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Lepton-nucleus scattering 
The inclusive cross section of the process in which 
a lepton scatters off a nucleus can be written in 
terms of five response functions

• The response functions contain all the information on target structure and dynamics
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• They account for initial state correlations, final state correlations and two-body currents
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Motivations 
• In electron- scattering experiments the nucleus is mostly seen as a target, as the kinematic of the 
probe is completely known.

• Developing a coherent picture of the electroweak response is also critical for the interpretation of 
neutrino scattering experiments, such as the Deep Underground Neutrino Experiment

• The first generation of (e,e’p) data in the early 
1960s not only established the validity of the 
nuclear shell model but alse showed its limitations 

• More recent measurements, allowed to unveil detailed 
features of the nuclear wave function, including its high-
momentum components.  

Subedi et al., Science 320, 1476 (2008)
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I. INTRODUCTION

The energy spectrum of high-energy leptons !elec-
trons in particular" scattered from a nuclear target dis-
plays a number of features. At low energy loss !"",

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
nuclear !transition" densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger ", peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large ", a structureless continuum due to deep in-
elastic scattering !DIS" on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.

*benhar@roma1.infn.it
†dbd@virginia.edu
‡ingo.sick@unibas.ch

FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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Schematic representation of the inclusive cross section as a function of the energy loss.

• Broad peak due to quasi-
elastic electron-nucleon 
scattering.

• Excitation of the nucleon to 
distinct resonances (like the Δ) 
and pion production.

O. Benhar, et al. RMP 80, 189 (2008) 

• Deep Inelastic Scattering 
region, productions of hadrons 
other than protons and 
neutrons

The different reaction mechanisms can be easily identified



• In neutrino-oscillation 
experiments the use of nuclear 
target as detectors allows for a 
substantial increase of the event 
rate.

Neutrinos’ challenge

• Understanding neutrino-nucleus 
interactions in the 1-10 GeV spectrum 
requires an accurate description of both 
nuclear dynamics and of the interaction 
vertex where relativistic effects are 
accounted for    

“Neutrinos ... win the minimalist contest: zero charge, zero radius, and very possibly 
zero mass.” —Leon M. Lederman—

CONTENTS 12
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Figure 3. Muon neutrino and muon anti-neutrino flux predictions from current and future
accelerator based neutrino experiments. Here, the top two plots are neutrino mode beam
muon neutrino flux predictions, where the bottom two plots are anti-neutrino mode beam
muon anti-neutrino flux predictions. Predictions are all arbitrary normalized. Left plots
are current experiments (T2K, MiniBooNE, MINERvA with low energy NuMI), and right
plots are current to future experiments (Hyper-Kamiokande, MicroBooNE, NOvA, DUNE,
MINERvA with medium energy NuMI).

• MINERvA, MINOS, and NOvA use NuMI neutrino beamline. The two important flux
configurations are low energy (LE) mode and medium energy (ME) mode. Also, detector
configurations can be on-axis or off-axis. Here, MINOS and MINERvA are both LE
and ME on-axis experiments, and NOvA is a ME off-axis experiment, and their flux
predictions are quite different. Note MINERvA does not provide neutrino flux below
1.5 GeV where flux systematic errors have not been evaluated yet.

• DUNE will use a dedicated beamline, which will have a wide-band beam to measure
neutrino oscillations not only the first maximum, but also the second oscillation
maximum [165].

• Hyper-Kamiokande uses higher power J-PARC off-axis neutrino beam [14], and here we
simply assumed the same shape with current T2K J-PARC off-axis neutrino beam.

The on-axis beam experiments, such as MiniBooNE, MINERvA, and DUNE have a
wider beam spectrum, and off-axis beam experiments, such as T2K and NOvA have narrower
spectrums. Although spectra are narrower for off-axis beams, they have long tails going to
higher energy. This is a standard feature for off-axis beams. Therefore understanding of
neutrino interactions are important in all 1-10 GeV spectrum for both on-axis and off-axis
beam experiments.

Figure 4 shows more detailed neutrino flux predictions. Here, we use T2K neutrino

T. Katori and M. Martini,. arXiv:1611.07770
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+ Impulse Approximation 



Electron-nucleus scattering
The inclusive cross section of the process in which 
a lepton scatters off a nucleus and the hadronic 
final state is undetected can be written as

• The Hadronic tensor contains all the information on target response

• The Leptonic tensor is fully specified by the lepton kinematic variables. For instance, in the electron-
nucleus scattering case

d2�

d⌦`dE`0
= Lµ⌫W

µ⌫

LEM
µ⌫ = 2[kµk

0
⌫ + k⌫k

0
µ � gµ⌫(kk

0)]

Wµ⌫ =
X

f

h0|Jµ†(q)|fihf |J⌫(q)|0i�(4)(p0 + q � pf )

Non relativistic nuclear many-body theory (NMBT) provides a fully consistent theoretical approach 
allowing for an accurate description of |0>, independent of momentum transfer.



Non relativistic Nuclear Many Body Theory
• Within NMBT the nucleus is described as a collection of A point-like nucleons, the dynamics of 
which are described by the non relativistic Hamiltonian 

H =
X

i

p2
i

2m
+

X

i<j

vij +
X

i<j<k

Vijk + . . .

 The nuclear electromagnetic current is constrained through the continuity equation

r · JEM + i[H, J0
EM] = 0

• The above equation implies that JEM involves two-
nucleon contributions. ⇡ ⇡⇡

H |0i = E0 |0i , H |fi = Ef |fi

The nuclear energy spectrum can be accurately determined

• Non relativistic expansion of JEM, powers |q|/m



The Green’s Function Monte Carlo approach
• Green’s function Monte Carlo combined with a realistic nuclear hamiltonian reproduces 
the spectra of light nuclei 

Quantum Monte Carlo
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• Green’s function Monte Carlo combined with a realistic nuclear hamiltonian reproduces the spectrum of ground- and excited 
states of light nuclei (including spin-orbit splitting and the emerging alpha clustering structures) 



The Green’s Function Monte Carlo approach

 Using the completeness relation for the final states, we are left with ground-state expectations value

✤ Accurate GFMC calculations of the electromagnetic responses of 4He and 12C have been recently 
performed: A. Lovato et al, Phys.Rev.Lett. 117 (2016), 082501, Phys.Rev. C97 (2018), 022502 

• Valuable information on the energy dependence of the response functions can be inferred from the 
their Laplace transforms 

R↵�(!,q) =
X

f

h0|J†
↵(q)|fihf |J�(q)|0i�(! � Ef + E0)

Limitations of the original method:

★ It is a nonrelativistic method, can not be safely applied in the entire kinematical region relevant for 
neutrino experiments          two fragment model, see Alessandro’s talk on Monday

★ The computational effort required by the inversion of           makes the direct calculation of inclusive 
cross sections unfeasible        novel algorithm based on first-kind scaling

E↵�

E↵�(q, ⌧) =

Z
d! e�!⌧R↵�(q,!) = h0|J†

↵(q)e
�(H�E0)⌧J�(q)|0i



• Scaling of the first kind: the nuclear electromagnetic responses divided by an appropriate 
function describing single-nucleon physics no longer depend on the two variables      and q, 
but only upon 

Scaling in the Fermi gas model

!
 (q,!)

