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Neutrino Oscillation Experiment Goals
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Neutrino oscillation experiments are a major focus of upcoming decades

Experiments have several measurement goals:
I determine value of δCP
I determine sign of ∆m2

31; i.e. mass hierarchy
I precision determinations of ∆m2

ij ≡ m2
i −m2

j and θij

Want to maximize discovery potential for oscillation experiments,
need precise supporting theoretical predictions
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Nuclear Targets
Measurements employ large nuclear targets:

I Part of detection material
I Increase cross section to improve event rate
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DUNE → Argon, HyperK → H2O
Nuclear targets are challenging and precision matters
Dissect problem into simple pieces, get robust determinations of simplest
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Quasielastic scattering
Quasielastic scattering good starting place understanding neutrino scattering:

ν interacts with single nucleon in nucleus
=⇒ QE is relatively easy measurement,

relatively theoretically clean

QE is primary signal measurement process
for neutrino oscillation experiments (NUCLEUS)

p − p′ = q = −Q

νµ(p)

p(q)

µ−(p′)

n(0)

In absence of intranuclear rescattering,
can infer incident neutrino energy from lepton kinematics alone:

E QE
ν = 2(Mn − Eb)E` − ((Mn − Eb)2 −M2

p + m2
`)

2(Mn − Eb − E` + p`cosθ`)

Assumed to be single nucleon interaction, accesses free nucleon amplitudes

=⇒ Use amplitudes from QE as building block for more sophisticated interactions
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CCQE Cross section

dσCCQE
dQ2 (Eν ,Q2) ∝ 1

E 2
ν

(
A(Q2)∓

(
s − u
M2

N

)
B(Q2) +

(
s − u
M2

N

)2

C(Q2)

)

s − u = 4MNEν − Q2 −m2
` η ≡ Q2

4M2
N

A(Q2) = m2
` + Q2

M2
N
×[

(1 + η)FA
2 − (1− η)(F 2

1 + ηF 2
2 ) + 4ηF1F2

− m2
`

4M2
N

(
(F1 + F2)2 + (FA + 2FP)2 − 4(1 + η)F 2

P
)]

B(Q2) = 4ηFA (F1 + F2) C(Q2) = 1
4
(
FA

2 + F 2
1 + ηF 2

2
)

[1305.7513]
I F1, F2 from high-statistics monoenergetic e− scattering on proton target
I FP suppressed by lepton mass corrections, constrained by PCAC

=⇒ FA largest contributor to systematic errors
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Nuclear Cross Sections
Intranuclear effects can be problematic, even for simple QE:

I Nuclear rescattering can change particle energies
I Topologies can be changed by absorption, emission of other particles

=⇒ Energies cannot be determined on an event-by-event basis
=⇒ Energy spectrum must be reconstructed statistically

Need to go simpler!
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Focus

I Large nuclear targets have many interaction channels,
want to put simplest on as solid footing as possible

I Quasielastic is simplest interaction channel,
probes free nucleon matrix elements

I Separating out quasielastic is nontrivial in large nuclei
I Study QE in smallest nucleus possible

=⇒ Study neutrino QE scattering in Deuterium
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Deuterium Bubble Chamber
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Dipole Form Factor
Most analyses assume the Dipole axial form factor (Llewellyn-Smith, 1972):

F dipole
A (Q2) = gA(

1 + Q2
m2

A

)2

[Phys.Rept.3 (1972),261]
Dipole is an ansatz:

I inconsistent with QCD
I unmotivated in interesting energy region

=⇒ uncontrolled systematics and therefore underestimated uncertainties

Large variation in mA over many experiments
(dubbed the “axial mass problem”):

I mA = 1.026± 0.021 (Bernard et al., [arXiv:00107088])
I meff

A = 1.35± 0.17 (MiniBooNE, [arXiv:1002.2680])

Essential to use model-independent parameterization of FA instead
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z Expansion
The z Expansion [arXiv:1108.0423] is a conformal mapping which takes

kinematically allowed region (t = −Q2 ≤ 0) to within |z| < 1

z(t; t0, tc ) =
√

tc − t −
√

tc − t0√
tc − t +

√
tc − t0

FA(z) =
∞∑

n=0

anzn tc = 9m2
π

I Model independent: motivated by analyticity arguments from QCD
I Only few parameters needed: unitarity bounds
I Sum rules regulate large-Q2 behavior
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Summary of Existing DBC Experiments
[0812.4543]
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The Interior of a Bubble Chamber

[Fermilab]
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Differential Cross Section [1603.03048 [hep-ph]]

]2[GeV2Q
0 1 2 3

]2
 [e

ve
nt

s/
0.

05
 G

eV
2

dN
/d

Q

0

100

200

=4 z expansionaN
Dipole fit
ANL 1982 data

Dipole:
χ2/Nbins 58.6/49

mA 1.02(5)
z Expansion:
χ2/Nbins 60.9/49

a1 2.25(10)
a2 0.2(0.9)
a3 −4.9(2.4)
a4 2.7(2.7)

]2[GeV2Q
0 1 2 3

]2
 [e

ve
nt

s/
0.

