Searching for new physics with nuclei

Emanuele Mereghetti

June 25th, 2018

From nucleons to nuclei: enabling discovery for neutrinos, dark matter

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Introduction

ATLAS collaboration, '14.

ATLAS & CMS, '16.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

- the Standard Model works just fine
- last missing piece discovered @ LHC

... and looks SM-like

Introduction

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

_	Model	ℓ, γ	Jets†	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	- ¹] Limit		Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK}+g/q\\ \text{ADD non-resonant } \gamma\gamma\\ \text{ADD Roh-resonant } \gamma\gamma\\ \text{ADD BH high } \Sigma\rho\gamma\\ \text{ADD BH multijet}\\ \text{RS1} (g_{KK}\to\gamma\gamma)\\ \text{Burk RS} G_{KK}\to WW\to qq/\nu\\ \text{2UED } RPV \end{array}$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ - \\ 2 \ \gamma \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4 j - 2 j ≥ 3 j - 1 J ≥ 2 b, ≥ 3	Yes - - - Yes J Yes	36.1 38.7 37.0 3.2 3.6 36.7 36.1 13.2	Ma 2.3 EV Ma 2.3 EV Ma 4.4 EV Ma 4.3 EV Ma 9.3 EV Ma 9.3 EV Ma 1.3 EV Screen 1.2 EV Screen 1.8 EV	$\begin{array}{l} \sigma=2 \\ \sigma=3 \; \text{HZ NLO} \\ \sigma=6 \\ \sigma=6, \; M_D=3 \; \text{TeV, not BH} \\ \sigma=6, \; M_D=3 \; \text{TeV, not BH} \\ s/M_{PI}=0.1 \\ s/M_{PI}=1.0 \\ \text{Ter}(17), \; \text{SI}(S^{(11)} \to \text{tr})=1 \end{array}$	ATLAS-CONF-2017-060 CERN-EP-2017-152 1703.05217 1696.02055 1512.02586 CERN-EP-2017-152 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2 e, μ 2 τ - 1 e, μ 0 e, μ nulli-channe 1 e, μ 0 e, μ	- 2b ≥1b,≥1J - 2J 4 2b,0-1j ≥1b,1J	- 21 Yes Yes - Yes -	36.1 36.1 3.2 36.1 36.7 36.7 36.1 20.3 20.3	2 mm 4.3 fe/j 2 mit 2.4 fe/j 2 mit 2.1 fe/j 2 mit 5.1 fe/j 2 mit 2.1 fe/j W mm 3.5 fe/j W mm 1.92 fe/j W mm 1.92 fe/j W mm 1.92 fe/j W mm 1.92 fe/j	$\Gamma/m = 376$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1003.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886
ö	Cl qqqq Cl ((qq Cl witt	− 2 e, μ h(SS)/≥3 e,	2j 	- Yes	37.0 36.1 20.3	A A A 4.9 TeV	21.8 TeV $\bar{\pi}_{LL}$ 40.1 TeV $\bar{\pi}_{LL}$ $ C_{NN} = 1$	1703.09217 ATLAS-CONF-2017-027 1504.04605
MQ	Axial-vector mediator (Dirac DM) Vector mediator (Dirac DM) VV _{XX} EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	$\begin{array}{c} 1 - 4 j \\ \leq 1 j \\ 1 J, \leq 1 j \end{array}$	Yes Yes Yes	36.1 36.1 3.2	mode 1.5 TeV mode 1.2 TeV M, 700 GeV	$\begin{array}{l} g_{g^{\pm}} = 0.25, \ g_{g^{\pm}} = 1.0, \ m(\chi) < 400 \ {\rm GeV} \\ g_{g^{\pm}} = 0.25, \ g_{g^{\pm}} = 1.0, \ m(\chi) < 400 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \end{array}$	ATLAS-CONF-2017-060 1704.03848 1605.02372
07	Scalar LQ 1 st gen Scalar LQ 2 st gen Scalar LQ 3 st gen	2 e 2 μ 1 e,μ	$\stackrel{\geq 2 j}{\geq 2 j} \\ \stackrel{\geq 1 b, \geq 3}{\geq 1}$	- Yes	3.2 3.2 20.3	LO mass 1,1 TeV LO mass 1,05 TeV LO mass 640 GeV	$\beta = 1$ $\beta = 1$ $\beta = 0$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ\ TT \rightarrow Ht + X \\ VLQ\ TT \rightarrow Zt + X \\ VLQ\ TT \rightarrow Wb + X \\ VLQ\ BB \rightarrow Hb + X \\ VLQ\ BB \rightarrow Zb + X \\ VLQ\ BB \rightarrow Zb + X \\ VLQ\ BB \rightarrow W2 + X \\ VLQ\ QQ \rightarrow WqWq \end{array} $	0 or 1 e,µ 1 e,µ 1 e,µ 1 e,µ 2/≥3 e,µ 1 e,µ 1 e,µ	$\geq 2 \text{ b}, \geq 3$ $\geq 1 \text{ b}, \geq 3$ $\geq 1 \text{ b}, \geq 1\text{ J}$ $\geq 2 \text{ b}, \geq 3$ $\geq 2^{\prime} \geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 1\text{ J}$ $\geq 2^{\prime} \geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 1\text{ J}$ $\geq 4 \text{ j}$	j Yes j Yes 2j Yes j Yes - 2j Yes Yes	13.2 36.1 36.1 20.3 20.3 36.1 20.3	Yrana 1.3 TeVi Yrana 1.5 TeVi Yrana 1.5 TeVi Yrana 1.3 TeVi Brana 700 GeV Brana 1.3 TeVi Brana 1.3 TeVi Brana 6.0 GeV	$\begin{split} & \mathcal{B}(T \to H t) = 1 \\ & \mathcal{B}(T \to Z t) = 1 \\ & \mathcal{B}(T \to W B) = 1 \\ & \mathcal{B}(B \to H b) = 1 \\ & \mathcal{B}(B \to Z b) = 1 \\ & \mathcal{B}(B \to W t) = 1 \end{split}$	ATLAS-CONF-2016-104 1705.10751 CEPN-EP-2017-094 1505.04306 1409.5500 CEPN-EP-2017-094 1508.04281
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton t^*	- 1 γ - 1 or 2 e,μ 3 e,μ 3 e,μ,τ	2j 1j 1b,1j 1b,20j -	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	of miss 6.0 TeV d miss 5.3 TeV V miss 2.3 TeV D miss 3.3 TeV C miss 3.2 TeV C miss 3.2 TeV C miss 1.5 TeV	only ω' and d' , $A = m(q')$ only ω' and d' , $A = m(q')$ $f_g = f_g = f_0 = 1$ A = 3.0 TeV A = 1.6 TeV	1703.09127 CEPN-EP-2917-148 ATLAS-CONF-2016-060 1510.02684 1411.2921 1411.2921
Other	LRSM Majorana ν Higgs triplet $M^{\pm\pm} \rightarrow \ell \ell$ 2 Higgs triplet $M^{\pm\pm} \rightarrow r r$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	2 e, μ 3,4 e, μ (S5 3 e, μ, τ 1 e, μ - - - 8 TeV	2j - 1b - - - √s = 1	- Yes - - - - 3 TeV	20.3 36.1 20.3 20.3 20.3 7.0	Millions 20 TeV Hiff mass 800 GeV Hiff mass 400 GeV Stationary and the second s	$\label{eq:main_state} \begin{split} &m(W_{ij})=2.4 \ \text{TeV}, \text{ so mixing} \\ &DY \ \text{production} \\ &DY \ \text{production}, \ \Re(H_{i}^{tot} \to \ell \tau)=1 \\ &a_{000-rm}=0.2 \\ &DY \ \text{production}, \ q =Se \\ &DY \ \text{production}, \ q =Se \\ &DY \ \text{production}, \ z =Se \\ &DY$	1596,86020 ATLAS-CONF-2017-053 1411,2321 1410,5404 1594,64188 1598,68059