� = !/2m

 = |q|/2m
⌧ = 2 � �2

⌘F = pF /m

⇠F =
q
p2F +m2/m� 1

 =
1

⇠F

�� ⌧q
(1 + �)⌧ + 

p
⌧(1 + ⌧)

RL,T = (1�  2)✓(1�  2)⇥GL,T

Adimensional variables: Scaling function:

In the FG the L and T responses 
have the same functional form :

Scaling in the Fermi Gas model

Scaling of the first kind: the nuclear responses divided by an appropriate
function describing the single-nucleon physics no longer depend on the two
variables q and !, but only upon  (q,!).

L/T scaling responses:

fL,T ( ) = pF ⇥
RL,T

GL,T

Within the GRFG model we obtain

f ( ) = fL,T ( ) =
3⇠F
2⌘2

F

�
1 �  2)✓(1 �  2) .

Noemi Rocco ⌫-nucleus interactions March 2, 2017 27 / 45



Scaling as an interpolation tool

He4 • To compute inclusive electron-nucleus cross 
sections we developed a novel interpolation 
algorithm based on the scaling of the nuclear 
responses. 


• For a fixed value of        and 


Q2 = 4Ee(Ee � !) sin2
✓e
2

, |q| =
p

Q2 + !2

• We first compute        then the set of              
is interpolated in |q|. 


 0
nr RL,T ( 

0
nr,q)

Ee ✓e

• For a given value of           the curves 
corresponding to different values of |q| are 
almost perfectly aligned and monotonic 
functions of |q|. Using the concept of scaling, 
largely improves the accuracy of the 
interpolation procedure and reduces the 
computational cost

 0
nr

4

spectrum for the initial and final states. In this work, we
introduce a constant shift in the energy transfer in the
definition of the scaling variable

 0
nr = pF

⇣! � Es

|q| � |q|
2m

⌘
. (7)

In the above equation, pF is the Fermi momentum, and
Es is empirically chosen to account for binding e↵ects in
both the initial and final states. In the present analysis
of the 4He nucleus, we use pF=180 MeV and Es = 15
MeV. However the results are quite insensitive to small
variations of these parameters.

FIG. 5. One-body longitudinal (upper panel) and transverse
(bottom panel) electromagnetic response functions of 4He for
|q| = 300, 400, 500, 600, and 700 MeV as a function  0

nr given
in Eq.(7) .

Figure 5 shows the longitudinal and transverse re-
sponse functions 4He divided by the proton electric form
factor squared for |qi| = 300, 400, 500, 600, and 700 MeV
as a function  0

nr. In both channels the curves corre-
sponding to di↵erent values of the momentum transfer
peak around  0

nr=0 and the height of the quasielastic
peaks is a monotonic function of |q|. In the longitudinal
case, shown in the upper panel, the highest and the lowest
peak correspond to |q| = 300 and 700 MeV, respectively.
On the other hand, in the transverse channel, displayed
in the bottom panel, the response functions are smaller as
|q| decreases. In Fig. 6 both one- and two-body terms in
the electromagnetic current have been included. Meson-
exchange current contributions only a↵ect the transverse

FIG. 6. Same as in Fig. 5 including one- and two-body terms
in the electromagnetic current.

channel, leading to a sizable enhancement of the response
functions. Nevertheless, the behavior of the curves in
both the upper and lower panels is analogous to that of
Fig. 5.
In order to evaluate Eq. (1) we fix Ee and ✓e, the initial

electron beam energy and scattering angle, respectively,
and use Ee0 = Ee � ! for the energy of the outgoing
electron. The four-momentum transfer is then written as

Q2 = �q2 = 4Ee(Ee � !) sin2
✓e0

2
, (8)

For a given value of !, the response functions have to
be evaluated at |q| =

p
!2 +Q2. To this aim, we first

compute  0
nr as in Eq.(7). Then, the set of RL,T ( 0

nr, qi)
is interpolated at |q|. By looking at Figs. 5 and 6, it
becomes evident why it is more convenient to interpolate
the di↵erent response functions when the latter are given
as a function of  0

nr and |q| rather than ! and |q|. For
a given value of  0

nr the curves corresponding to the dif-
ferent |qi| are indeed almost perfectly aligned and mono-
tonic functions of |q|, largely improving the accuracy of
the interpolation procedure.
In Fig. 7 we compare with experimental data the

electron-4He inclusive double-di↵erential cross sections
obtained from the GFMC responses for various kinemat-
ical setups, corresponding to di↵erent values of Ee and
✓e. The green and blue curve corresponds to retaining
only one-body terms or both one- and two-body terms in



Scaling as a tool to interpolate the responses 6

FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].
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G↵�(E) = G0
↵�(E) +

X

��

G0
↵�⌃

⇤
��(E)G��(E)

Self Consistent Green’s Function

• The one-body Green’s function is completely determined by solving the Dyson equation 

initial reference state, HF

Correlated propagator

Self energy: encoding nuclear 
medium effects on the 

particle propagation

⌃⇤ = ⌃⇤[G(E)]•                              , an iterative procedure is required to solve the Dyson equation self-consistently

• The self-energy is systematically calculated in a non-perturbative fashion within the Algebraic 
Diagrammatic Construction (ADC).

• Chiral NNLOsat two and three nucleon forces are used in the calculation

• Two- and three-nucleon force contributions are included up to the third order               ADC(3) 



Self Consistent Green’s Function
• To reduce the number of Feynman diagrams entering the calculation of the Green’s Function, only 

interaction irreducible diagrams are considered. The effective one- and two- body interactions are 
introduced:

Ũ↵� = U↵� +
X

��

V↵�,��⇢�� +
1

4

X

µ⌫��

W↵µ⌫,���⇢�µ⇢⌫� ,

Ṽ↵�,�� = V↵�,�� +
X

µ⌫

W↵�µ,��⌫⇢⌫µ .

• Within the ADC(3) these diagrams are taken as ‘seeds’ for the infinite order re-summation that 
eventually generates the self-energy

2nd and 3rd order 
diagrams with 2h1p 
(and 2p1h) 
intermediate 
configurations

• Use the one-body propagator to obtain static and dynamical nuclear observables of 4He and 16O.



• Operators are expanded on an harmonic oscillator basis with a given oscillator frequency       , 
and size of the single-particle model space Nmax 

~!

⇢↵� = h A
0 |a

†
�a↵| 

A
0 i⇢p(r) =

X

↵�

�⇤
�(r)�↵(r)⇢↵�

• One-body density matrix• Point-proton density distribution

He4

• The Optimized Reference State (OpRS) 
curve is obtained defining an independent 
particle model propagator:

GOpRS
↵� (E) = +

X

k2F

�k
↵(�

k
�)

⇤

E � ✏OpRS
k � i⌘

•             and     are obtained by requiring that

the OpRS lowest momenta of the spectral 
distribution reproduce those of the full 
calculation 

✏OpRS �

The 4He  SGFC point density distribution



⇢ch(r
0) =

Z
d3q

(2⇡)3
e�iq·r0 (G

p
E(Q

2
el +Gn

E(Q
2
el))⇢̃p(q)p

1 +Q2
el/(4m

2)

The 4He  SGFC charge density distribution
• The nuclear charge density distribution is written in terms of the  charge elastic form factor

• The cOm issue: The subtraction of the cOm contribution from the wave function is a long standing 
problem affecting a number of many-body approaches relying on single-nucleon basis

To estimate the error due to residual 
cOm contribution in 4He we developed 
Metropolis Monte Carlo calculation 


• Trial wave function: | V i = | OpRS
0 i

• A sequence of points in the 3A-
dimensional space are generated by 
sampling from P (R) = | OpRS

0 (R)|2

• The intrinsic coordinates are given by

r̃i = ri �Rcm , Rcm =
1

A

X

i

ri

He4

6

FIG. 2. Point proton densities in 4He, as predicted by
NNLOsat. The dashed (blue) line corresponds to the OpRS
derived for N

max

= 11 and ~⌦ = 20 MeV. The other
lines have been obtained using the SCGF full propagator for
N
max

=11, 13 and ~⌦ =20, 22 MeV.

