Archeology: Quasielastic Events from Bubble Chambers

Aaron S. Meyer (ameyer@quark.phy.bnl.gov)

Brookhaven National Laboratory

June 28, 2018

INT 18-2a: Fundamental Physics with Electroweak Probes of Light Nuclei

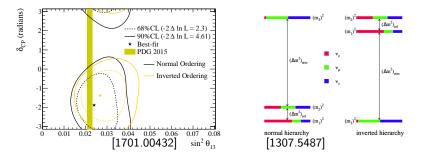
Outline

Introduction

- Neutrino Experiments
- QE Scattering
- Axial Form Factor
- Deuterium Bubble Chamber Data Reanalysis
 - Dipole
 - z Expansion
 - Results and Summary
- Future Prospects
 - Lattice QCD
- Conclusions

Introduction

Neutrino Oscillation Experiment Goals



Neutrino oscillation experiments are a major focus of upcoming decades

Experiments have several measurement goals:

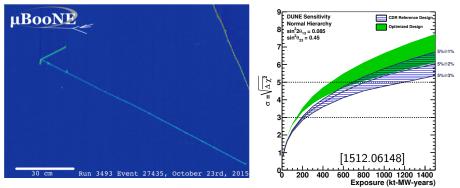
- determine value of δ_{CP}
- determine sign of Δm_{31}^2 ; i.e. mass hierarchy
- precision determinations of $\Delta m_{ij}^2 \equiv m_i^2 m_j^2$ and θ_{ij}

Want to maximize discovery potential for oscillation experiments, need precise supporting theoretical predictions

Nuclear Targets

Measurements employ large nuclear targets:

- Part of detection material
- Increase cross section to improve event rate



50% CP Violation Sensitivity

 $\mathsf{DUNE} \to \mathsf{Argon}, \, \mathsf{HyperK} \to \mathsf{H_2O}$

Nuclear targets are challenging and precision matters

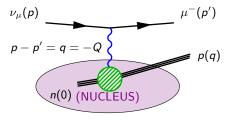
Dissect problem into simple pieces, get robust determinations of simplest

5 / 25

Quasielastic scattering

Quasielastic scattering good starting place understanding neutrino scattering:

- u interacts with single nucleon in nucleus \implies QE is relatively easy measurement, relatively theoretically clean
- QE is primary signal measurement process for neutrino oscillation experiments



In absence of intranuclear rescattering, can infer incident neutrino energy from lepton kinematics alone:

$$E_{\nu}^{QE} = \frac{2(M_n - E_b)E_{\ell} - ((M_n - E_b)^2 - M_p^2 + m_{\ell}^2)}{2(M_n - E_b - E_{\ell} + p_{\ell}\cos\theta_{\ell})}$$

Assumed to be single nucleon interaction, accesses free nucleon amplitudes

 \implies Use amplitudes from QE as building block for more sophisticated interactions

CCQE Cross section

$$\frac{d\sigma_{CCQE}}{dQ^2}(E_{\nu},Q^2) \propto \frac{1}{E_{\nu}^2} \left(A(Q^2) \mp \left(\frac{s-u}{M_N^2}\right) B(Q^2) + \left(\frac{s-u}{M_N^2}\right)^2 C(Q^2) \right)$$
$$s-u = 4M_N E_{\nu} - Q^2 - m_{\ell}^2 \qquad \eta \equiv \frac{Q^2}{4M_N^2}$$

$$\begin{aligned} \mathcal{A}(Q^{2}) &= \frac{m_{\ell}^{2} + Q^{2}}{M_{N}^{2}} \times \\ & \left[(1+\eta) F_{A}^{2} - (1-\eta) (F_{1}^{2} + \eta F_{2}^{2}) + 4\eta F_{1} F_{2} \right. \\ & \left. - \frac{m_{\ell}^{2}}{4M_{N}^{2}} \left((F_{1} + F_{2})^{2} + (F_{A} + 2F_{P})^{2} - 4(1+\eta) F_{P}^{2} \right) \right] \\ & \mathcal{B}(Q^{2}) &= 4\eta F_{A} \left(F_{1} + F_{2} \right) \qquad \mathcal{C}(Q^{2}) = \frac{1}{4} \left(F_{A}^{2} + F_{1}^{2} + \eta F_{2}^{2} \right) \\ & \left[1305.7513 \right] \end{aligned}$$