*Only a selection of the available mass limits on new states or phenomena is show †Small-radius (large-radius) lets are denoted by the letter i (J).

ATLAS Exotics summary plots

• a lot of work, no evidence for new particles

Introduction

• neutrino masses

• Dark matter

nuclei extremely sensitive probes competitive & complementary to LHC

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

baryogenesis

CP violation

current bound on d_n $|d_n| < 3.0 \cdot 10^{-13} e$ fm J. M. Pendlebury *et al.*, '15

SM $d_n \sim 10^{-19} e \text{ fm}$ M. Pospelov and A. Ritz, '05

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

- 1. permanent Electric Dipole Moments
- signal of *T* and *P* violation (*CP*)
- insensitive to CP violation in the SM

large window for new physics! exciting experimental program to close it

The reach of EDM experiments

top CP-odd Yukawa and chromo-EDM

- important if baryogenesis comes from top sector
- EDM bounds much stronger than collider
- ... but hadronic uncertainties weaken bounds

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

- neutrino have masses
- and know a great deal from oscillation
- what's the origin of neutrino masses? Dirac or Majorana?

2. searches for $\Delta L = 2$ signal probe ν Majorana nature

possible iff ν s have a Majorana mass

▲□▶▲□▶▲□▶▲□▶ □ のQで

- neutrinoless double beta decay $(0\nu\beta\beta)$
- (μ^-, e^+) conversion
- $K^+ \to \pi^- e^+ e^+, \ \pi^- e^+ \mu^+, \ \pi^- \mu^+ \mu^+$
- $pp \rightarrow jje^-e^-$

Next generation of experiments sensitive to a variety of LNV scenarios

- 1. LNV originates at very high scales
- $0\nu\beta\beta$ only relevant experiment

 $K^+ \rightarrow \pi^- l^+ l^+$, (μ^-, e^+) need to improve by 10-20 orders ...

• direct connection between ν oscillations and $0\nu\beta\beta$

Next generation of experiments sensitive to a variety of LNV scenarios

- 1. LNV originates at very high scales
- $0\nu\beta\beta$ only relevant experiment

 $K^+ \rightarrow \pi^- l^+ l^+$, (μ^-, e^+) need to improve by 10-20 orders ...