IV. RESULTS

Our calculations have been performed using the
NNLOsat chiral interaction [15], which was specifically
designed to accurately describe both binding energies and
nuclear radii of mid-mass nuclei [38, 39]. In Fig. 2 we an-
alyze the convergence of the SCGF-ADC(3) point-proton
densities of 4He with respect to the oscillator frequency
(~⌦) and the size of the model space (N

max

). The di↵er-
ent lines almost superimpose, indicating that for ~⌦ ⇡ 20
MeV and N

max

�11 the calculation converges and no
longer depends on the oscillator parameters. The den-
sity calculated from the OpRS is also displayed. The
nice agreement with the SCGF-ADC(3) curves follows
from the requirement that the single particle energies and
overlap functions in the OpRS propagator are chosen to
approximate at best the true (correlated) one-body den-
sity.

The charge densities in 4He can be obtained from the
point-proton densities through Eqs. (17) and (18). In
Fig. 3 we compare the experimental charge density de-
termined through the “Sum-of-Gaussians” parametriza-
tion given in Ref. [40] with those obtained from the QMC
results of Ref. [41] and from the OpRS calculated in the
present work. For the latter, we display both the result
already shown in Fig. 2 and the distribution obtained af-
ter subtracting the center of mass e↵ect with the MMC
algorithm outlined in Sec. II. When the center of mass
contamination is subtracted, we obtain the short-dashed
(black) line. The comparison with the total OpRS re-
sults, corresponding to the dot-dashed (blue) line, clearly
shows that for 4He the center of mass contribution is size-
able and can not be neglected. The use of the intrinsic
wave function yields a strong enhancement of the charge
density, which turns out to be very close to the QMC re-
sult. Note that the discrepancy between the experiment
and the intrinsic OpRS and QMC calculations is moti-
vated by the absence of the two-body meson exchange

FIG. 3. Charge densities of 4He. The (green) dots have
been obtained using the “Sum-of-Gaussians” parametrization
of the charge densities given in Ref. [40]. The dashed (red)
line refers to the QMC calculation of Ref. [41] that used
the AV18+UIX two- and three-body interactions. The dot-
dashed (blue) line corresponds to the same OpRS propagator
shown in Fig. 2, while in the short-dashed (black) line the
center-of-mass contamination has been subtracted from the
OpRS wave function by means a MMC calculation.

FIG. 4. Charge elastic form factor for 4He. The solid
(light green) and (violet) lines correspond to the calculation
of Ref. [44] where chiral two- and three-body interactions
at N2LO have been used for R0 = 1.0fm and R0 = 1.2fm
coordinate- space cuto↵s, respectively. The uncertainty bands
include the statistical MC uncertainties added in quadrature
to the uncertainty from the truncation of the chiral expansion.
The dashed (red) line is obtained within QMC Ref. [44] while
the dot-dashed (blue) and short-dashed (black) line refers to
the OpRS calculation with and without the center-of-mass
contamination. The shaded area indicates the statistical MC
uncertainty. Experimental data are from an unpublished com-
pilation by I. Sick, based on Refs. [45–48].

current contributions. These are known to have little
e↵ect on larger nuclei such as 16O but their inclusion
is fundamental in order to correctly reproduce the 4He
elastic form factor, from which the charge densities are
extracted [30, 41–43].
In Fig. 4 we compare the results for the charge elastic

form factor for 4He obtained within three many-body ap-

✤ The QMC AV18+UIX results are taken from D. Lonardoni et al, Phys. Rev. C96, 024326 (2017) 



The charge elastic form factor 4He 

• The charge elastic form factor is given by 

✤ The N2LO results are taken from J. E. Lynn et al, Phys. Rev. C 96, 054007 (2017) where two different 
coordinate space cut offs have been adopted
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• Nice agreement between the SCGF and QMC calculations

• SCGF results agree with experiments (corroborates the goodness of NNLOsat)

• Nuclear charge density distribution of 16O

The 16O  SGFC charge density distribution



• The momentum distribution reflects the fact that NNLOsat is softer the AV18+UIX.

• Single particle momentum distribution of 16O
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FIG. 7. Momentum distributions of 4He. The dashed (red)
line corresponds to the QMC calculation [41], the dotted
(green) curve have been obtained using the SCGF-ADC(3)
propagator while the short-dashed (blue) and solid (black)
lines correspond to the total and intrinsic OpRS results, re-
spectively.

lations strongly reduce the SCGF-ADC(3) momentum
distribution in the high momentum region. In the upper
panel we observe an enhancement of the SCGF-ADC(3)
results with respect to the QMC calculation. This can
be understood by recalling that the QMC and SCGF-
ADC(3) momentum distribution are normalized to num-
ber of nucleons. In order for the normalization condition
to be satisfied, the missing strength in the tails of the
NNLOsat curve has to be compensated by an enhance-
ment in the low-momentum region.

Fig. 9 shows the electron-4He inclusive double-
di↵erential cross sections at di↵erent values of Ee and
✓e. The curves are obtained from the full SCGF-ADC(3)
spectral function, from its OpRS approximation and from
the intrinsic OpRS. The SCGF-ADC(3) cross-section
represented by the dashed (red) line is quenched with
respect to the solid (green) line that refers to the un-
corrected OpRS. This has to be attributed to the di↵er-
ent behavior of the curves displayed in Fig. 7. Whilst
the OpRS wave functions are built to reproduce low-
est energy momenta of the ADC(3) propagator—which
optimizes the quasiparticle energies and strength near
the Fermi surface—this leaves small discrepancies in the
single-nucleon momentum distribution. The compari-
son between the solid (green) and dashed (black) curve
clearly shows that the subtraction of the center of mass
component from the wave function leads to a reduction of
the width and an enhancement of the quasielastic peak.
Since this strongly a↵ects the cross section in all the kine-
matical setups that we considered, we applied FSI cor-
rections only to the intrinsic OpRS calculation. In order
to do it, we follow the approach outlined in Sec. III, with
the di↵erence that the optical potential has been disre-
garded in the energy conserving �-function since to the
best of our knowledge neither the 3H-p nor the 3He-n op-
tical potentials are present in the literature. The results
are shown in Fig. 10. The convolution of the OpRS cross

FIG. 8. Computed momentum distributions of 16O. The
dashed (red) and solid (black) lines are obtained within
QMC [41] and SCGF-ADC(3) approaches, respectively. In
the lower panel, a logarithmic scale has been used to demon-
strate the weak tail at large momenta that arises from the soft
chiral interaction adopted in the SCGF-ADC(3) calculation.

section with the folding function of Eq. (38) leads to a
redistribution of the strength, which quenches the peak
and enhances the tails. For Ee = 300 MeV, ✓ = 60�,
and Ee = 500 MeV, ✓ = 34� the OpRS intrinsic calcu-
lation overestimates the data. Moreover, in all the kine-
matical configurations under consideration the position
of the quasielastic peak is not correctly reproduced. This
is likely to be ascribed to the approximate procedure we
adopted to account for FSI e↵ects, i.e. we neglected the
real part of the optical potential. Its inclusion would
shift the cross section towards lower values of ! possibly
improving the agreement with the experimental data.

