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Motivations

* In electron- scattering experiments the nucleus is mostly seen as a target, as the kinematic of the
probe is completely known.

- Scattered
electron

e The first generation of (e,e’p) data in the early _
1960s not only established the validity of the et
nuclear shell model but alse showed its limitations

* More recent measurements, allowed to unveil detailed
features of the nuclear wave function, including its high-
momentum components.

Scattered
proton

Correlated partner
proton or neutron

Subedi et al., Science 320, 1476 (2008)
I — T

* Developing a coherent picture of the electroweak response is also critical for the interpretation of
neutrino scattering experiments, such as the Deep Underground Neutrino Experiment



Electron-nucleus scattering

Schematic representation of the inclusive cross section as a function of the energy loss.
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The different reaction mechanisms can be easily identified




Neutrinos’ challenge

“Neutrinos ... win the minimalist contest: zero cﬁarge, zero radius, and very possiﬁ(y

Zero mass.”

* In neutrino-oscillation
experiments the use of nuclear
target as detectors allows for a
substantial increase of the event
rate.

« Understanding neutrino-nucleus
interactions in the 1-10 GeV spectrum
requires an accurate description of both
nuclear dynamics and of the interaction
vertex where relativistic effects are
accounted for

—leon M. | ederman—
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T. Katori and M. Martini,. arXiv:1611.07770
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Electron-nucleus scattering

The inclusive cross section of the process in which
a lepton scatters off a nucleus and the hadronic
final state is undetected can be written as

d?o
dSQ2pd Eyr

= L, WH

« The Leptonic tensor is fully specified by the lepton kinematic variables. For instance, in the electron-
nucleus scattering case

ijy = 2[ku k), + kuk, — guu (kE')]

« The Hadronic tensor contains all the information on target response

whe = (017" (@) /) {177 (@)]0)0 (po + ¢ — py)
f

Non relativistic nuclear many-body theory (NMBT) provides a fully consistent theoretical approach
allowing for an accurate description of |0>, independent of momentum transfer.




Non relativistic Nuclear Many Body Theory

» Within NMBT the nucleus is described as a collection of A point-like nucleons, the dynamics of
which are described by the non relativistic Hamiltonian

H = Uiy =+ 17k + .
1<9 1<g<k
The nuclear energy spectrum can be accurately determined
H|0)=Eon|0) , HIf)=Eflf)

The nuclear electromagnetic current is constrained through the continuity equation

V -Jem +i[H, Jpy] =0

* The above equation implies that Jem involves two-
nucleon contributions. 7T 7T§7T

* Non relativistic expansion of Jem, powers |q|/m ﬁ.




The Green’s Function Monte Carlo approach

» Green’s function Monte Carlo combined with a realistic nuclear hamiltonian reproduces
the spectra of light nuclei
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The Green’s Function Monte Carlo approach

< Accurate GFMC calculations of the electromagnetic responses of “He and 2C have been recently
performed: A. Lovato et al, Phys.Rev.Lett. 117 (2016), 082501, Phys.Rev. C97 (2018), 022502

Rag(w,q) = Y _(01JL(@]f)(f1Js(@)|0)d(w — Ef + Ey)
f

« Valuable information on the energy dependence of the response functions can be inferred from the
their Laplace transforms

Baslarr) = [ duoe Rus(a,) = 017 (@e Py (@l0

Using the completeness relation for the final states, we are left with ground-state expectations value

Limitations of the original method:

% It is a nonrelativistic method, can not be safely applied in the entire kinematical region relevant for
neutrino experiments —» two fragment model, see Alessandro’s talk on Monday

* The computational effort required by the inversion of Ea[g makes the direct calculation of inclusive
cross sections unfeasible —» novel algorithm based on first-kind scaling




Scaling in the Fermi gas model

» Scaling of the first kind: the nuclear electromagnetic responses divided by an appropriate
function describing single-nucleon physics no longer depend on the two variables w and q,

but only upon ¥ (q, w)

Adimensional variables:

A=w/2m
k= lal/2m
T =K — N\
ne = pr/m

§F = \/P%erz/m—l

In the FG the L and T responses
have the same functional form :

Rir=01-9¢30(1—9*) xGrr

Scaling function:
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Scaling as an interpolation tool
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e To compute inclusive electron-nucleus cross
sections we developed a novel interpolation
algorithm based on the scaling of the nuclear
responses.

« For a fixed value of F. and 0.