- direct connection between ν oscillations and $0\nu\beta\beta$
- · clear goals: rule out inverted hierarchy

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Next generation of experiments sensitive to a variety of LNV scenarios

- 2. LNV at intermediate scales
- $0\nu\beta\beta$ is mediated by new particles
- could be accessible at colliders

T. Peng, M. Ramsey-Musolf, P. Winslow, '15

Next generation of experiments sensitive to a variety of LNV scenarios

2. LNV at intermediate scales

 $0
u\beta\beta$ is mediated by new particles

could be accessible at colliders

general framework to interpret $0\nu\beta\beta$ exp?

ヘロア 人間 アメ ボアメ ボア

Non-standard charged current interactions

• are there non-standard vector, axial, scalar, or tensor currents?

 W_R bosons, heavy Higgses, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$$\mathcal{L} = -\frac{4G_F}{\sqrt{2}} \left\{ \bar{\nu}_L \gamma^{\mu} e_L \bar{d}_L \gamma_{\mu} \left(C_{LQ,D} V^{\dagger}_{CKM} - V^{\dagger}_{CKM} C_{LQ,U} \right) u_L \right. \\ \left. + \bar{\nu}_L e_R \left(\bar{d}_R C_{LedQ} V^{\dagger}_{CKM} u_L + \bar{d}_L V^{\dagger}_{CKM} C^{(1)}_{LeQu} u_R \right) + \bar{\nu}_L \sigma^{\mu\nu} e_R \bar{d}_L V^{\dagger}_{CKM} C^{(3)}_{LeQu} \sigma_{\mu\nu} u_R \right\}$$

Non-standard charged current interactions at the LHC

S. Alioli, W. Dekens, M. Girard, EM, '18

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

• look at the m_T^W spectrum in $pp \to l\nu$ and m_{l+l-} in $pp \to l^+l^-$

Non-standard charged current interactions

• ϵ_s and ϵ_T from pion and nuclear β decays

 $\pi \rightarrow e \nu \gamma, \beta$ - ν correlation, Fierz interference term, ...

• nice complementarity with LHC

The inverse problem

©2016 C. Kuiper & J. de Vries

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Effective Field Theories

- model independent link to collider phenomenology
- minimal set of low-energy CPV, LNV, ... operators
- connection with flavor/low energy probes
- from quarks to hadrons non-perturbative matching (LQCD)

• EDMs of nucleons & light nuclei

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $0\nu\beta\beta$ transition potential

EFT approach to LNV

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

· half-life anatomy

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \frac{m_{\beta\beta}^2}{m_e^2} G_{01} g_A^4 \left| M^{0\nu} \right|^2 + \dots \qquad M^{0\nu} = \langle 0^+ | V_\nu | 0^+ \rangle$$

What EFTs can do:

parametrize $0\nu\beta\beta$ w. few coefficients that can be matched to models

identify QCD input & its uncertainty

systematically derive the ν potentials check NME in simpler systems

Outline

1 The SM Effective Field Theory

2 From quarks to nucleons: the light neutrino exchange mechanism (revisited)

3 From quarks to nucleons: non-standard mechanisms

4 Phenomenology

The Standard Model as an Effective Field Theory

Write down all possible operators with

- SM fields
- local $SU(3)_c \times SU(2)_L \times U(1)_Y$ invariance
- dimension ≤ 4

 $m_{\nu} = 0$ no ΔL interactions

assume no light sterile ν_R

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Standard Model as an EFT

• why stop at dim=4?

$$\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_{i,5}}{\Lambda} \mathcal{O}_{5i} + \sum \frac{c_{i,6}}{\Lambda^2} \mathcal{O}_{6i} \qquad + \sum \frac{c_{i,7}}{\Lambda^3} \mathcal{O}_{7i} + \dots$$
$$\Lambda \gg v = 246 \,\text{GeV}$$

• O have the same symmetries as the SM

gauge symmetry! but not accidental symmetries as *L*

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

The Standard Model as an EFT

• why stop at dim=4?

$$\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_{i,5}}{\Lambda} \mathcal{O}_{5i} + \sum \frac{c_{i,6}}{\Lambda^2} \mathcal{O}_{6i} \qquad + \sum \frac{c_{i,7}}{\Lambda^3} \mathcal{O}_{7i} + \dots$$
$$\Lambda \gg v = 246 \text{ GeV}$$

• O have the same symmetries as the SM

gauge symmetry! but not accidental symmetries as L

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• one dimension 5 operator

S. Weinberg, '79

$$\frac{1}{\Lambda} \varepsilon_{ij} \varepsilon_{mn} L_i^T C L_m H_j H_n \rightarrow \frac{v^2}{\Lambda} \nu_L^T C \nu_L$$

neutrino masses and mixings

 $\Lambda \sim 10^{14}~\text{GeV}$

The Standard Model as an EFT

• many dimension 6, $\propto v^2/\Lambda^2$

Buchmuller & Wyler '86, Weinberg '89, de Rujula et al. '91, Grzadkowski et al. '10 . . .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

LNV at dim. 7, dim. 9

• dim.7 operators mostly induce β decay with "wrong" ν

 \implies long range contribs. to $0\nu\beta\beta$

▲□▶▲□▶▲□▶▲□▶ □ のQで

• dim. 9 induce short-range contributions to $0\nu\beta\beta$

Connection to models

- · specific models will match onto one or several operators
- e.g. LR symmetric model dim. 5, 7 & 9 (with different Yukawas)

can match any model to EFT

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The low-energy LNV Effective Lagrangian

$$\mathcal{L}_{\Delta L=2}(\nu, e, u, d) = -\frac{1}{2} (m_{\nu})_{ij} \nu^{Tj} C \nu^{i} + C_{\Gamma} \nu^{T} C \Gamma e \mathcal{O}_{\Gamma} + C_{\Gamma'} e^{T} C \Gamma' e \mathcal{Q}_{\Gamma'}$$

quark bilinear four-quark

1. write down π , N, NN, ..., operators with same chiral properties as $\mathcal{L}_{\Delta L=2}$