In Fig. 11 we compare the experimental data of the in-
clusive double-di↵erential electron-16O cross sections as
computed from the fully correlated SCGF-ADC(3) spec-
tral function. In the dashed (green) curve FSI e↵ects
have been implemented in full, yielding a very nice agree-
ment with the data. In particular, the inclusion of the
real part of the optical potential in the final state nu-
cleon energy shifts the cross sections towards lower val-
ues of ! and the quasielastic-peak position is correctly
reproduced.

The 16O  SGFC momentum distribution



• Single particle momentum distribution of 16O, log scale
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line corresponds to the QMC calculation [41], the dotted
(green) curve have been obtained using the SCGF-ADC(3)
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lines correspond to the total and intrinsic OpRS results, re-
spectively.
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panel we observe an enhancement of the SCGF-ADC(3)
results with respect to the QMC calculation. This can
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ADC(3) momentum distribution are normalized to num-
ber of nucleons. In order for the normalization condition
to be satisfied, the missing strength in the tails of the
NNLOsat curve has to be compensated by an enhance-
ment in the low-momentum region.

Fig. 9 shows the electron-4He inclusive double-
di↵erential cross sections at di↵erent values of Ee and
✓e. The curves are obtained from the full SCGF-ADC(3)
spectral function, from its OpRS approximation and from
the intrinsic OpRS. The SCGF-ADC(3) cross-section
represented by the dashed (red) line is quenched with
respect to the solid (green) line that refers to the un-
corrected OpRS. This has to be attributed to the di↵er-
ent behavior of the curves displayed in Fig. 7. Whilst
the OpRS wave functions are built to reproduce low-
est energy momenta of the ADC(3) propagator—which
optimizes the quasiparticle energies and strength near
the Fermi surface—this leaves small discrepancies in the
single-nucleon momentum distribution. The compari-
son between the solid (green) and dashed (black) curve
clearly shows that the subtraction of the center of mass
component from the wave function leads to a reduction of
the width and an enhancement of the quasielastic peak.
Since this strongly a↵ects the cross section in all the kine-
matical setups that we considered, we applied FSI cor-
rections only to the intrinsic OpRS calculation. In order
to do it, we follow the approach outlined in Sec. III, with
the di↵erence that the optical potential has been disre-
garded in the energy conserving �-function since to the
best of our knowledge neither the 3H-p nor the 3He-n op-
tical potentials are present in the literature. The results
are shown in Fig. 10. The convolution of the OpRS cross

FIG. 8. Computed momentum distributions of 16O. The
dashed (red) and solid (black) lines are obtained within
QMC [41] and SCGF-ADC(3) approaches, respectively. In
the lower panel, a logarithmic scale has been used to demon-
strate the weak tail at large momenta that arises from the soft
chiral interaction adopted in the SCGF-ADC(3) calculation.

section with the folding function of Eq. (38) leads to a
redistribution of the strength, which quenches the peak
and enhances the tails. For Ee = 300 MeV, ✓ = 60�,
and Ee = 500 MeV, ✓ = 34� the OpRS intrinsic calcu-
lation overestimates the data. Moreover, in all the kine-
matical configurations under consideration the position
of the quasielastic peak is not correctly reproduced. This
is likely to be ascribed to the approximate procedure we
adopted to account for FSI e↵ects, i.e. we neglected the
real part of the optical potential. Its inclusion would
shift the cross section towards lower values of ! possibly
improving the agreement with the experimental data.

In Fig. 11 we compare the experimental data of the in-
clusive double-di↵erential electron-16O cross sections as
computed from the fully correlated SCGF-ADC(3) spec-
tral function. In the dashed (green) curve FSI e↵ects
have been implemented in full, yielding a very nice agree-
ment with the data. In particular, the inclusion of the
real part of the optical potential in the final state nu-
cleon energy shifts the cross sections towards lower val-
ues of ! and the quasielastic-peak position is correctly
reproduced.

The 16O  SGFC momentum distribution

• The momentum distribution reflects the fact that NNLOsat is softer the AV18+UIX.



The charge elastic form factor for16O

✤ The N2LO results are taken from D. Lonardoni, et. al, Phys. Rev. C97, 044318 (2018) where two 
different coordinate-space cutoffs have been adopted
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FIG. 5. Charge densities in 16O. The (green) dots and the
dashed (red) line are the same as Fig. 3. The dot-dashed
(black) line corresponds to the full SCGF density calculated
at the ADC(3) level.

It is visible that up to q = 3 fm�1 the removal of the
center-of-mass contamination enhances the strength and
improves the agreement between the OpRS and the QMC
and the calculations of Ref. [44]. For larger values of
the momentum we found some discrepancies for both the
OpRS calculations.

For medium-mass nuclei, the center of mass correc-
tions are known to be less significant. Therefore, in
Fig. 5 we compare the experimental charge density in
16O with the full SCGF-ADC(3) and the QMC calcula-
tions. There is an overall nice agreement between the
theoretical curves. The SCGF-ADC(3) results perfectly
reproduce the experimental points, confirming the good-
ness of the NNLOsat potential which was fitted to repro-
duce the experimental radius of 16O.

Figure 6 displays the charge elastic form factor for 16O.
In this case we find an excellent agreement between the
SCGF, the QMC calculations and the experimental data.
The results of Ref. [49] for two di↵erent values of the
coordinate cuto↵s are also shown. While for R0=1.0 fm
the curve has the correct behavior some discrepancies are
visible for R0=1.2 fm.

In Fig. 7 we benchmark the intrinsic and uncorrected
OpRS single-nucleon momentum distribution of 4He with
the QMC calculation of Ref. [41]. The OpRS result, cor-
responding to the dashed (blue) line, correctly follows
that of the dressed ADC(3) propagator, although the
agreement is not as close as in Fig. 2. Note that, also
in this case the subtraction of the center of mass compo-
nent has a sizable e↵ect, which is crucial for recovering
the agreement with the intrinsic QMC results.

The 16O single-nucleon momentum distributions ob-
tained within the SCGF-ADC(3) and QMC approach are
compared in Fig. 8. The di↵erences displayed in the tails
of the single-nucleon momentum distributions are clearly
visible in the lower panel of Fig. 8 where the logarithmic
scale has been used. The dashed (red) line, corresponding
to the QMC calculation, is found to be above the SCGF-
ADC(3) results for high momenta. This is likely to be

FIG. 6. Charge elastic form factor for 16O. The solid
(light green) and (violet) lines correspond to the calculation
of Ref. [49] for R0 = 1.0fm and R0 = 1.2fm coordinate-
space cuto↵s, respectively. The uncertainty bands include
the statistical MC uncertainties added in quadrature to the
uncertainty from the truncation of the chiral expansion. The
dashed (red) line is obtained within QMC Ref. [44] while the
dot-dashed (black) refers to the SCGF results calculated at
the ADC(3) level. The shaded area indicates the statistical
MC uncertainty. Experimental data are from Ref. [40].