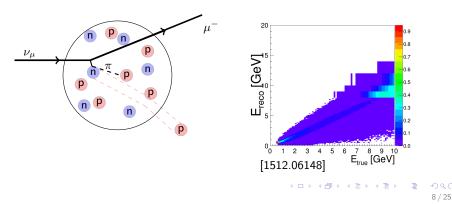
*F*₁, *F*₂ from high-statistics monoenergetic *e*⁻ scattering on proton target
 *F*_P suppressed by lepton mass corrections, constrained by PCAC
 *F*_A largest contributor to systematic errors

Nuclear Cross Sections

Intranuclear effects can be problematic, even for simple QE:

- Nuclear rescattering can change particle energies
- Topologies can be changed by absorption, emission of other particles
- \implies Energies cannot be determined on an event-by-event basis
- \implies Energy spectrum must be reconstructed statistically

Need to go simpler!



Focus

- Large nuclear targets have many interaction channels, want to put simplest on as solid footing as possible
- Quasielastic is simplest interaction channel, probes free nucleon matrix elements
- Separating out quasielastic is nontrivial in large nuclei
- Study QE in smallest nucleus possible
- \implies Study neutrino QE scattering in Deuterium

Deuterium Bubble Chamber

Dipole Form Factor

Most analyses assume the Dipole axial form factor (Llewellyn-Smith, 1972):

$${\sf F}_A^{
m dipole}(Q^2) = {{g_A}\over \left(1+{Q^2\over m_A^2}
ight)^2}$$

[Phys.Rept.3 (1972),261]

Dipole is an ansatz:

- inconsistent with QCD
- unmotivated in interesting energy region

 \implies uncontrolled systematics and therefore underestimated uncertainties

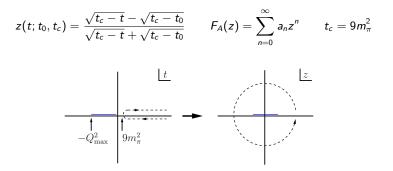
Large variation in m_A over many experiments (dubbed the "axial mass problem"):

- $m_A = 1.026 \pm 0.021$ (Bernard *et al.*, [arXiv:00107088])
- ▶ m^{eff}_A = 1.35 ± 0.17 (MiniBooNE, [arXiv:1002.2680])

Essential to use model-independent parameterization of F_A instead

z Expansion

The z Expansion [arXiv:1108.0423] is a conformal mapping which takes kinematically allowed region ($t = -Q^2 \le 0$) to within |z| < 1



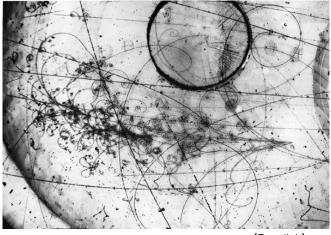
- Model independent: motivated by analyticity arguments from QCD
- Only few parameters needed: unitarity bounds
- Sum rules regulate large-Q² behavior

Summary of Existing DBC Experiments

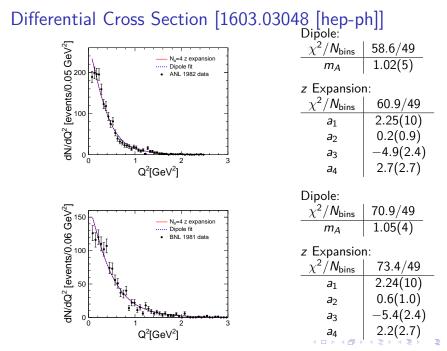
[0812.4543]