- 2. estimate the low energy constants
 - \checkmark well determined for nucleon bilinears
 - \checkmark and for mesonic operators
 - × not so much for short-distance mechanisms

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. write down $0\nu\beta\beta$ transition operators

Revisiting the light Majorana- ν exchange mechanism

▲□▶▲圖▶★園▶★園▶ 園 の�?

Chiral EFT approach to light- ν exchange mechanism

• weak currents are mainly one-body

$$J_V^{\mu} = (g_V, \mathbf{0}) \qquad g_V = 1$$
$$J_A^{\mu} = -g_A \left(0, \boldsymbol{\sigma} - \frac{\mathbf{q}}{\mathbf{q}^2 + m_{\pi}^2} \, \boldsymbol{\sigma} \cdot \mathbf{q} \right) \qquad g_A = 1.27$$

• $0\nu\beta\beta$ mediated by exchange of potential neutrinos

$$V_{\nu} = \mathcal{A}\tau^{(1)+}\tau^{(2)+}\frac{1}{\mathbf{q}^2} \left\{ \mathbf{1}^{(a)} \times \mathbf{1}^{(b)} - g_A^2 \boldsymbol{\sigma}^{(a)} \cdot \boldsymbol{\sigma}^{(b)} \left(\frac{2}{3} + \frac{1}{3} \frac{m_{\pi}^4}{(\mathbf{q}^2 + m_{\pi}^2)^2} \right) + \ldots \right\}.$$

$$\mathcal{A} = 2G_F^2 m_{\beta\beta} \bar{e}_L C \bar{e}_L^T$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Standard mechanism. Higher orders

At N²LO $\mathcal{O}(\mathbf{q}^2/\Lambda_{\chi}^2)$, $\Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}$

1. correction to the one-body currents (magnetic moment, radii, ...)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$g_A(\mathbf{q}^2) = g_A\left(1 - r_A^2 \frac{\mathbf{q}^2}{6} + \ldots\right) \qquad r_A = 0.47(7) \text{fm}$$

- 2. two-body corrections to V and A currents
- 3. pion-neutrino loops & local counterterms

UV divergences signal short-range sensitivity at N²LO

Standard mechanism. Higher orders

At N²LO $O(\mathbf{q}^2/\Lambda_{\chi}^2)$, $\Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}$

1. correction to the one-body currents

(magnetic moment, radii, ...)

$$g_A(\mathbf{q}^2) = g_A\left(1 - r_A^2 \frac{\mathbf{q}^2}{6} + \ldots\right) \qquad r_A = 0.47(7) \text{fm}$$

- 2. two-body corrections to V and A currents
- 3. pion-neutrino loops & local counterterms

UV divergences signal short WARNING: based on naive dimensional analysis

"Weinberg's counting"

ж

Is the Weinberg counting consistent for $0\nu\beta\beta$?

• Weinberg's counting fails in ${}^{1}S_{0}$ channel

D. Kaplan, M. Savage, M. Wise, '96

▲□▶▲□▶▲□▶▲□▶ □ のQで

• study $nn \rightarrow ppe^-e^-$ with LO χ EFT strong potential

$$V_{\text{strong}}(r) = \tilde{C} \, \delta^{(3)}(\mathbf{r}) + \frac{g_A^2 m_\pi^2}{16\pi F_\pi^2} \frac{e^{-m_\pi r}}{4\pi r}$$

• no problem with Yukawa potential

Is the Weinberg counting consistent for $0\nu\beta\beta$?

• Weinberg's counting fails in ${}^{1}S_{0}$ channel

D. Kaplan, M. Savage, M. Wise, '96

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• study $nn \rightarrow ppe^-e^-$ with LO χ EFT strong potential

$$V_{\rm strong}(r) = \tilde{C}\,\delta^{(3)}(\mathbf{r}) + \frac{g_A^2 m_\pi^2}{16\pi F_\pi^2} \frac{e^{-m_\pi r}}{4\pi r}$$

- no problem with Yukawa potential
- and one insertion of short-range potential

Inconsistency of the Weinberg counting

$$\frac{1}{2}(1+2g_A^2)\left(\frac{m_N\tilde{C}}{4\pi}\right)^2\left(\frac{1}{\varepsilon}+\log\mu^2\right)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

• two-loop diagrams w. two insertions of \tilde{C} have UV log divergence

need a local LNV counterterm at LO!

Inconsistency of the Weinberg counting

• two-loop diagrams w. two insertions of \tilde{C} have UV log divergence

need a local LNV counterterm at LO!