FIG. 7. Momentum distributions of 4He. The dashed (red)
line corresponds to the QMC calculation [41], the dotted
(green) curve have been obtained using the SCGF-ADC(3)
propagator while the short-dashed (blue) and solid (black)
lines correspond to the total and intrinsic OpRS results, re-
spectively.

ascribed to the di↵erent choice made for the potentials.
In fact, the NNLOsat is much softer than the AV18+UIX
potential adopted in the QMC study. The use of an hard
potential implies the presence of stronger high momen-
tum components in the nuclear wave function. While the
QMC momentum distribution exhibits a long tail extend-
ing to p > 1 GeV, the softer potential adopted in our cal-
culations strongly reduce the SCGF-ADC(3) momentum
distribution in the high momentum region. In the upper
panel we observe an enhancement of the SCGF-ADC(3)
results with respect to the QMC calculation. This can be
explained by recalling that the QMC and SCGF-ADC(3)



The Impulse Approximation 

• The matrix element of the current can be written in the factorized form 

• For sufficiently large values of |q|, the IA can be applied under the assumptions

• The nuclear cross section is given in terms of the one describing the interaction with individual bound 
nucleons 
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• The intrinsic properties of the nucleus are described by the hole spectral function



• The Spectral Function gives the probability distribution of removing a nucleon with momentum k, 
leaving the spectator system with an excitation energy E

• The two points Green’s Function describes nucleon propagation in the nuclear medium 

The one-body hole Spectral Function
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• The nuclear matrix element can be rewritten in terms of the transition amplitude
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The Impulse Approximation and convolution scheme

• In the kinematical region in which the interactions between the struck 
particle and the spectator system can not be neglected, the IA results 
have to be modified to include the effect of final state interactions (FSI). 


• The theoretical approach to calculate the folding function consists on a generalization of Glauber theory 
of high energy proton-nucleus scattering 

O.Benhar, Phys. Rev. C87, 024606 (2013) 

Optical Potential
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A.Ankowski et al,Phys. Rev. D91, 033005 (2015)
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4He-e- cross sections within the SCGF approach
• ADC(3) and OpRS results:  IA • Including FSI in the OpRS intrinsic results



16O-e- cross sections within the SCGF approach
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neglected. An example is the relativistic mean field
(RMF) model [19] where the initial nucleons are treated
as single-particle bound states whose wave functions
are solutions of the Dirac equation with a �-! mean
field potential. The same energy independent real po-
tential and Dirac equation are used to obtain the dis-
torted wave function of the outgoing nucleons. The fact
that the potential is real makes the model suitable for
inclusive processes, in contrast to those with complex
optical potentials more appropriate for exclusive reac-
tions like A(⌫

l

, l�p) because the imaginary (absorptive)
part of the potential accounts for the flux loss towards
other channels (see for instance Figs. 1-2 of Ref. [20]).

Another alternative to the RFG is the so called Lo-
cal Fermi Gas (LFG) where the Fermi momentum de-
pends on the coordinate through the nuclear density pro-
file p

F

(r) = [(3/2)⇡2⇢(r)]1/3. The LFG description in-
troduces space-momentum correlations, absent in the
GFG, that render more realistic the nucleon momen-
tum distributions (see Fig. 6 of Ref. [21]). A great
advantage of LFG is that, owing to its simplicity, mi-
croscopic many-body e↵ects such as SF [21, 22] and
long range random phase approximation (RPA) correla-
tions [23, 22, 24] are tractable in a realistic manner.

2.1. The CCQE puzzle

A common feature of all known calculations of the
CCQE integrated cross section on 12C applying the dif-
ferent theoretical techniques outlined above is that they
underestimate recent MiniBooNE data. This surprising
situation is illustrated in Fig. 2 for some of the model
calculations collected in Ref. [25] and also the RFG.
Theoretical results from quite di↵erent models lie on
a rather narrow band (narrower than the experimental
errorbars) clearly below the data: at E⌫ = 0.8 GeV,
�

th

⇠ 4.5 � 5 while �
exp

⇠ 7 ⇥ 10�38 cm2. The dif-
ferences in the nucleon FF adopted in these calculations
are minor. In particular all take M

A

⇠ 1 GeV.
Several interpretations of this discrepancy are cur-

rently under debate. One points at the di�culty that
the neutrino-flux determination represents and the pos-
sibility that its absolute normalization has been under-
estimated. On the other hand, according to the Mini-
BooNE collaboration the systematic errors in the flux
estimation have been determined by varying parame-
ters within their uncertainties and accounting for cor-
relations [29] so it is legitimate to expect that the er-
rorbars account for the uncertainties in the flux nor-
malization. Another strategy is to extract M

A

from
MiniBooNE data. In Ref. [4], a fit to the shape of
the reconstructed Q

2 distribution with the RFG model
yielded M

A

= 1.35 ± 0.17 GeV, which is much higher
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CCQE on 12C

Figure 2: (color online) Summary of CCQE total cross sections. Solid
lines denote the models from Refs [18], [26], [27], [28, 21], [19], [24]
and [22] in this order, as reported in Ref. [25]. The dash-dotted and
dotted lines are RFG calculations with p

F

= 220 MeV, ✏
B

= 34 MeV
and M

A

= 1 and 1.35 GeV respectively. The dashed line is the result
of Ref. [24] after adding the 2p � 2h contributions. The data points
are from MiniBooNE [4].

than the world average and the recent NOMAD result
M

A

= 1.05 ± 0.02(stat) ± 0.06(syst) GeV [6] at high
energies. The integrated cross section computed with
the new value of M

A

is consistent with the normalized
data as can be seen in Fig. 2 (dotted line). A similar
Q

2 fit but using a more elaborated distorted wave IA
model, like the RMF sketched above but taking also
into account nuclear correlations for the initial nucle-
ons and with a di↵erent (real) potential for the outgoing
ones, obtained M

A

= 1.37 GeV [30]. A better descrip-
tion of the low Q

2 region compared to the RFG was
also achieved. With a state-of-the-art SF, the best Q

2

fit and a good description of muon energy spectrum and
angular distribution were found for an M

A

as large as
1.6 GeV [31]. With a similar SF but fitting directly the
measured flux-averaged double di↵erential cross sec-
tions hd2�/dEµd cos ✓µi taking into account the flux
uncertainty and introducing a three-momentum cut of
500 MeV to exclude the IA breakdown region, it was
obtained that M

A

= 1.343 ± 0.060 GeV, lower but still
incompatible with earlier determinations.

A third possibility has been put forward by Martini et
al. [24]. They have studied inclusive ⌫A scattering in a
LFG using RPA and taking into account two-particle-
two-hole (2p � 2h) contributions, in particular some
terms that are not part of the SF (see diagrams 2, 3, 3’
in Fig. 1 of Ref. [24]). As shown in Fig. 2, with 1p� 1h

The MiniBooNE CCQE (CC0π) puzzle

• The 2p2h contribution is needed to explain the size of the measured cross section

Luis Alvarez-Ruso, arXiv:1012.3871 



The CBF one-body Spectral Function of finite nuclei
• 12C Spectral Function obtained within CBF 

and using the Local Density Approximation Z
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• The one-body Spectral function of nuclear matter:
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• Zn : spectroscopic factor extracted from (e, e’p)

• Fn : finite width function accounting for residual 
interactions not included in a MF picture



Production of two particle-two hole (2p2h) states
• Initial State Correlations
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and momentum. Its leading term, corresponding to 2h1p
states of the residual (A�1)-particle system in which one

nucleon is excited to a state outside the Fermi sea, can
be written in the form

P2h1p(k, E) =

Z
d

3
hd

3
h

0
d

3
p

0|�hh0p0

k |2✓(kF � |h|)✓(kF � |h0|)✓(|p0|� kF )�(E + eh + eh0 � ep0) , (19)

where the integration includes a sum over the indices
associated with discrete degrees of freedom, and

�hh0p0

k = h0|{|ki ⌦ |hh0
p

0i} . (20)

Note that momentum conservation requires that the ex-

pression of �hh0p0

k involve a �(h+ h

0 � p

0 � k).
As pointed out above, in the presence of ground state

correlations both parts of the spectral function pro-
vide non vanishing contributions to the cross section of
Eq. (18).

