

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Nuclear structure corrections in muonic atoms (To appear in J. Phys. G)

Nir Nevo Dinur¹ Chen Ji², Javier Hernandez^{1,3,5}, Sonia Bacca^{1,4,5}, Nir Barnea⁶

¹TRIUMF, ²Central China Normal University,
 ³University of British Columbia, ⁴University of Manitoba,
 ⁵Gutenberg-Universität Mainz, ⁶The Hebrew University of Jerusalem

INT-18-2a — Fundamental Physics with Electroweak Probes of Light Nuclei

Nir Nevo Dinur (TRIUMF)

How big is the proton?

How big is the deuteron?

Nir Nevo Dinur (TRIUMF)

Nuclear structure corrections in muonic atoms

The proton radius puzzle

Nir Nevo Dinur (TRIUMF)

Nuclear structure corrections in muonic atoms

CREMA @ PSI

Extract precise charge radii R_c from Lamb shift (LS) in:

- µH (published 2010,2013: proton radius puzzle)
- µD (published 2016: deuteron radius puzzle)
- μ^{4} He⁺ (measured 2014, finalizing: agreement with e^{-4} He ?!)
- μ^{3} He⁺ (measured 2014, analyzing: ???)
 - \implies radius puzzle(s), QED tests, He isotope shift, nuclear *ab initio*, ...
- μ^{3} H, μ^{6} He⁺, $\mu^{6,7}$ Li⁺² ... (possible?)

CREMA @ PSI

Extract precise charge radii R_c from Lamb shift (LS) in:

- µH (published 2010,2013: proton radius puzzle)
- µD (published 2016: deuteron radius puzzle)
- μ^{4} He⁺ (measured 2014, finalizing: agreement with e^{-4} He ?!)
- μ^{3} He⁺ (measured 2014, analyzing: ???)
 - \implies radius puzzle(s), QED tests, He isotope shift, nuclear *ab initio*, ...
- μ^{3} H, μ^{6} He⁺, $\mu^{6,7}$ Li⁺² ... (possible?)

Extract magnetic radii R_m from Hyper-fine splitting (HFS) in:

• μ H & μ ³He⁺ (approved)

CREMA @ PSI

Extract precise charge radii R_c from Lamb shift (LS) in:

- µH (published 2010,2013: proton radius puzzle)
- µD (published 2016: deuteron radius puzzle)
- μ^{4} He⁺ (measured 2014, finalizing: agreement with e^{-4} He ?!)
- μ^{3} He⁺ (measured 2014, analyzing: ???)
 - \implies radius puzzle(s), QED tests, He isotope shift, nuclear *ab initio*, ...
- μ^{3} H, μ^{6} He⁺, $\mu^{6,7}$ Li⁺² ... (possible?)

Extract magnetic radii R_m from Hyper-fine splitting (HFS) in:

• μ H & μ ³He⁺ (approved)

FAMU @ RIKEN-RAL / J-PARC

• HFS in μ H in two new methods (planned)

Precise R_c (R_m) from μA LS (HFS)

Require accurate theoretical inputs from QED, hadron and nuclear physics

- QED corrections:
 - vacuum polarization
 - lepton self energy
 - relativistic recoil effects
- Theory of μ-p, D, ^{3,4}He⁺ reexamined Martynenko *et al.* '07, Borie '12, Krutov *et al.* '15 Karshenboim *et al.* '15, Krauth *et al.* '15 ...

- Nuclear finite-size corrections (elastic):
 - leading term (OPE): $\delta_{size} = \frac{m_r^3}{12} (Z\alpha)^4 \times R_c^2$
 - Zemach/Friar term (TPE): $\delta_{
 m Zem} = -rac{m_r^4}{24} (Zlpha)^5 imes \langle r^3
 angle_{(2)} \propto R_c^3$
 - can be calculated from g.s. charge distribution, Friar '**79**, Borie '**12**('**14**), Krutov *et al.* '**15**
 - extracted from experimental form factors, Sick '14
 - or avoided due to cancellations with $\delta_{\rm pol}$ Pachucki '11 & Friar '13 $(\mu {\rm D})$

- Nuclear polarization corrections (inelastic TPE):
 - least well-known
 - related to nuclear response functions: $S_O(\omega) = \oint |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$
 - can be calculated (continuum few-body problem)
 - or extracted from data (very imprecise)

 $\Delta E_{2S-2P} = \delta_{QED} + \mathcal{A}_{OPE} \times R_c^2 + \delta_{Zem} + \delta_{pol}$

- Nuclear polarization corrections (inelastic TPE):
 - least well-known

 - can be calculated (continuum few-body problem)
 - or extracted from data (very imprecise)
 - sometimes rewritten as:

 $\delta_{\rm TPE} \equiv \delta_{\rm Zem} + \delta_{\rm pol}$

The accuracy of R_c is limited by δ_{TPE}

Example — μ D:

$$\begin{aligned} \Delta E_{\rm QED}^{\rm LS} &= 228.77356(75) \, \mathrm{meV} \\ \Delta E_{\rm rad.-dep.}^{\rm LS} &= -6.11025(28) \, r_{\rm d}^2 \, \mathrm{meV/fm^2} + 0.00300(60) \, \mathrm{meV} \\ \Delta E_{\rm TPE}^{\rm LS} &= 1.70910(2000) \, \mathrm{meV} \end{aligned}$$

J. Krauth et al. (CREMA), Ann. Phys. (2016); R. Pohl et al. (CREMA), Science 2016

Status — prior to $\mu^{3,4}$ He⁺ measurements:

- Uncertainty in $\delta_{\rm pol}$: ~ 20%
- Required: $\sim 5\%$

(to determine R_c with $\sim 10^{-4}$ accuracy)

We have performed the first *ab-initio* calculation of $\delta_{ m Zem}$ and $\delta_{ m pol}$ for A=3,4

we used state-of-the-art nuclear forces

- AV18+UIX
- χ EFT: N3LO (Entem & Machleidt) + N2LO (Navrátil)
- \implies estimate nuclear physics uncertainty

we employ established few-body methods

- EIHH: Effective interaction Hyperspherical Harmonics (bound method)
- LIT: Lorentz Integral Transform (continuum method)
- LSR: A new method based on the Lanczos algorithm NND et al., Phys. Rev. C (2014)

We have performed the first *ab-initio* calculation of $\delta_{ m Zem}$ and $\delta_{ m pol}$ for A=3,4

we used state-of-the-art nuclear forces (at the time...)

- AV18+UIX
- χ EFT: N3LO (Entem & Machleidt) + N2LO (Navrátil)

 \implies estimate nuclear physics uncertainty

we employ established few-body methods

- EIHH: Effective interaction Hyperspherical Harmonics (bound method)
- LIT: Lorentz Integral Transform (continuum method)
- LSR: A new method based on the Lanczos algorithm NND et al., Phys. Rev. C (2014)

electric dipole photoabsorption cross section $\sigma_{\gamma}(\omega) = 4\pi^2 \alpha \omega S_{D1}(\omega)$ — from LIT

• Hamiltonian for muonic atoms

 $H = H_{nucl} + H_{\mu} + \Delta H$ $H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$

• Corrections to the point Coulomb from protons

$$\Delta H = \alpha \sum_{i}^{Z} \left(\frac{1}{r} - \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_i|} \right)$$

• Evaluate inelastic effects of ΔH on muonic spectrum in 2nd-order perturbation theory

$$\delta_{\rm pol} = \sum_{N \neq N_0, \mu} \langle N_0 \mu_0 | \Delta H | N \mu \rangle \frac{1}{E_{N_0} - E_N + \epsilon_{\mu_0} - \epsilon_{\mu}} \langle N \mu | \Delta H | \mu_0 N_0 \rangle$$

 $|\mu_0
angle$: muon wave function for 2S/2P state

Nir Nevo Dinur (TRIUMF)

Systematic contributions to nuclear polarization

δ_{NR} Non-Relativistic limit

δ_{Rel} Relativistic corrections

δ_C **Coulomb** distortions

δ_{NS} Corrections from finite Nucleon Size

• Neglect Coulomb interactions in the intermediate state

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers of

 $\eta \equiv \sqrt{2m_r\omega} |\boldsymbol{R} - \boldsymbol{R}'|$

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers of $\eta \equiv \sqrt{2m_r\omega}|{m R}-{m R}'|$

- $|{m R}-{m R}'|$ \Longrightarrow "virtual" distance the proton travels in 2γ exchange
- uncertainty principal $|{m R}-{m R}'|\sim 1/\sqrt{2m_N\omega}$

• $\eta \sim \sqrt{\frac{m_r}{m_N}} \approx 0.3$

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers of $\eta \equiv \sqrt{2m_r\omega}|{m R}-{m R}'|$

- $|{m R}-{m R}'|$ \Longrightarrow "virtual" distance the proton travels in 2γ exchange
- uncertainty principal $|{m R}-{m R}'|\sim 1/\sqrt{2m_N\omega}$

• $\eta \sim \sqrt{\frac{m_r}{m_N}} \approx 0.3$

$$P_{NR}(\omega, \mathbf{R}, \mathbf{R}') \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$
$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)} \sim \eta^2 + \eta^3 + \eta^4$$