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

• renormalization requires to modify the LO ν potential

$$V_{\rm LNV} = V_{\nu} - 2g_{\nu}\tau^{(1)+}\tau^{(2)+}\mathcal{A}$$

• the coupling g_{ν} is larger than NDA

$$g_{\nu} \sim \frac{1}{F_{\pi}^2} \gg \frac{1}{(4\pi F_{\pi})^2}$$

Inconsistency of the Weinberg counting

• divergence is not an artifact of dim. reg.

regulate the short-range core as

$$\delta^{(3)}(\mathbf{r}) \to \frac{1}{\pi^{3/2} R_S^3} e^{-\frac{r^2}{R_S^2}}$$

and calculate

$$\mathcal{A}_{\nu} = \int d^3 \mathbf{r} \psi_{\mathbf{p}'}^{-}(\mathbf{r}) V_{\nu}(\mathbf{r}) \psi_{\mathbf{p}}^{+}(\mathbf{r})$$

• A_{ν} shows logarithmic dependence on R_S (+ power corrections)

Relation between $0\nu\beta\beta$ and EM isospin breaking

- can we determine g_{ν} ?
- ν potential very similar to I = 2 piece of Coulomb potential
- & chiral symmetry relates I = 2 short-range operators in $0\nu\beta\beta$ and NN scattering
Relation between $0\nu\beta\beta$ and EM isospin breaking

• only two I = 2 operators w. same properties as weak/EM currents

$$\mathcal{L}_{I=2} = c C_1 \left(\bar{N} \mathcal{Q}_L N \bar{N} \mathcal{Q}_L N - \frac{\text{Tr}[\mathcal{Q}_L^2]}{6} \bar{N} \tau N \cdot \bar{N} \tau N + L \to R \right)$$

+ $c C_2 \left(\bar{N} \mathcal{Q}_L N \bar{N} \mathcal{Q}_R N - \frac{\text{Tr}[\mathcal{Q}_L \mathcal{Q}_R]}{6} \bar{N} \tau N \cdot \bar{N} \tau N + L \to R \right)$
 $\mathcal{Q}_L = u^{\dagger} \mathcal{Q}_L u \quad \mathcal{Q}_R = u \mathcal{Q}_R u^{\dagger}, \qquad u = 1 + \frac{i\pi \cdot \tau}{2F_{\pi}} + \dots$

▲□▶▲□▶▲□▶▲□▶ □ のQで

• weak interactions: $Q_L = \tau^+, Q_R = 0, \qquad c_{LNV} = 2G_F^2 m_{\beta\beta} \bar{e}_L C \bar{e}_L^T$

• EM interactions: $Q_L = \frac{\tau^z}{2}, Q_R = \frac{\tau^z}{2}, \qquad c_{e^2} = \frac{e^2}{4}$

Relation between $0\nu\beta\beta$ and EM isospin breaking

• only two I = 2 operators w. same properties as weak/EM currents

$$\mathcal{L}_{I=2} = c C_1 \left(\bar{N} \mathcal{Q}_L N \bar{N} \mathcal{Q}_L N - \frac{\text{Tr}[\mathcal{Q}_L^2]}{6} \bar{N} \tau N \cdot \bar{N} \tau N + L \to R \right)$$

$$+ c C_2 \left(\bar{N} \mathcal{Q}_L N \bar{N} \mathcal{Q}_R N - \frac{\text{Tr}[\mathcal{Q}_L \mathcal{Q}_R]}{6} \bar{N} \tau N \cdot \bar{N} \tau N + L \to R \right)$$

$$\mathcal{Q}_L = u^{\dagger} \mathcal{Q}_L u \quad \mathcal{Q}_R = u \mathcal{Q}_R u^{\dagger}, \qquad u = 1 + \frac{i\pi \cdot \tau}{2F_{\pi}} + \dots$$

- $C_1 = g_{\nu}$ by chiral symmetry!
- *C*₁ and *C*₂ differ at multipion level

cannot disentangle in NN scattering but give an idea of $0\nu\beta\beta$ counterterm

イロト 不得 とうほう イヨン

э

Weinberg counting for isospin breaking operators

• leading I = 2 potential in ${}^{1}S_{0}$ channel from γ exchange & pion mass splitting

$$V_{I=2}^{\rm lr} = \frac{1}{4} \left(\frac{e^2}{\mathbf{q}^2} + \frac{g_A^2}{F_\pi^2} \frac{m_{\pi^\pm}^2 - m_{\pi^0}^2}{\mathbf{q}^2 + m_\pi^2} \right) \left(\tau^{(1)\,z} \tau^{(2)\,z} - \frac{1}{3} \boldsymbol{\tau}^{(1)} \cdot \boldsymbol{\tau}^{(2)} \right)$$
$$m_{\pi^\pm}^2 - m_{\pi^0}^2 \sim e^2 F_\pi^2$$

• short-range contributions suppressed

$$V_{I=2}^{\rm sr} = \frac{e^2}{2} \frac{C_1 + C_2}{2} \left(\tau^{(1)\,z} \tau^{(2)\,z} - \frac{1}{3} \boldsymbol{\tau}^{(1)} \cdot \boldsymbol{\tau}^{(2)} \right) \qquad C_1 \sim C_2 \sim \frac{1}{(4\pi F_\pi)^2}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Relation to charge-independence breaking

Charge-independence breaking (CIB) observables, e.g.

$$a_{CIB} = \frac{a_{nn} + a_{pp}}{2} - a_{np}$$

1. LO analysis of isospin breaking show log dependence

$$\frac{C_1 + C_2}{2} = \left(\frac{m_N \tilde{C}}{4\pi}\right)^2 \frac{\tilde{C}_1 + \tilde{C}_2}{2} \sim_{R_S = 0.5} \frac{16}{(4\pi F_\pi)^2}$$

disagree with Weinberg's counting!