FIG. 3. (color online) Cross section of the process e+12 C !
e0+X at beam energy Ee = 961 MeV and electron scattering
angle ✓e = 37.5 deg, computed using Eq. (18) with the spec-
tral function of Ref. [20]. The solid line shows the results of
the full calculation, while the breakdown into 1p1h and 2p2h
contributions is illustrated by the dot-dash and dashed lines,
respectively.

Figure 3 shows the 1p1h and 2p2h components of the
electron-carbon cross section arising from ISC. The cal-
culations have been performed at Ee = 961 MeV and
✓e = 37.5 deg, using Eq. (18) with the spectral func-
tion of Ref. [20] and the parametrisation of the nucleon
form factors of Ref. [22]. The solid line corresponds to
the results of the full calculation, while the dot-dash and
dashed lines have been obtained using the pole and con-
tinuum parts of the spectral function, which amounts to
taking into account only 1p1h or 2p2h final states, re-
spectively. The distinct energy dependence of the 2p2h

contribution, providing ⇠ 10% of the total QE cross sec-
tion, is clearly visible.
The importance of relativistic e↵ects can be gauged

comparing the solid and dashed lines of Fig. 4, repre-
senting the carbon cross sections obtained from Eq. (18)
using relativistic and non relativistic kinematics, respec-
tively. It clearly appears that in a kinematical setup cor-
responding to |q| ⇠ 585 MeV at ! = !QE relativistic
kinematics sizeably a↵ects both position and width of
the quasi elastic peak.

FIG. 4. (color online) Electron-carbon cross section obtained
from Eq. (18) using relativistic (solid line) and non relativistic
(dashed line) kinematics. The experimental data are from
Ref. [23].

The factorisation ansatz of Eq. (16) can be readily
extended to allow for a consistent treatment of the am-
plitudes involving one- and two-nucleon currents. The
resulting expression is

|Ni = |pp0i ⌦ |mA�2,pmi , (21)

where the states |pp0i and |mA�2,pmi describe two non
interacting nucleons of momenta p and p

0 and the (A�2)-
particle residual system, respectively.
Using Eq. (21), the nuclear matrix element of the two-

nucleon current can be written in terms of two-body ma-
trix elements according to

hN |jµij |0i =
Z

d

3
kd

3
k

0
Mm(k,k0)hpp0|jµij |kk

0i , (22)

• Pcorr(k,E) accounts for 
the presence of 
strongly correlated 
pairs. Its contribution 
to the cross section is 
clearly visible: 
appearance of a tail in 
the large energy 
transfer region

d�A =

Z
dE d3kd�NP (k, E)

• The Impulse Approximation is adopted



Production of two particle-two hole (2p2h) states
• Meson Exchange currents • Initial State Correlations
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vide non vanishing contributions to the cross section of
Eq. (18).
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e0+X at beam energy Ee = 961 MeV and electron scattering
angle ✓e = 37.5 deg, computed using Eq. (18) with the spec-
tral function of Ref. [20]. The solid line shows the results of
the full calculation, while the breakdown into 1p1h and 2p2h
contributions is illustrated by the dot-dash and dashed lines,
respectively.

Figure 3 shows the 1p1h and 2p2h components of the
electron-carbon cross section arising from ISC. The cal-
culations have been performed at Ee = 961 MeV and
✓e = 37.5 deg, using Eq. (18) with the spectral func-
tion of Ref. [20] and the parametrisation of the nucleon
form factors of Ref. [22]. The solid line corresponds to
the results of the full calculation, while the dot-dash and
dashed lines have been obtained using the pole and con-
tinuum parts of the spectral function, which amounts to
taking into account only 1p1h or 2p2h final states, re-
spectively. The distinct energy dependence of the 2p2h

contribution, providing ⇠ 10% of the total QE cross sec-
tion, is clearly visible.
The importance of relativistic e↵ects can be gauged

comparing the solid and dashed lines of Fig. 4, repre-
senting the carbon cross sections obtained from Eq. (18)
using relativistic and non relativistic kinematics, respec-
tively. It clearly appears that in a kinematical setup cor-
responding to |q| ⇠ 585 MeV at ! = !QE relativistic
kinematics sizeably a↵ects both position and width of
the quasi elastic peak.

FIG. 4. (color online) Electron-carbon cross section obtained
from Eq. (18) using relativistic (solid line) and non relativistic
(dashed line) kinematics. The experimental data are from
Ref. [23].

The factorisation ansatz of Eq. (16) can be readily
extended to allow for a consistent treatment of the am-
plitudes involving one- and two-nucleon currents. The
resulting expression is

|Ni = |pp0i ⌦ |mA�2,pmi , (21)

where the states |pp0i and |mA�2,pmi describe two non
interacting nucleons of momenta p and p

0 and the (A�2)-
particle residual system, respectively.
Using Eq. (21), the nuclear matrix element of the two-

nucleon current can be written in terms of two-body ma-
trix elements according to
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• Pcorr(k,E) accounts for 
the presence of 
strongly correlated 
pairs. Its contribution 
to the cross section is 
clearly visible: 
appearance of a tail in 
the large energy 
transfer region

Different contributions to 
the relativistic two-body 

currents
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Production of two particle-two hole (2p2h) states
• Meson Exchange currents • Initial State Correlations
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and momentum. Its leading term, corresponding to 2h1p
states of the residual (A�1)-particle system in which one

nucleon is excited to a state outside the Fermi sea, can
be written in the form

P2h1p(k, E) =

Z
d

3
hd

3
h

0
d

3
p

0|�hh0p0

k |2✓(kF � |h|)✓(kF � |h0|)✓(|p0|� kF )�(E + eh + eh0 � ep0) , (19)

where the integration includes a sum over the indices
associated with discrete degrees of freedom, and

�hh0p0

k = h0|{|ki ⌦ |hh0
p

0i} . (20)

Note that momentum conservation requires that the ex-

pression of �hh0p0

k involve a �(h+ h

0 � p

0 � k).
As pointed out above, in the presence of ground state

correlations both parts of the spectral function pro-
vide non vanishing contributions to the cross section of
Eq. (18).

FIG. 3. (color online) Cross section of the process e+12 C !
e0+X at beam energy Ee = 961 MeV and electron scattering
angle ✓e = 37.5 deg, computed using Eq. (18) with the spec-
tral function of Ref. [20]. The solid line shows the results of
the full calculation, while the breakdown into 1p1h and 2p2h
contributions is illustrated by the dot-dash and dashed lines,
respectively.
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The factorisation ansatz of Eq. (16) can be readily
extended to allow for a consistent treatment of the am-
plitudes involving one- and two-nucleon currents. The
resulting expression is
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where the states |pp0i and |mA�2,pmi describe two non
interacting nucleons of momenta p and p
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• Pcorr(k,E) accounts for 
the presence of 
strongly correlated 
pairs. Its contribution 
to the cross section is 
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currents
• The Impulse Approximation has been generalized:

Wµ⌫
2p2h = Wµ⌫

ISC +Wµ⌫
MEC +Wµ⌫
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particle model. As a consequence, the calculation of
Wµ⌫

2p2h,11, describing processes in which the momentum
q is transferred to a single high-momentum nucleon, re-
quires the continuum component of the hole spectral
function [17, 18].

