nucl Phys A579, 333 (1994) J. J. Kelly, Phys. Rev. C 59, 3256 (1999) A. Meucci et al., Phys. Rev. C 66, 034610 (2002)

The General Idea

Experiment

- Measure ratio of polarization components for a free nucleon.
- Measure ratio of polarization components for a nucleon extracted from the nucleus in quasi-free scattering.
- Take the super-ratio to remove systematic effects.

Theory

- Using some model calculate density dependent form factors.
- Integrate over density dist.
 to get medium modified
 FF (MMFF).
- Use MMFF to calculate polarization components.
- Add in Final State Interactions, etc...

COMPARE

Quasi-Free Scattering

- Electron scatters off Nucleon in the nucleus.
- Data selected to include nucleons with no initial state interactions (i.e., are Quasi-Free).

Quasi-Free Scattering

• Flectron scatters off Nucleon in the nucleus

Effectively a "free" nucleon in the mean-field of the nucleus.

interactions (i.e., are Quasi-Free).

 ${}^{4}\text{He}(\vec{e},e'\vec{p}){}^{3}\text{H}$ Results

 $^{4}\text{He}(\vec{e},e'\vec{p})^{3}\text{H}$ Results

• Is this evidence of modification?

 ${}^{4}\text{He}(\vec{e},e'\vec{p}){}^{3}\text{H}$ Results

• Is this evidence of modification?

${}^{4}\text{He}(\vec{e},e'\vec{p}){}^{3}\text{H}$ Results

${}^{4}\text{He}(\vec{e},e'\vec{p}){}^{3}\text{H}$ Results

$$v_T^{\text{opt}}(T_{\text{rel}}) = \begin{bmatrix} v^c(r; T_{\text{rel}}) + (4T - 3)v^{c\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^c(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^c(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}} + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}} + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}} + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}} + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) \end{bmatrix} \\ + \begin{bmatrix} v^b(r; T_{\text{rel}} + (4T - 3)v^{b\tau}(r; T_{\text{rel}}) + (4T - 3)v^$$

${}^{4}\text{He}(\vec{e},e'\vec{p}){}^{3}\text{H}$ Results

 ${}^{4}\text{He}(\vec{e},e'\vec{p}){}^{3}\text{H}$ Results

• Is this evidence of modification?

 ${}^{4}\text{He}(\vec{e}, e'\vec{p}){}^{3}\text{H}$ Results

- Is this evidence of modification?
- FSI in this calculation not constrained by independent measurement! a proof of concept rather than a strong result.

 ${}^{4}\text{He}(\vec{e}, e'\vec{p}){}^{3}\text{H}$ Results

- Is this evidence of modification?
- FSI in this calculation not constrained by independent measurement! a proof of concept rather than a strong result.
- FSI constrained by P_y independent (of electron scattering) data?

Local vs. Global effect?

- Test in extreme conditions:
 - Nucleon is highly off shell corresponds to large missing momentum, large virtuality, or tightly bound.
 - Nucleon not tightly bound, but is in an average high density state – can do this by comparing almost on-shell nucleons extracted from different nuclear shells.
- Use polarization observables since they are systematically (relatively) clean.
- So we did....

Tightly bound proton in deuteron

Tightly bound proton in deuteron – Reanalysis

II – s/p shells in ¹²C (factor of 2 difference in mean density)