06
 G

eV
2

dN
/d

Q

0

50

100

150
=4 z expansionaN

Dipole fit
BNL 1981 data

Dipole:
χ2/Nbins 70.9/49

mA 1.05(4)
z Expansion:
χ2/Nbins 73.4/49

a1 2.24(10)
a2 0.6(1.0)
a3 −5.4(2.4)
a4 2.2(2.7)

15 / 25



Residuals
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Not a perfect description of data =⇒ possibly correlated systematic effect

Neither dipole nor z expansion can properly explain shape of data

To account for this in final result, χ2 errors inflated slightly
=⇒ 10% of total uncertainty from this inflation

What could explain discrepancy?
I Vector form factor shape? =⇒ new analysis in Phys.Let.B 777, 8 (2018)
I Deuterium corrections? 16 / 25



Acceptance Corrections

Simplistic model given for acceptance corrections

Acceptance correction for fixing errors from hand scanning
Q2 dependent correction, correlated between bins:

dN
e(Q2) →

dN
e(Q2) + η de(Q2) , fit with prior η = 0± 1

All corrections η small; minimal improvement of goodness of fit
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Deuterium Corrections
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Two corrections tested:
Singh, Nucl. Phys. B 36, 419; Shen et al., 1205.4337 [nucl-th]

Corrections assumed to be Eν independent

Both corrections have similar trends → low Q2 suppression,
mild changes to curvature up to Q2 = 1.0 GeV2

Shen prefers enhancement of Q2 range

Despite different shapes and magnitude, effect on fits mild 18 / 25
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Reanalysis Results Summary [1603.03048 [hep-ph]]
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r 2
A = 0.46(22) fm2 , σνn→µp(Eν = 1 GeV) = 10.1(0.9)× 10−39cm2

compared to Bodek et al. [Eur. Phys. J. C 53, 349]:

r 2
A = 0.453(13) fm2 , σνn→µp(Eν = 1 GeV) = 10.63(0.14)× 10−39cm2

Dipole model significantly underestimates error from nucleon form factor
Most theoretically clean data do not constrain form factor precisely
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z Expansion in GENIE
z expansion coded into GENIE - may be turned on with configuration switch

Officially released in production version 2.12

Uncertainties on free-nucleon cross section as large as data-theory discrepancy
=⇒ need to improve FA determination to make headway on nuclear effects

]2[GeV2Q
0 0.5 1 1.5 2

]2
/G

eV
2

 [c
m

2
/d

Q
σd

0

5

10

15

20

-3910×

GENIE RFG z-expansion

GENIE RFG dipole

MINERvA Data

See tutorial: https://indico.fnal.gov/event/12824/ 20 / 25



Future Prospects
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Lattice QCD as a Tool
Experiment

MC Nucleon

Nuclear
The ideal situation: lots of redundancy and checks between elements of analysis

In reality: FA not well determined by experiment
=⇒ nucleon amplitudes constrained by/used to constrain nuclear models

Lattice QCD acts as a disruptive technology to break degeneracy

See Phiala’s/Andreas’s talks for more detail
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How Does Lattice Help?

Lattice is well suited to compute matrix elements:

Mνµn→µp(p, p′) = 〈µ(p′)| (Vµ − Aµ) |ν(p)〉 〈p(q)| (Vµ − Aµ) |n(0)〉

Systematically improvable: more computing power =⇒ more precision

p − p′ = q

n(0)

νµ(p)

p(q)

µ−(p′)

pen & paper

Lattice QCD
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Plenary given by S. Collins, Lattice 2016

Nucleon axial form factor GA(Q2)
Previously, [Lin,0802.0863], [Yamazaki,0904.2039], [Bratt,1001.3620], [Bali,1412.7336]

Needed for neutrino oscillation experiments:
Charged current quasielastic (CCQE) neutrino-nucleus interaction must be known
to high precision.
Connecting quark - nucleon level: GA(Q2) form factor.

nucleon - nucleus level: nuclear model.
Traditionally: information on GA(Q2) extracted from expt. using dipole fit:

GA(Q2) = gA

(1 + Q2

MA2 )2
〈r2

A〉 = 12
MA2

World average (pre 1990) from ν scattering MA = 1.026(21) GeV.
Overconstrained form: different measurements, different MA.
Lower energy expts: e.g. MiniBooNE: MA = 1.35(17) GeV

[Aguilar-Arevalo,1002.2680]

Systematics being explored including new analysis of old expt data:
〈r2

A〉 = 0.46(22) fm2 → MA = 1.01(24) GeV from z-expansion [Meyer,1603.03048].
26 / 49
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Several computations of FA(Q2) appeared in response:
LHPC 1703.06703 [hep-lat]

ETMC 1705.03399 [hep-lat]
CLS 1705.06186 [hep-lat]

PNDME 1705.06834,1801.01635,1801.03130 [hep-lat]
Additional gA computations: (CalLat) 1704.01114,1710.06523

(JLQCD) 1805.10507

Ref. gA 〈r 2
A〉 [fm2]

LHPC 1.208(6)(16)(1)(10) 0.213(6)(13)(3)(0)
ETMC 1.212(33)(22) 0.267(9)(11)
CLS 1.278(68)(+00

−87) 0.360(36)(+80
−88)

PNDME 1.20(3) 0.25(6)
CalLat 1.285(17) −
JLQCD 1.123(28)(29)(90) −
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Conclusions

I Precise determinations of nucleon form factors are an
essential part of the long-baseline neutrino oscillation program

I Dipole shape underestimates uncertainties in free-nucleon cross sections
I Need robust determination of nucleon amplitudes with realistic errors to

determine impact on future neutrino oscillation experiments
I Updated deuterium experiment would be ideal for reducing uncertainties,

but unlikely to happen in near future

I z Expansion parameterization is consistent with QCD
and sufficiently general to give realistic uncertainty estimates

I Lattice QCD can access nucleon form factors from first principles in
absence of updated deuterium experiment

I Growing interest in neutrino physics in lattice community,
can expect many new results in upcoming years

Thanks for listening!
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Calculations of Interest

Difficulty in lattice QCD
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