O
Q* = 4B (B — w)sin® T, |a] = VQ? +

« We first compute ¥y, then the set of Rz 7 (1), q)
is interpolated in |q].

e For a given value of Wmn the curves
corresponding to different values of |q| are
almost perfectly aligned and monotonic
functions of |q|. Using the concept of scaling,
largely improves the accuracy of the
interpolation procedure and reduces the
computational cost




Scaling as a tool to interpolate the responses
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Scaling as a tool to interpolate the responses
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Self Consistent Green’s Function

- The one-body Green’s function is completely determined by solving the Dyson equation

E : 0
G o @!@ Correlated propagator

initial reference state, HF Self energy: encoding nuclear
medium effects on the
particle propagation

D=3 [G (E )] an iterative procedure is required to solve the Dyson equation self-consistently

* The self-energy is systematically calculated in a non-perturbative fashion within the Algebraic
Diagrammatic Construction (ADC).

« Two- and three-nucleon force contributions are included up to the third order =3 ADC(3)

« Chiral NNLOsat two and three nucleon forces are used in the calculation



Self Consistent Green’s Function

- To reduce the number of Feynman diagrams entering the calculation of the Green’s Function, only

interaction irreducible diagrams are considered. The effective one- and two- body interactions are
introduced:

- 1
Uag = Uqap + Z Var,860s~ + 1 Z W, 86 PyuPus
0y puryo

Vaﬁ,év = Vag,sy T Z Wapu,yovPou -
U

2nd and 3rd order
diagrams with 2h1p
A A (and 2p1h)
intermediate
configurations

- Within the ADC(3) these diagrams are taken as ‘seeds’ for the infinite order re-summation that
eventually generates the self-energy

« Use the one-body propagator to obtain static and dynamical nuclear observables of “He and °0.



The *He SGFC point density distribution

pp(r) [fm =]

« Operators are expanded on an harmonic oscillator basis with a given oscillator frequency Aw ,

and size of the single-particle model space Nmax

* Point-proton density distribution

. >k
pp(r) = E ¢5 (r)Pa(r)pas
af
0.14 ,
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* One-body density matrix

A A
pap = (Yo \a;aa]\IJw

* The Optimized Reference State (OpRS)
curve is obtained defining an independent
particle model propagator:
k
b (95)*

=T Z OpRS

kEF

ORS
GP

— 1
o ¢PPR53nd ¢ are obtained by requiring that
the OpRS lowest momenta of the spectral
distribution reproduce those of the full
calculation




The *He SGFC charge density distribution

* The nuclear charge density distribution is written in terms of the charge elastic form factor

g _iqr (GE(Q2 + GE(Q2))hp()

pen (') :/

(2m)°

\/1 + le/(4m2)

e The cOm issue: The subtraction of the cOm contribution from the wave function is a long standing

problem affecting a number of many-body approaches relying on single-nucleon basis

0.16
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0

To estimate the error due to residual

[
\\

QMC AVI18+UIX ———-- |

cOm contribution in 4He we developed

OpRS NNLO,,, intr

Metropolis Monte Carlo calculation

OpRS NNLO,,, ——--
0.1F

e Trial wave function: |¢y) = Wé)pRS>

* A sequence of points in the 3A-
dimensional space are generated by
sampling from P(R) = |57 (R)|?

* The intrinsic coordinates are given by

f.i:ri_I{cma Rcmi;ri

* The QMC AV18+UIX results are taken from D. Lonardoni et al, Phys. Rev. C96, 024326 (2017)




The charge elastic form factor “He

1 G5(Q2)pp(q) + GH(Q2) pn(q)
4 V14 Q2 /(4m?) |

 The charge elastic form factor is given by F7, (q) -
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< The N2LO results are taken from J. E. Lynn et al, Phys. Rev. C 96, 054007 (2017) where two different
coordinate space cut offs have been adopted




The 'O SGFC charge density distribution

* Nuclear charge density distribution of 6O
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* Nice agreement between the SCGF and QMC calculations

* SCGF results agree with experiments (corroborates the goodness of NNLOsat)



The 'O SGFC momentum distribution

* Single particle momentum distribution of 1°O

6 x 107 |

QMC AV184+UIX ------
ADC(3) NNLO,,, ——

0 100 200 300 400 500
p [MeV]

* The momentum distribution reflects the fact that NNLOsat is softer the AV18+UIX.



The 'O SGFC momentum distribution

e Single particle momentum distribution of '°O, log scale
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* The momentum distribution reflects the fact that NNLOsat is softer the AV18+UIX.