Dynamical (polarization) contributions to δ_{TPE}

$$\delta_{pol} = \sum_{a} I_{a} = \sum_{a} \int d\omega \, S_{\hat{O}a}(\omega) \, g_{a}(\omega)$$

$$\begin{split} \delta_{pol} &= \sum_{a} I_{a} = \sum_{a} \int d\omega \, S_{\hat{O}a}(\omega) \, g_{a}(\omega) \\ S_{\hat{O}}(\omega) &= \sum_{a} |\langle f|\hat{O}|i\rangle|^{2} \delta(\omega_{f} - \omega) \implies \qquad I = \langle i|\hat{O}^{\dagger} \, g(\hat{H}) \, \hat{O}|i\rangle \end{split}$$

$$\begin{split} \delta_{pol} &= \sum_{a} I_{a} = \sum_{a} \int d\omega \, S_{\hat{O}a}(\omega) \, g_{a}(\omega) \\ S_{\hat{O}}(\omega) &= \sum_{a} |\langle f|\hat{O}|i\rangle|^{2} \delta(\omega_{f} - \omega) \implies \qquad I = \langle i|\hat{O}^{\dagger} \, g(\hat{H}) \, \hat{O}|i\rangle \end{split}$$

• E.g., the leading polarization contribution relates to the dipole response

$$\delta_{D1}^{(0)} \propto \int_{\omega_{\rm th}}^{\infty} d\omega \, S_{D_1}(\omega) \, \omega^{-1/2}$$

$$\begin{split} \delta_{pol} &= \sum_{a} I_{a} = \sum_{a} \int d\omega \, S_{\hat{O}a}(\omega) \, g_{a}(\omega) \\ S_{\hat{O}}(\omega) &= \sum_{a} |\langle f|\hat{O}|i\rangle|^{2} \delta(\omega_{f} - \omega) \implies \qquad I = \langle i|\hat{O}^{\dagger} \, g(\hat{H}) \, \hat{O}|i\rangle \end{split}$$

• E.g., the leading polarization contribution relates to the dipole response

$$\delta_{D1}^{(0)} \propto \int_{\omega_{\rm th}}^{\infty} d\omega \, S_{D_1}(\omega) \; \omega^{-1/2}$$

 \Rightarrow can calculate I_a using LIT: Calculate $\mathcal L$, invert, integrate, extrapolate to ∞

$$\begin{split} \delta_{pol} &= \sum_{a} I_{a} = \sum_{a} \int d\omega \, S_{\hat{O}a}(\omega) \, g_{a}(\omega) \\ S_{\hat{O}}(\omega) &= \sum_{a} \int |\langle f|\hat{O}|i\rangle|^{2} \delta(\omega_{f} - \omega) \implies \qquad I = \langle i|\hat{O}^{\dagger} \, g(\hat{H}) \, \hat{O}|i\rangle \end{split}$$

• E.g., the leading polarization contribution relates to the dipole response

$$\delta_{D1}^{(0)} \propto \int_{\omega_{\rm th}}^{\infty} d\omega \, S_{D_1}(\omega) \, \omega^{-1/2}$$

 \Rightarrow can calculate I_a using LIT: Calculate \mathcal{L} , invert, integrate, extrapolate to ∞ \Rightarrow or calculate I_a directly from $\hat{O}|i\rangle$ using LSR: fast, precise, efficient \rightarrow automatized

LSR: Lanczos sum rule method

• For example, from $S_{D_1}(\omega)$ calculated with $M\sim 10^5,$ we get

NND, Barnea, Ji, and Bacca, PRC (2014)

	Pachucki [36]	Hernandez et al. [41]	Pachucki and Wienczek [39]	Friar [28]
	(2011)	(2014)	(2015)	(2013)
$\delta_{D1}^{(0)}$	-1.910	-1.907	-1.910	-1.925
$\delta_L^{(0)}$	0.035	0.029	0.026	0.037
$\delta_T^{(0)}$	_	-0.012	_	_
δ_{HO}	_	_	-0.004	_
$\delta_C^{(0)}$	0.261	0.262	0.261	_
$\delta_M^{(0)}$	0.016	0.008	0.008	0.011
$\delta_{Z3}^{(1)}$	_	0.357	_	_
$\delta_{R2}^{(2)}$	0.045	0.042	0.042	0.042
$\delta_Q^{(2)}$	0.066	0.061	0.061	0.061
$\delta_{D1D3}^{(2)}$	-0.151	-0.139	-0.139	-0.137
$\delta_{Z1}^{(1)}$	_	0.064	_	_
$\delta_{np}^{(1)}$	_	0.017	0.018	0.023
$\delta_{NS}^{(2)}$	_	-0.020	-0.020	-0.021
δ^A_{pol}	-	-1.240	_	-
$\delta^A_{ m Zem}$	_	-0.421	_	_
δ^A_{TPE}	-1.638	-1.661	-1.657	-1.909

How big is the deuteron?