Relation to charge-independence breaking

TABLE IX. Evolution of ${}^{1}S_{0}$ pp phase shifts from the charge-independent potential to the full interaction, as described in the text. Energies are in MeV.

Tlab	CI	$+ m_p$	+ CD v"	+ CD v^R	+ v ^{EM}
1	57.99	57.80	57.42	55.50	32.68
5	61.22	61.12	60.88	59.78	54.74
10	57.98	57.90	57.71	56.84	55.09
25	49.22	49.17	49.05	48.36	48.51
50	38.87	38.84	38.76	38.13	38.78
100	24.87	24.85	24.80	24.19	25.01
150	14.83	14.81	14.77	14.16	15.00
200	6.82	6.80	6.77	6.15	6.99
250	0.08	0.06	0.04	-0.60	0.23
300	-5.78	-5.79	-5.82	-6.47	-5.64
350	-10.99	-11.00	-11.01	-11.69	-10.86

AV18 potential, Phys. Rev. C51 (1995) 38-51

2. in realistic potentials (AV18, χ -EFT)

 $V_{I=2}^{\rm lr}$ and $V_{I=2}^{\rm sr}$ give effects of comparable size

• e.g. large $C_1 + C_2$ in χ -EFT potentials

$$\frac{C_1 + C_2}{2} \sim \frac{50}{(4\pi F_\pi)^2}$$

M. Piarulli et al, '16

3

化口下 化塑下 化医下不良下

• same effect in isotensor energy coeff. of light nuclei

- assume $C_1(R_S) = C_2(R_S)$
- · LNV matrix element is scale independent
- effect of short-range potential $\sim 10\%$

 $\Delta I = 0$ transition

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Ab initio calculation of ${}^{6}\text{He} \rightarrow {}^{6}\text{Be}$ and ${}^{12}\text{Be} \rightarrow {}^{12}\text{C}$

- not a realistic double beta decay candidate
- ... but same spin/isospin as $0\nu\beta\beta$ emitters
- ... and fully controlled calculation

- extract CIB potential $V_{I=2}^{\text{sr}}$ from AV18, rescaled by c_{LNV}/c_{e^2}
- ~ 10% corrections to $\Delta I = 0$ transitions

$$\frac{M_{F\nu}}{g_A^2} = 0.93$$
 $M_{GT\nu} = 3.58$ $\frac{M_{F,NN}}{g_A^2} = 0.30$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- extract CIB potential $V_{\Delta I=2}^{sr}$ from AV18
- larger corrections to I = 2 transitions

$$\frac{M_{F\nu}}{g_A^2} = 0.191 \quad M_{GT\nu} = 0.400 \quad \frac{M_{F,NN}}{g_A^2} = 0.29$$

 $\mathcal{O}(1)$ correction!

• ... but uncontrolled theory error from assuming $C_1 = C_2!$

Standard mechanism: summary

how to relate $0\nu\beta\beta$ to the neutrino masses?

- power counting & analogy to EM isospin breaking: strong indication that 0νββ operator has significant short-range components
- need Lattice QCD calculation of nn → ppe⁻e⁻ & matching to nuclear EFTs !

CalLat, NPLQCD see Z. Davoudi's talk last week

▲□▶▲□▶▲□▶▲□▶ □ のQで

• can pinpoint *C*¹ via pion double charge exchange?

Standard mechanism: summary

J. Engel and J. Menéndez, '16

ヘロト 人間 とく ヨン くヨン

• ... just another uncertainty on top of many-body

see J. Menéndez's talk

3

• mimicked by short-range correlations?

Chiral EFT for non-standard mechanisms

Chiral EFT for non-standard mechanisms

©2018 W. Dekens and J. de Vries

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Dim. 9 operators

1. LL LL : $\mathcal{O}_1 = \bar{u}_L \gamma^\mu d_L \, \bar{u}_L \, \gamma_\mu d_L$ 2. LR LR : $\mathcal{O}_2 = \bar{u}_L d_R \, \bar{u}_L \, d_R$, $\mathcal{O}_3 = \bar{u}_L^\alpha d_R^\beta \, \bar{u}_L^\beta \, d_R^\alpha$ 3. LL RR : $\mathcal{O}_4 = \bar{u}_L \gamma^\mu d_L \, \bar{u}_R \, \gamma_\mu d_R$, $\mathcal{O}_5 = \bar{u}_L^\alpha \gamma^\mu d_L^\beta \, \bar{u}_R^\beta \, \gamma_\mu d_R^\alpha$

• several unjustified assumptions in the literature . . .

e.g. $\langle pp|\bar{u}_L\gamma^{\mu}d_L\,\bar{u}_R\,\gamma_{\mu}d_R|nn\rangle = \langle p|\bar{u}_L\gamma^{\mu}d_L|n\rangle\,\langle p|\bar{u}_R\,\gamma_{\mu}d_R|n\rangle = (1-3g_A^2)$ inconsistent with QCD, miss chiral dynamics