The charge elastic form factor for'°O

102 B I I I [ [ [ | ]
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< The N2LO results are taken from D. Lonardoni, et. al, Phys. Rev. C97, 044318 (2018) where two
different coordinate-space cutoffs have been adopted




The Impulse Approximation

* For sufficiently large values of |q|, the IA can be applied under the assumptions

) — 1) @) a Jo = _Jo

- @

 The matrix element of the current can be written in the factorized form
(O[Jalf) = > (Ol[k) @ [ f)a—1](kl Y jilp)
k )

* The nuclear cross section is given in terms of the one describing the interaction with individual bound

nucleons
daA—/dEdSk:da

* The intrinsic properties of the nucleus are described by the hole spectral function




The one-body hole Spectral Function

* The nuclear matrix element can be rewritten in terms of the transition amplitude

(w7~ @ (kllvg) ny,a (k) =) @a (k) aalvy),

* The Spectral Function gives the probability distribution of removing a nucleon with momentum Kk,

leaving the spectator system with an excitation energy E

- Z (Wlllk) ® g7~ HIP6(E + Bf ! — By

1
:—ZCI)B Im<¢0 ‘CLBE—I—(H E&) — i aa‘¢64>°

e The two points Green’s Function describes nucleon propagation in the nuclear medium

1
Griop(E) = (50 g =y e talv0)




The Impulse Approximation and convolution scheme

* In the kinematical region in which the interactions between the struck
particle and the spectator system can not be neglected, the |A results
have to be modified to include the effect of final state interactions (FSI).

D

do per — / ' folw — w)dé1a , &(p) = e(p) +

Optical Potential

* The theoretical approach to calculate the folding function consists on a generalization of Glauber theory
of high energy proton-nucleus scattering

fal) = 6(w) et [TE (W) /To

Nuclear Transparency Glauber Factor

A.Ankowski et al,Phys. Rev. D91, 033005 (2015) O.Benhar, Phys. Rev. C87, 024606 (2013)
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"He-e cross sections within the SCGF approach
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* Including FSI in the OpRS intrinsic results
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®0-e” cross sections within the SCGF approach
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The MiniBooNE CCQE (CCOm) puzzle

e ———

12
CCQEon C | |
Luis Alvarez-Ruso, arXiv:1012.3871
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* The 2p2h contribution is needed to explain the size of the measured cross section



The CBF one-body Spectral Function of finite nuclei

« 12C Spectral Function obtained within CBF
and using the Local Density Approximation

“\P(k,E) [GeV™*]

N
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“ij
Dj
Dj
I 000

» Zn : spectroscopic factor extracted from (e, e’p)

e Fn: finite width function accounting for residual
interactions not included in a MF picture

 The one-body Spectral function of nuclear matter: - B [GeV]
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do/dQdw [ub/sr GeV]

Production of two particle-two hole (2p2h) states

 |nitial State Correlations

YYYYYY

YYVYY

; 12(;96«‘”( * Pcorr(K,E) accounts for

F,=961 MeV ] the presence of
0.=37.5 deg strongly correlated
pairs. Its contribution
to the cross section is
clearly visible:
appearance of a tail in
the large energy
transfer region
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« The Impulse Approximation is adopted

do s = / dEdBkdaN




do/dQdw [ub/sr GeV]

Production of two particle-two hole (2p2h) states

- Initial State Correlations - Meson Exchange currents

v
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Different contributions to
the relativistic two-body
currents




do/dQdw [ub/sr GeV]

Production of two particle-two hole (2p2h) states

 |nitial State Correlations
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* Pcorr(k,E) accounts for
the presence of
strongly correlated
pairs. Its contribution
to the cross section is
clearly visible:
appearance of a tail in
the large energy
transfer region

« The Impulse Approximation has been generalized:
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« Meson Exchange currents

YYYYYY

Different contributions to
the relativistic two-body
currents




do/dwdQ |nb/sr MeV|

Results for electron-'°C cross sections
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(Anti)neutrino -'“C scattering cross sections

The inclusive cross section of the process in which a neutrino or antineutrino scatters off a
nucleus can be written in terms of five response functions

do
dEdSy

X [UOOROO + vzszz _ UOzROz WZI:

+ vmazRazx + U:ByR:cy]

* The two-body diagrams contributing to the axial and vector responses

A [T Fabakis

* In the preliminary results we present we only included:

Wipon = Wrise + Wirpe + %J




Two-body CC response functions of '“C

q=800 MeV

/ =~ N JPG RT
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w [MeV]