How big is the small puzzle?

382

O.J. Hernandez et al. / Physics Letters B 778 (2018) 377-383

Table 2

Uncertainty breakdown of the final δ_{TPE} value. For the single-nucleon contribution we quote two values, one where we adopted the strategy of Ref. [19] and one where we use the larger uncertainties from Ref. [33] for $\delta_{m,h}^{k}$.

Contribution	Uncertainty in meV	
Nuclear physics (syst)	+0.008 -0.011	
Nuclear physics (stat)	± 0.001	
η -expansion	± 0.005	
Single-nucleon Atomic physics	±0.0102 [19] ±0.0172	±0.0198 [33]
Total	$+0.022 \\ -0.024$	$+0.028 \\ -0.029$

Triton

Deuteron

-4.208

-10.356

-14.564

5 10

ò

-4.250

-10.618

-14.868

 4 He

Nir Nevo Dinur (TRIUMF)

 $\delta_{D1}^{(0)}$

 $\delta_L^{(0)}$

 $\delta_T^{(0)}$

 $\delta_M^{(0)}$

 $\delta_{C}^{(0)}$

 $\delta_{R3}^{(1)}$

 $\delta^{(1)}_{Z3}$

 $\delta_{R^2}^{\;(2)}$

 $\delta_Q^{(2)}$

 $\delta_{D1D3}^{(2)}$

 $\delta_{R1}^{(1)}$

 $\delta_{Z1}^{(1)}$

 $\delta_{NS}^{(2)}$

 δ^A_{pol}

 δ^A_{Zem}

 δ^A_{TDE}

-15 -10 -5 0 [meV]

 δ^A_{pol}

 δ^A_{Zem}

 δ^{A}_{TPE}

PHYSICAL REVIEW A 95, 012506 (2017)

Two-photon exchange correction to 2*S*-2*P* splitting in muonic ³He ions

Carl E. Carlson*

Physics Department, College of William and Mary, Williamsburg, Virginia 23187, USA

Mikhail Gorchtein[†] and Marc Vanderhaeghen Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität, Mainz, Germany (Received 2 December 2016; published 27 January 2017)

We calculate the two-photon exchange correction to the Lamb shift in muonic 3 He ions within the dispersion relations framework. Part of the effort entailed making analytic fits to the electron- 3 He quasielastic scattering data set, for purposes of doing the dispersion integrals. Our result is that the energy of the 2*S* state is shifted downwards by two-photon exchange effects by 15.14(49) meV, in good accord with the result obtained from a potential model and effective field theory calculation.

TABLE I. Individual contributions to ΔE_{2S} from two-photon exchange in μ -³He, in units of meV.

Contribution	This work	Refs. [21,22]
Elastic	-10.93(27)	-10.49(24)
δ^N_{Zem}		-0.52(3)
Inelastic	-5.81(40)	-4.45(21)
Nuclear	-5.50(40)	-4.17(17)
Nucleon	-0.31(2)	-0.28(12)
Subtraction	1.60(12)	
Nuclear	1.39(12)	
Nucleon	0.21(3)	
Total TPE	-15.14(49)	-15.46(39)

 $\mu {\rm He}$ precision: $\sim 0.03~{\rm fm}^2$ — thanks to correlations between $^{3,4}{\rm He}$ calculations

Nir Nevo Dinur (TRIUMF)