The second term in the right hand side of Eq. (7),

involving the matrix elements of the two-nucleon current,
is written in terms of the two-nucleon spectral function
[19]. The explicit expressions of Wµ⌫

2p2h,11 and Wµ⌫
2p2h,22

are reported in Ref. [16].
Finally, Wµ⌫

2p2h,12, taking into account interference con-
tributions, involves the nuclear overlaps defined in both
Eqs. (4) and (6). The resulting expression is

Wµ⌫
2p2h,12 =

Z
d3k d3⇠ d3⇠0 d3h d3h0d3p d3p0�hh0

⇠⇠0
⇤ h

�hh0p0

k hk|jµ1 |pi + �hh0p
k hk|jµ2 |p0i

i
(8)

⇥ hpp0|j⌫12|⇠, ⇠0i �(h+ h0 + q � p � p0)�(! + eh + eh0 � ep � ep0)✓(|p| � kF )✓(|p0| � kF ) + h.c. .

We have compared the results of our approach to the
measured electron-carbon cross sections in two di↵erent
kinematical setups, corresponding to momentum trans-
fer 300 . |q| . 800 MeV. The calculations have been
carried out following Ref. [16], using the carbon spec-
tral function of Ref. [20] and the 1h contribution to the
spectral function of isospin-symmetric nuclear matter of
Ref. [17]. The 2h1p amplitude, needed to evaluate the
interference term, has been also computed for nuclear
matter at equilibrium density. In the quasi elastic chan-
nel we have adopted the parametrization of the nucleon
form factors of Ref. [21], whereas the inelastic nucleon
structure functions have been taken from Refs. [22, 23].

Figure 2 shows the electron-carbon cross section at
beam energy Ee = 680 MeV and scattering angle ✓e =
36 deg (A) , and Ee = 1300 MeV and ✓e = 37.5 deg
(B) . The solid and dashed lines correspond to the re-
sults of the full calculation and to the one-body current
contribution, respectively. The pure two-body current
contribution and the one arising from interference are
illustrated by the dot-dash and dotted line. In the kine-
matics of panel (A) the two-body currents play an al-
most negligible role. The significant lack of strength in
the �-production region, discussed in Ref. [26], is likely
to be due to the inadequacy of the structure functions of
Refs. [22, 23] to describe the region of Q2 <⇠ 0.2 GeV2,
while the shift in the position of the quasi-elastic peak
has to be ascribed to the e↵ects of FSI, which are not
taken into account.

At the larger beam energy and Q2 corresponding to
panel (B), the agreement between theory and data is
significantly improved, and the contribution of the two-
nucleon currents turns out to substantially increase the
cross section in the dip region and beyond.

In inclusive processes, FSI have two e↵ects: a shift of
the cross section, arising from the interaction between
the struck nucleon and the mean field generated by the
spectator particles, and a redistribution of the strength
from the quasi-elastic peak to the tails. The theoretical
approach for the description of FSI within the spectral
function formalism is discussed in Refs. [12, 13, 15, 27].

FIG. 2. (color online) (A): Double di↵erential cross section
of the process e + 12C ! e0 + X at beam energy Ee = 680
MeV and scattering angle ✓e = 37.5 deg. The solid line shows
the result of the full calculation, while the dashed line has
been obtained including the one-body current only. The con-
tributions arising from two-nucleon currents are illustrated
by the dot-dash and dotted lines, corresponding to the pure
two-body current transition probability and to the interfer-
ence term, respectively. The experimental data are taken
from Ref. [24]. (B) same as (A) but for Ee = 1300 MeV
and ✓e = 37.5 deg. The experimental data are taken from
Ref. [25].

According to Ref. [15, 27], the di↵erential cross section
can be written in the convolution form

d�FSI(!) =

Z
d!0fq(! � !0 � UV )d�(!

0) , (9)

where d� denotes the cross section in the absence of FSI,
the e↵ects of which are accounted for by the folding func-
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tion

fq(!) =
p
TA�(!) + (1 �

p
TA)Fq(!) . (10)

The above equations show that inclusion of FSI involves
three elements: i) the real part of the optical potential
UV extracted from proton-carbon scattering data [28],
responsible for the shift in !, ii) the nuclear transparency
TA measured in coincidence (e, e0p) reactions [29], and
iii) a function Fq(!), sharply peaked at ! = 0, whose
width is dictated by the in-medium NN scattering cross
section [27].

A comprehensive analysis of FSI e↵ects on the electron-
carbon cross sections has been recently carried out by the
authors of Ref. [15]. In this work we have followed closely
their approach, using the same input.

FIG. 3. (color online) (A): double di↵erential electron-carbon
cross section at beam energy Ee = 680 MeV and scattering
angle ✓e = 36 deg. The dashed line corresponds to the result
obtained neglecting FSI, while the solid line has been obtained
within the approach of Ref. [15]. The experimental data are
taken from Ref. [24]. (B): same as (A) but for Ee = 1300
MeV and ✓e = 37.5 deg. The experimental data are taken
from Ref. [25].

Figure 3 illustrates the e↵ects of FSI on the electron-
carbon cross section in the kinematical setups of Fig. 2.
In panel (A), both the pronounced shift of the quasi
elastic-peak, and the redistribution of the strength are
clearly visible, and significantly improve the agreement
between theory and data. For larger values of Q2, how-
ever, FSI play a less relevant, in fact almost negligible,
role. This feature is illustrated in panel (B), showing
that at beam energy Ee = 1.3 GeV and scattering an-
gle ✓e = 37.5 deg, corresponding to Q2 ⇠ 0.5 GeV2, the

results of calculations carried out with and without in-
clusion of FSI give very similar results, yielding a good
description of the data.
Note that, being transverse in nature, the calculated

two-nucleon current contributions to the cross sections
exhibit a strong angular dependence. At Ee = 1.3 GeV,
we find that the ratio between the integrated strengths
in the 1p1h and 2p2h sectors grows from 4% at electron
scattering angle ✓e=10 deg to 46% at ✓e=60 deg.
The results of our work show that the approach based

on the generalized factorization ansatz and the spectral
function formalism provides a consistent framework for a
unified description of the electron-nucleus cross section,
applicable in the kinematical regime in which relativistic
e↵ects are known to be important.
The extension of our approach to neutrino-nucleus

scattering, which does not involve further conceptual dif-
ficulties, may o↵er new insight on the interpretation of
the cross section measured by the MiniBooNE Collab-
oration in the quasi elastic channel [30, 31]. The ex-
cess strength in the region of the quasi elastic peak is in
fact believed to originate from processes involving two-
nucleon currents [32–34], whose contributions is observed
at lower muon kinetic energy as a result of the average
over the neutrino flux [35]. The strong angular depen-
dence of the two-nucleon current contribution, may also
provide a clue for the understanding of the di↵erences
between the quasi elastic cross sections reported by the
MiniBooNE and NOMAD Collaboration [36], which col-
lected data using neutrino fluxes with very di↵erent mean
energies: 880 MeV and 25 GeV, respectively [35].
As a final remark, it has to be pointed out that a

clear-cut identification of the variety of reaction mech-
anisms contributing to the neutrino-nucleus cross section
will require a careful analysis of the assumptions underly-
ing di↵erent models of nuclear dynamics. All approaches
based on the independent particle model fail to properly
take into account correlation e↵ects, leading to a signif-
icant reduction of the normalization of the shell-model
states [37], as well as to the appearance of sizable in-
terference terms in the 2p2h sector. However, in some
instances these two deficiencies may largely compensate
one another, leading to accidental agreement between
theory and data. For example, the two-body current con-
tributions computed within our approach turn out to be
close to those obtained within the Fermi gas model.
The development of a nuclear model having the predic-
tive power needed for applications to the analysis of fu-
ture experiments—most notably the Deep Underground
Neutrino Experiment (DUNE) [38]—will require that the
degeneracy between di↵erent approaches be resolved. A
systematic comparison between the results of theoreti-
cal calculations and the large body of electron scattering
data, including both inclusive and exclusive cross sec-
tions, will greatly help to achieve this goal.
This research is supported by INFN (Italy) under grant