Experiment	Target	Events	Method	M_A , GeV	Ref.
ANL 69	Steel		$d\sigma/dQ^2$	1.05 ± 0.20	[1]
			σ	0.97 ± 0.16	
ANL 73	Deuterium	166	$d\sigma/dQ^2$	0.94 ± 0.18	[2]
			$\sigma \otimes d\sigma/dQ^2$	0.95 ± 0.12	
			σ	$0.75^{+0.13}_{-0.11}$	
ANL 77	Deuterium	~ 600	$d\sigma/dQ^2$	1.01 ± 0.09	[3]
			$\sigma \otimes d\sigma/dQ^2$	0.95 ± 0.09	
			σ	0.74 ± 0.12	
ANL 82	Deuterium	1737	$d\sigma/dQ^2$	1.05 ± 0.05	[4]
			$\sigma \otimes d\sigma/dQ^2$	1.03 ± 0.05	
BNL 81	Deuterium	1138	$d\sigma/dQ^2$	1.07 ± 0.06	[6]
BNL 90	Deuterium	2538	$d\sigma/dQ^2$	$1.070^{+0.040}_{-0.045}$	[8]
FermiLab 83	Deuterium	362	$d\sigma/dQ^2$	$1.05_{-0.16}^{+0.12}$	[9]
NuTeV 04	Steel	21614	σ	1.11 ± 0.08	[23]
MiniBooNE 07	Mineral oil	193709	$d\sigma/dQ^2$	1.23 ± 0.20	[26]
CERN HLBC 64	Freon	236	$d\sigma/dQ^2$	$1.00^{+0.35}_{-0.20}$	[11]
CERN HLBC 67	Freon	90	$\sigma \otimes d\sigma/dQ^2$	$0.75_{-0.20}^{+0.24}$	[12]
CERN SC 68	Steel	236	$d\sigma/dQ^2$	$0.65_{-0.40}^{+0.45}$	[13]
CERN HLBC 69	Propane	130	$\sigma \otimes d\sigma/dQ^2$	0.70 ± 0.20	[14]
CERN GGM 77	Freon	687	σ	0.88 ± 0.19	
			$d\sigma/dQ^2$	0.96 ± 0.16	[15]
CERN GGM 79	Propane/Freon	556	σ	0.87 ± 0.18	
			$d\sigma/dQ^2$	0.99 ± 0.12	[17]
CERN BEBC 90	Deuterium	552	σ	0.94 ± 0.07	
			$d\sigma/dQ^2$	1.08 ± 0.08	[18]

The Interior of a Bubble Chamber

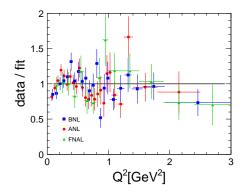


[Fermilab]



15 / 25

Residuals



Not a perfect description of data \implies possibly correlated systematic effect

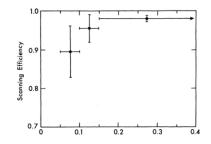
Neither dipole nor z expansion can properly explain shape of data

To account for this in final result, χ^2 errors inflated slightly \implies 10% of total uncertainty from this inflation

What could explain discrepancy?

- ► Vector form factor shape? ⇒ new analysis in Phys.Let.B 777, 8 (2018)
- Deuterium corrections?

Acceptance Corrections



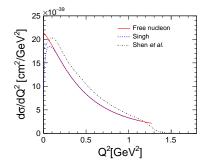
Simplistic model given for acceptance corrections

Acceptance correction for fixing errors from hand scanning Q^2 dependent correction, correlated between bins:

$$rac{dN}{e(Q^2)} o rac{dN}{e(Q^2)+\eta\, de(Q^2)}\,, \hspace{1em}$$
 fit with prior $\eta=0\pm 1$

All corrections η small; minimal improvement of goodness of fit

Deuterium Corrections



Two corrections tested:

Singh, Nucl. Phys. B 36, 419; Shen et al., 1205.4337 [nucl-th]