June 14 2018 22 / 41

	$\mu^2 H$ μ		$\mu^{3}H$	$^{3}\mathrm{H}$ $\mu^{3}\mathrm{He}^{-}$		ł	$\mu^4 \text{He}^+$		ł			
	$\delta^A_{ m pol}$	$\delta^A_{ m Zem}$	δ^A_{TPE}	$\delta^A_{ m pol}$	$\delta^A_{ m Zem}$	δ^A_{TPE}	$\delta^A_{ m pol}$	$\delta^A_{ m Zem}$	δ^A_{TPE}	$\delta^A_{ m pol}$	$\delta^A_{ m Zem}$	δ^A_{TPE}
Numerical	0.0	0.0	0.0	0.1	0.0	0.1	0.4	0.1	0.1	0.4	0.3	0.4
Nuclear model	0.3	0.5	0.4	1.3	2.4	1.7	0.7	1.8	1.5	<mark>3.9</mark>	4.6	4.4
ISB	0.2	0.2	0.2	0.7	0.2	0.5	1.8	0.2	0.5	2.2	0.5	0.5
Nucleon size	0.3	0.8	0.0	0.6	0.9	0.2	1.2	1.3	0.9	2.7	2.0	1.2
Relativistic	0.0	-	0.0	0.1	-	0.1	0.4	-	0.1	0.1	-	0.0
Coulomb	0.4	-	0.3	0.5	-	0.3	3.0	-	0.9	0.4	-	0.1
η -expansion	0.4	-	0.3	1.3	-	0.9	1.1	-	0.3	0.8	-	0.2
Higher $Z\alpha$	0.7	-	0.5	0.7	-	0.5	1.5	-	0.4	1.5	-	0.4
Total	1.0	0.9	0.8	2.3	2.2	2.0	4.2	2.2	2.1	5.5	5.1	4.6

System	Our Ref.	Unc.	Experimental Status
$\mu^{2}{ m H}$	Phys. Lett. B '14, '18	1%	published <i>Science</i> '16
$\mu{}^4 extsf{He}^+$	Phys. Rev. Lett. '13	20% ightarrow 6%	measured, unpublished
$\mu{}^{3}{ m He^{+}}$	$\int Phys Lett B'16$	20% ightarrow 4%	measured, unpublished
$\mu^{3}{ m H}$	$\int 10^{-10}$	2%	measurable?

• Our results agree with other values and are more accurate

- \Rightarrow Unc. comparable with $\sim 5\%$ experimental needs
- \Rightarrow Will improve precision of R_c from Lamb shifts
- \Rightarrow May help shed light on the "proton (deuteron) radius puzzle"
- \Rightarrow ... and on the $^{3,4}\mathrm{He}$ "isotope-shift puzzle"

The work is not completed yet ...

PHYSICAL REVIEW A 94, 062505 (2016)

Lamb shift in muonic ions of lithium, beryllium, and boron

A. A. Krutov, A. P. Martynenko, F. A. Martynenko, and O. S. Sukhorukova Samara University, 443086, Moskovskoe shosse 34, Samara, Russia (Received 1 October 2016; published 15 December 2016)

We present a precise calculation of the Lamb shift $(2P_{1/2} - 2S_{1/2})$ in muonic ions $(\mu_3^6 Li)^{2+}$, $(\mu_3^1 Li)^{2+}$, $(\mu_4^2 Be)^{++}$, $(\mu_3^0 Be)^{++}$, $(\mu_3^1 B)^{4+}$, $(\mu_3^1$

TABLE I. Lamb shift $(2P_{1/2} - 2S_{1/2})$ in muonic ions $(\mu_1^2 Li)^{2+}$ and $(\mu_2^6 Li)^{2+}$. In parentheses are given the results obtained by other authors, with some references to their works, which discuss the calculation of corrections of this type.

	Contribution to the splitting	$(\mu_3^7 \text{Li})^{2+} (\text{meV})$	$(\mu_3^6 \text{Li})^{2+} (\text{meV})$
1	VP contribution of order $\alpha(Z\alpha)^2$ in 1γ interaction	4682.38 (4682.4 [7])	4664.95 (4665.0 [7])
2	Two-loop VP contribution of order $\alpha^2 (Z\alpha)^2$ in 1γ interaction	32.54 (32.44 [7])	32.41(32.27 [7])
3	VP and MVP contribution in one-photon interaction	0.01	0.01
30	HVP contribution	1.17 [7,58-60]	1.16 [7,58-60]
31	Nuclear polarizability	21 ± 4 [7]	15 ± 4 [7]
32	Total contribution	1531.78	1161.85

- ${}^{4}\text{He:} J^{\pi} = 0^{+}$
- N3LO, JISP16
- Quadrupole (E2): IS+IV
 - \rightarrow Dipole (E1) & Isoscalar Monopole (E0)

Nir Nevo Dinur (TRIUMF)

The proton radius puzzle is unsolved despite new data. More experiments are underway.

Nuclear corrections are the bottleneck in μA spectroscopy.

Extracting them from data was imprecise.

Ab-initio calculations with the LSR method provide precise and efficient results. We obtained the best nuclear corrections for $A \leq 4$.

Our hyperspherical harmonics ⁴He sum rules are benchmarked with SA-NCSM. This will allow calculations for μ -A, with $6 \leq A$,

as well as other sum rules in heavy open-shell nuclei.

We continue to develop new methods to study and improve these results and related problems (e.g., HFS)

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Thank you! Merci!