LNV interactions from dim. 9 operators

• $\pi\pi$ couplings

$$\begin{aligned} \mathcal{L}_{\pi} &= \frac{F_{0}^{2}}{2} \left[\frac{5}{3} g_{1}^{\pi\pi} C_{1\text{L}}^{(9)} \partial_{\mu} \pi^{-} \partial^{\mu} \pi^{-} + \left(g_{4}^{\pi\pi} C_{4\text{L}}^{(9)} + g_{5}^{\pi\pi} C_{5\text{L}}^{(9)} - g_{2}^{\pi\pi} C_{2\text{L}}^{(9)} - g_{3}^{\pi\pi} C_{3\text{L}}^{(9)} \right) \pi^{-} \pi^{-} \right] \\ &\times \frac{\bar{e}_{L} C \bar{e}_{L}^{T}}{v^{5}} + (L \leftrightarrow R) + \dots \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

• size depends on chiral properties of $\mathcal{O}_{1,...,5}$

$$g_1^{\pi\pi} \sim \mathcal{O}(1), \qquad g_{2,3,4,5}^{\pi\pi} \sim \mathcal{O}(\Lambda_{\chi}^2)$$

LNV interactions from dim. 9 operators

- πN couplings, only important for \mathcal{O}_1
- NN couplings

$$\mathcal{L}_{NN} = \left(g_1^{NN}C_{1L}^{(9)} + g_2^{NN}C_{2L}^{(9)} + g_3^{NN}C_{3L}^{(9)} + g_4^{NN}C_{4L}^{(9)} + g_5^{NN}C_{5L}^{(9)}\right)(\bar{p}n) \left(\bar{p}n\right) \frac{\bar{e}_L C\bar{e}_L^T}{v^5}$$

• size depends on chiral properties of $\mathcal{O}_{1,...,5}$

$$g_1^{NN} \sim \mathcal{O}(1), \qquad g_{2,3,4,5}^{NN} \sim \mathcal{O}\left(rac{\Lambda_\chi^2}{F_\pi^2}
ight)$$

enhanced w.r.t NDA!

э.

イロト 不得 とうほう イヨン

$\pi\pi$ matrix elements

A. Nicholson et al., CalLat collaboration, '18

• $\pi\pi$ matrix elements well determined in LQCD

good agreement with NDA

 nn → pp will allow to determine g_i^{NN} and test the chiral EFT power counting

$0\nu\beta\beta$ potential

• NME differ dramatically from factorization e.g $C_4^{(9)}$

$$M = -\frac{g_4^{\pi\pi}C_4^{(9)}}{2m_N^2} \left(\frac{1}{2}M_{AP,sd}^{GT} + M_{PP,sd}^{GT}\right) \sim -0.60C_4^{(9)}$$
$$M_{\text{fact}} = -\frac{3g_A^2 - 1}{2g_A^2}\frac{m_\pi^2}{m_N^2}C_4^{(9)}M_{F,sd} \sim -0.04C_4^{(9)}$$

bigger error than from NMEs ...

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

Phenomenology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$0 u\beta\beta$ in the Left-Right Symmetric Model

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

- generate dim. 5, 7 and 9
- dim. 7 and dim. 9 are chirally suppressed

Case 1 $m_{W_R} = 4.5$ TeV, $m_{\Delta_R} = 10$ TeV, $U_R = U_{\text{PMNS}}$,

 $m_{\nu_R} \sim m_{W_R}$

- strong collider bounds on m_{W_R} suppress dim. 7 and dim. 9 contribs.
- light-ν Majorana mass dominates in IH
- dim. 9 sizable in NH, but not in reach

$0\nu\beta\beta$ in the LRSM

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Case 2 $m_{W_R} = 4.5 \text{ TeV}, m_{\Delta_R} = 10 \text{ TeV}, U_R = U_{\text{PMNS}},$

 $m_{\nu_R} \sim 10 \text{ GeV}$

- not ruled out by LEP, LHC searches
- dim. 9 contribution becomes dominant
- in conflict with current $0\nu\beta\beta$ limits

$0\nu\beta\beta$ in the LRSM

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

- disentangle LRSM from standard mechanism?
- different isotopes are largely degenerate
- · electron energy and angular distributions as well

• need interplay with LHC searches!

Conclusion

• BSM searches with nuclei are complementary & very competitive with the energy frontier

 $0\nu\beta\beta$, EDMs, DM, ...

but need to control QCD & nuclear theory !

EFTs

- · model independent link to collider phenomenology
- identify non-perturbative QCD input

Lattice QCD

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• calculate few nucleon observables

 d_n , EDMs of light nuclei, ⁶He \rightarrow ⁶ Li $e^-\bar{\nu}$

provide input for many-body calculations

 $0\nu\beta\beta$ potentials, DM-nucleon currents, . . .

◆□▶ ◆畳▶ ◆豆≯ ◆豆≯ →□▼

Backup

・ロト・(部・・モ・・モ・ のへぐ

Usoft contribution to the amplitude

▲□▶▲□▶▲□▶▲□▶ □ のQで

4. soft neutrinos, which couple to the nuclear bound states

$$T_{\text{usoft}}(\mu_{\text{us}}) = \frac{T_{\text{lept}}}{8\pi^2} \sum_{n} \langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle \left\{ (E_2 + E_n - E_i) \left(\log \frac{\mu_{\text{us}}}{2(E_2 + E_n - E_i)} + 1 \right) + 1 \leftrightarrow 2 \right\}$$

- · corrections to the "closure approximation"
- suppressed by $E/(4\pi k_F)$

Is the Weinberg counting consistent?