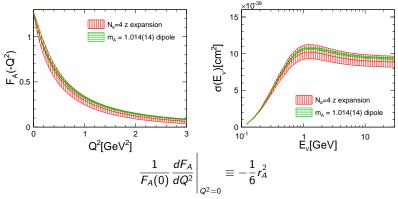
Corrections assumed to be E_{ν} independent

Both corrections have similar trends \rightarrow low Q^2 suppression, mild changes to curvature up to $Q^2 = 1.0 \text{ GeV}^2$

Shen prefers enhancement of Q^2 range

Despite different shapes and magnitude, effect on fits mild

Reanalysis Results Summary [1603.03048 [hep-ph]]



 $r_A^2 = 0.46(22) \text{ fm}^2$, $\sigma_{\nu n \to \mu \rho} (E_{\nu} = 1 \text{ GeV}) = 10.1(0.9) \times 10^{-39} \text{ cm}^2$ compared to Bodek *et al.* [Eur. Phys. J. C 53, 349]:

$$r_A^2 = 0.453(13) \text{ fm}^2$$
, $\sigma_{\nu n \to \mu p}(E_{\nu} = 1 \text{ GeV}) = 10.63(0.14) \times 10^{-39} \text{cm}^2$

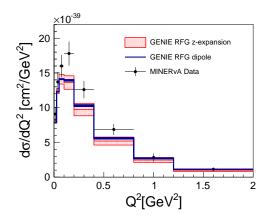
Dipole model significantly underestimates error from nucleon form factor Most theoretically clean data do not constrain form factor precisely

z Expansion in GENIE

z expansion coded into GENIE - may be turned on with configuration switch

Officially released in production version 2.12

Uncertainties on free-nucleon cross section as large as data-theory discrepancy \implies need to improve F_A determination to make headway on nuclear effects



See tutorial: https://indico.fnal.gov/event/12824/

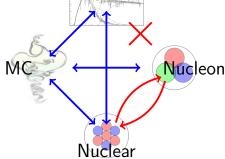
20 / 25

Future Prospects

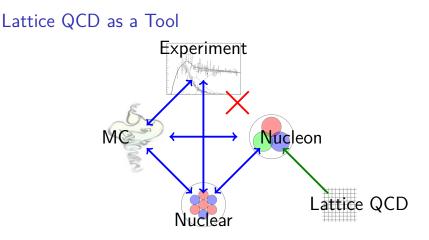
Lattice QCD as a Tool Experiment Nucleon MC Nuclear

The ideal situation: lots of redundancy and checks between elements of analysis

Lattice QCD as a Tool



The ideal situation: lots of redundancy and checks between elements of analysis In reality: F_A not well determined by experiment \implies nucleon amplitudes constrained by/used to constrain nuclear models



The ideal situation: lots of redundancy and checks between elements of analysis

In reality: FA not well determined by experiment

 \implies nucleon amplitudes constrained by/used to constrain nuclear models

Lattice QCD acts as a disruptive technology to break degeneracy

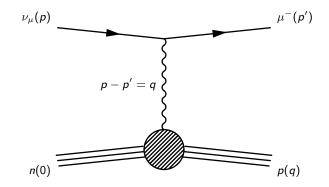
See Phiala's/Andreas's talks for more detail

How Does Lattice Help?

Lattice is well suited to compute matrix elements:

$$\mathcal{M}_{
u_{\mu}n
ightarrow\mu
ho}(m{p},m{p}') = \langle \mu(m{p}')| \left(V_{\mu}-A_{\mu}
ight)|
u(m{p})
angle \langle p(m{q})| \left(V_{\mu}-A_{\mu}
ight)|n(0)
angle$$

Systematically improvable: more computing power \implies more precision

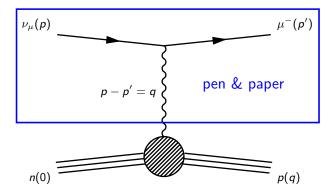


How Does Lattice Help?