MANYBODY (NR and OB) and the U.S. Department of
Energy, O�ce of Science, O�ce of Nuclear Physics, under
contract DE-AC02-06CH11357 (AL).

Results for electron-12C cross sections
• Separate contributions:  IA • Including FSI in the QE region
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The inclusive cross section of the process in which a neutrino or antineutrino scatters off a 
nucleus can be written in terms of five response functions
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• The two-body diagrams contributing to the axial and vector responses  

(Anti)neutrino -12C scattering cross sections

• In the preliminary results we present we only included:

Wµ⌫
2p2h = Wµ⌫

ISC +Wµ⌫
MEC +Wµ⌫

int



Two-body CC response functions of 12C 

• Comparison of the five CC response functions of 12C with the results of I. Ruiz Simo, et. al, 
Journal of Phys. G 44, no. 6 (2017). The different curves have been obtained with the GRFG model 



CC0π neutrino -12C cross sections

⌫

µ�
W+

• The 2b contribution mostly affects the ‘dip’ region, in analogy with 
the electromagnetic case

• Meson exchange currents strongly enhance the cross section for large 
values of the scattering angle



CC0π antineutrino -12C cross sections

W�µ+

⌫̄

• The 2b contribution mostly affects the ‘dip’ region, in analogy with 
the electromagnetic case

• Meson exchange currents strongly enhance the cross section for large 
values of the scattering angle



NC0π neutrino -12C cross sections

⌫

⌫• The 2b contribution mostly affects the ‘dip’ region, in analogy with 
the electromagnetic case

• Meson exchange currents strongly enhance the cross section for large 
values of the scattering angle

Z0



NC0π antineutrino -12C cross sections

⌫̄

⌫̄
• The 2b contribution mostly affects the ‘dip’ region, in analogy with 

the electromagnetic case

• Meson exchange currents strongly enhance the cross section for large 
values of the scattering angle

Z0



CC0π total cross section: MiniBooNE data

• The 2p2h contribution is needed to explain the size of the measured cross section



Prospects

❖ Spectral Function calculation of light nuclei within GFMC with both phenomenological and 
chiral Hamiltonians

❖ Extend the interpolation algorithm and the two-body fragment model to describe the NC0π 
inclusive cross section

• Green’s Function Monte Carlo approach :

• Self Consistent Green’s Function approach :

❖ Extension to the electroweak sector including both one- and two-body currents for closed 
shell nuclei

❖  The SCGF method has recently been reformulated within the Gorkov’s theory that allows to 
tackle open shell nuclei. Provide predictions for electron and neutrino scattering on 40Ar and 
48Ti

• Correlated Basis Function

❖ Flux-folded double differential inclusive cross sections for CC0π and NC0π processes

❖ Inclusion of the interference between one- and two-body currents: benchmark with GFMC 
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• Longitudinal responses of 4He for |q|=700 MeV in the four different reference frames. 

  The curves show differences in both peak positions and heights. 

He4

Relativistic effects in a correlated system



pfr = µ
⇣ pfrN
mN

� pfrX
MX

⌘

P fr
f = pfrN + pfrX

µ =
mNMX

mN +MX

• The relative momentum is derived in a relativistic fashion

!fr = Efr
f � Efr

i

Efr
f =

q
m2

N + [pfr + µ/MXPfr
f ]2 +

q
M2

X + [pfr � µ/mNPfr
f ]2

• And it is used as input in the non relativistic kinetic energy

efrf = (pfr)2/(2µ)

• The energy-conserving delta function reads 

�(Efr
f � Efr

i � !fr) = �(F (efrf )� !fr) =
⇣@F fr

@efrf

⌘�1
�[efrf � erelf (qfr,!f )]

• The frame dependence can be drastically reduced if one assumes a two-body breakup model with 
relativistic kinematics to determine the input to the non relativistic dynamics calculation

Relativistic effects in a correlated system



• Longitudinal responses of 4He for |q|=700 MeV in the four different reference frames. 

  The different curves are almost identical. 

He4

Relativistic effects in a correlated system



Extending the factorization scheme

Extension of the factorization scheme to two-nucleon emission amplitude

|X i �! |p p0i ⌦ |n(A�2)i = |n(A�2);p p0i ,

We can introduce the two-nucleon Spectral Function. . .

P(k, k0, E ) =
X

n
|hn(A�2); k k0|0i|2�(E + E0 � En)

probability of removing two nucleons leaving the A-2 system with energy E

Extending the factorization scheme

Extension of the factorization scheme to two-nucleon emission amplitude

|X i �! |p p0i ⌦ |n(A�2)i = |n(A�2);p p0i ,

We can introduce the 2 nucleon Spectral Function. . .

P(k, k0, E ) =
X

n
|hn(A�2); k k0|0i|2�(E + E0 � En)

probability of removing 2 nucleons leaving the A-2 system with energy E
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�
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The pure 2-body & the interference contribution to the hadron tensor read 
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MEC: �-isobar exchange

p 1 p 2

p1 ’ p2 ’
q

k 2
p b

p 1 p 2

p1 ’ p2 ’
q

k 1 p d

p 1 p 2

p1 ’ p2 ’

q

k 2

pa

p 1 p 2

p1 ’ p2 ’

q

k 1

pc

(a) (b) (c) (d)

The Rarita-Schwinger (RS) expression for the � propagator reads

S��(p, M�) =
/p + M�

p2 � M2
�

 
g�� � ����

3
� 2p�p�

3M2
�

� ��p� � ��p�

3M�

!

WARNING
If the condition p2

� > (mN + m⇡)2 the real resonance mass has to be
replaced by M� �! M� � i�(s)/2 where �(s) = (4f⇡N�)2

12⇡m2
⇡

k3
p

s (mN + Ek).
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Form factors

Hadronic monopole form factors

F⇡NN(k2) =
⇤2

⇡ � m2
⇡

⇤2
⇡ � k2

F⇡N�(k2) =
⇤2

⇡N�

⇤2
⇡N� � k2

(3)

and the EM ones

F�NN(q2) =
1

(1 � q2/⇤2
D)2

,

F�N�(q2) = F�NN(q2)
⇣
1 � q2

⇤2
2

⌘�1/2⇣
1 � q2

⇤2
3

⌘�1/2
(4)

where ⇤⇡ = 1300 MeV, ⇤⇡N� = 1150 MeV, ⇤2
D = 0.71GeV2,

⇤2 = M + M� and ⇤2
3 = 3.5 GeV2.
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