» Comparison of the five CC response functions of 1°C with the results of |. Ruiz Simo, et. al,

Journal of Phys. G 44, no. 6 (2017). The different curves have been obtained with the GRFG model




CCOm neutrino -'“C cross sections
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« The 2b contribution mostly affects the ‘dip’ region, in analogy with

« Meson exchange currents strongly enhance the cross section for large
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CCOm antineutrino -'“C cross sections
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NCOT neutrino -'°C cross sections
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NCOm antineutrino -'“C cross sections
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CCOr total cross section: MiniBooNE data
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* The 2p2h contribution is needed to explain the size of the measured cross section



Prospects

« Green’s Function Monte Carlo approach :

<+ Extend the interpolation algorithm and the two-body fragment model to describe the NCOrmt
inclusive cross section

< Spectral Function calculation of light nuclei within GFMC with both phenomenological and
chiral Hamiltonians

« Self Consistent Green’s Function approach :

< Extension to the electroweak sector including both one- and two-body currents for closed
shell nuclei

<+ The SCGF method has recently been reformulated within the Gorkov’s theory that allows to
tackle open shell nuclei. Provide predictions for electron and neutrino scattering on “°Ar and
48T

« Correlated Basis Function

<+ Flux-folded double differential inclusive cross sections for CCOmt and NCOrt processes

< Inclusion of the interference between one- and two-body currents: benchmark with GFMC
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Relativistic effects in a correlated system
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* Longitudinal responses of “He for |g|=700 MeV in the four different reference frames.
The curves show differences in both peak positions and heights.



Relativistic effects in a correlated system

* The frame dependence can be drastically reduced if one assumes a two-body breakup model with
relativistic kinematics to determine the input to the non relativistic dynamics calculation

ph pi
pl7 = (i_i> mn My
my My > o=

Jro_ Jr Jr
Pf = PN T Dy
* The relative momentum is derived in a relativistic fashion
Wit =B — Bl

B = \Jm3, + [ + pu/Mx P} |2 + /M3 + [pfr — p/my P2

 And it is used as input in the non relativistic kinetic energy
fro_ 2
€y = (pfr) /(21)

* The energy-conserving delta function reads

r r r r r aFfT -l r re r
S(Bf" — B —w!") = 8(F(ef") —w/") = (T ) dlef” — e (a7 )]



Relativistic effects in a correlated system
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 Longitudinal responses of “He for |g|=700 MeV in the four different reference frames.
The different curves are almost identical.



Extension of the factorization scheme to two-nucleon emission amplitude

X) — |p P/> 2y \”(A—2)> — ’”(A—2); P P/> :

We can introduce the two-nucleon Spectral Function. ..

P(k,K',E) = |(na_z): k K'|0)]*6(E + Eo — En)

probability of removing two nucleons leaving the A-2 system with energy E

v

The pure 2-body & the interference contribution to the hadron tensor read

W2p2h 22 X /d3kd3k’d3pd3p’/dE Pan(k, k', E){kk’[j12|pp") (PP’ |j12|kk’)

WH 2poh,12 /d3k d*¢ d*¢ d&*h PP dPp o ,pap/jf2£7€/>
[km )+ <k|12 ®)]




/ pt’ p2’ p1’ pz’ p1’ p2’ p1’ pZ’\
q q

A 0 A A
k2 k2 k1 k1  pd

s — > — — — — < — — — — < — —

\ p1 p2 p1 p2 p1 N p2 p1 p2 /

The Rarita-Schwinger (RS) expression for the A propagator reads

S5 (p. Ma) = p+ Ma o _ V1 2pPpY APpT — 7Pl
AT 2 M2 3 3M2 3Ma

WARNING

If the condition p4 > (mpy + m;)? the real resonance mass has to be

replaced by Ma — Ma — il (s)/2 where ['(s) = (igﬁw"’nf; \k/Z(mN + Ey).




Hadronic monopole form factors

/\72T — m72T
FWNN(k2) A2 _ k2
/\2
FWNA(kz) _ TNA
/\72TNA — k*
and the EM ones
1
2\
F’VNN(q ) T (1 o q2//\2D)2 ’
2\ —1/2 2\ —1/2
q q
Fina(g?) = Fy/wv(qz)(l - p) (1 - p)
p) 3

where A, = 1300 MeV, A ya = 1150 MeV, A4 = 0.71GeV?,
Ny = M + Mp and A3 = 3.5 GeV?.