Lattice is well suited to compute matrix elements:

$$\mathcal{M}_{\nu_{\mu}n \to \mu p}(p,p') = \langle \mu(p') | (V_{\mu} - A_{\mu}) | \nu(p) \rangle \langle p(q) | (V_{\mu} - A_{\mu}) | n(0) \rangle$$

Systematically improvable: more computing power \implies more precision

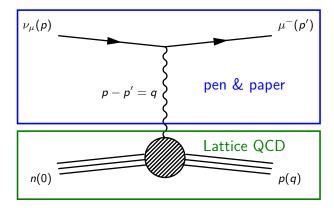


How Does Lattice Help?

Lattice is well suited to compute matrix elements:

$$\mathcal{M}_{\nu_{\mu} n \to \mu p}(p, p') = \langle \mu(p') | (V_{\mu} - A_{\mu}) | \nu(p) \rangle \langle p(q) | (V_{\mu} - A_{\mu}) | n(0) \rangle$$

Systematically improvable: more computing power \implies more precision



Nucleon axial form factor $G_A(Q^2)$

Previously, [Lin,0802.0863], [Yamazaki,0904.2039], [Bratt,1001.3620], [Bali,1412.7336]

Needed for neutrino oscillation experiments:

 $Charged\ current\ quasielastic\ (CCQE)\ neutrino-nucleus\ interaction\ must\ be\ known\ to\ high\ precision.$

Connecting quark - nucleon level: $G_A(Q^2)$ form factor. nucleon - nucleus level: nuclear model.

Traditionally: information on $G_A(Q^2)$ extracted from expt. using dipole fit:

$$G_A(Q^2) = rac{g_A}{(1+rac{Q^2}{M_A^2})^2} ~(r_A^2) = rac{12}{M_A^2}$$

World average (pre 1990) from ν scattering $M_A = 1.026(21)$ GeV.

Overconstrained form: different measurements, different M_A .

Lower energy expts: e.g. MiniBooNE: $M_A = 1.35(17)$ GeV

[Aguilar-Arevalo,1002.2680]

Systematics being explored including new analysis of old expt data: $\langle r_A^2 \rangle = 0.46(22) \text{ fm}^2 \rightarrow M_A = 1.01(24) \text{ GeV}$ from z-expansion [Meyer,1603.03048].

Plenary given by S. Collins, Lattice 2016

Several computations of $F_A(Q^2)$ appeared in response: LHPC 1703.06703 [hep-lat] ETMC 1705.03399 [hep-lat] CLS 1705.06186 [hep-lat] PNDME 1705.06834,1801.01635,1801.03130 [hep-lat] Additional g_A computations: (CalLat) 1704.01114,1710.06523 (JLQCD) 1805.10507

Ref.	gА	$\langle r_A^2 \rangle$ [fm ²]
LHPC	1.208(6)(16)(1)(10)	0.213(6)(13)(3)(0)
ETMC	1.212(33)(22)	0.267(9)(11)
CLS	$1.278(68)(^{+00}_{-87})$	$0.360(36)(^{+80}_{-88})$
PNDME	1.20(3)	0.25(6)
CalLat	1.285(17)	_
JLQCD	1.123(28)(29)(90)	_

Systematics being explored including new analysis of old expt data: $\langle r_A^2 \rangle = 0.46(22) \text{ fm}^2 \rightarrow M_A = 1.01(24) \text{ GeV}$ from z-expansion [Meyer,1603.03048].

Conclusions

- Precise determinations of nucleon form factors are an essential part of the long-baseline neutrino oscillation program
- Dipole shape underestimates uncertainties in free-nucleon cross sections
- Need robust determination of nucleon amplitudes with realistic errors to determine impact on future neutrino oscillation experiments
- Updated deuterium experiment would be ideal for reducing uncertainties, but unlikely to happen in near future
- z Expansion parameterization is consistent with QCD and sufficiently general to give realistic uncertainty estimates
- Lattice QCD can access nucleon form factors from first principles in absence of updated deuterium experiment
- Growing interest in neutrino physics in lattice community, can expect many new results in upcoming years

Thanks for listening!

Backup

Calculations of Interest