D. Kaplan, M. Savage, M. Wise, '96

- NDA does not work in NN scattering
- m_{π} dependence of short-range nuclear force should be subleading

$$\mathcal{L} = -\tilde{C}(N^T P^{1S_0} N)(N^T P^{1S_0} N)^{\dagger} - \frac{m_{\pi}^2}{(4\pi F_{\pi})^2} D_2(N^T P^{1S_0} N)(N^T P^{1S_0} N)^{\dagger} + \dots$$

$$4\pi F_{\pi} = \Lambda_{\chi} \sim 1 \text{ GeV}$$

Is the Weinberg counting consistent?

D. Kaplan, M. Savage, M. Wise, '96

▲□▶▲□▶▲□▶▲□▶ □ のQで

- NDA does not work in NN scattering
- m_{π} dependence of short-range nuclear force should be subleading

$$\mathcal{L} = -\tilde{C}(N^T P^{1S_0} N)(N^T P^{1S_0} N)^{\dagger} - \frac{m_{\pi}^2}{(2\pi F_{\pi})^2} D_2(N^T P^{1S_0} N)(N^T P^{1S_0} N)^{\dagger} + \dots$$

$$4\pi F_{\pi} = \Lambda_{\chi} \sim 1 \,\text{GeV}$$

• ... but UV divergences in the LO amplitude require a promotion ...

conflict between NDA & short-range core of nuclear force

Nuclear matrix elements

- at LO in χ EFT, **all** nuclear matrix elements (NME) can be expressed in terms of existing calculations
- 8 long-range NME

contribute to light ν exchange

(ロ) (空) (い)

6 short-range NME

contribute to heavy Majorana ν exchange

Low-energy Effective Lagrangian for $\Delta L = 2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ● ● ●

$\Delta L = 2$ Lagrangian at 1 GeV

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$\mathcal{L}_{\Delta L=2} = \mathcal{L}_{\Delta L=2}^{\Delta e=0} + \mathcal{L}_{\Delta L=2}^{\Delta e=1} + \mathcal{L}_{\Delta L=2}^{\Delta e=2}$$

• $\mathcal{L}_{\Delta L=2}^{\Delta e=0}$ includes ν masses, magnetic moments, ...

$$\mathcal{L}_{\Delta L=2} = -\frac{1}{2} (m_{\nu})_{ij} \nu_L^{Tj} C \nu_L^i + \dots \qquad m_{\nu} \sim \mathcal{O}\left(\frac{\nu^2}{\Lambda}\right)$$

$\Delta L = 2$ Lagrangian at 1 GeV

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

 $\mathcal{L}_{\Delta L=2} = \mathcal{L}_{\Delta L=2}^{\Delta e=0} + \mathcal{L}_{\Delta L=2}^{\Delta e=1} + \mathcal{L}_{\Delta L=2}^{\Delta e=2}$

• $\mathcal{L}_{\Delta L=2}^{\Delta e=1}$ starts at dim. 6, $C_i^{(6)} = \mathcal{O}\left(\frac{v^3}{\Lambda^3}\right)$ $\mathcal{L}_{\Delta L=2}^{(6)} = \frac{2G_F}{\sqrt{2}} \left\{ C_{VL}^{(6)} \bar{d}_L \gamma^{\mu} u_L \nu_L^T C \gamma_{\mu} e_R + C_{VR}^{(6)} \bar{d}_R \gamma^{\mu} u_R \nu_L^T C \gamma_{\mu} e_R + C_{SL}^{(6)} \bar{d}_R u_L \nu_L^T C e_L + C_{SR}^{(6)} \bar{d}_L u_R \nu_L^T C e_L + C_T^{(6)} \bar{d}_R \sigma^{\mu\nu} u_L \nu_L^T C \sigma_{\mu\nu} e_L \right\}$

 β decay w. the "wrong" neutrino & all possible Lorentz structures

$\Delta L = 2$ Lagrangian at 1 GeV

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

•
$$\mathcal{L}_{\Delta L=2}^{\Delta e=2}$$
 starts at dim. 9

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{2G_F^2}{v} \left[\sum_{i=\text{scalar}} \left(C_i^{(9)} \,\bar{e}_L C \,\bar{e}_L^T + C_i^{(9)\prime} \,\bar{e}_R C \,\bar{e}_R^T \right) \, O_i \, + \, \bar{e}_R \gamma_\mu C \,\bar{e}_L^T \, \sum_{i=\text{vector}} \, C_{iV}^{(9)} \, O_i^\mu \right] \right]$$

• a small set receives contributions from dim. 7 operators

$$C_1^{(9)}, C_{4,5}^{(9)} \sim \mathcal{O}\left(\frac{v^3}{\Lambda^3}\right), \qquad C_i^{(9)} = \sim \mathcal{O}\left(\frac{v^5}{\Lambda^5}\right)$$

straightforward to include pQCD corrections

CP violation

current bounds

d_e	$< 8.7 \cdot 10^{-16} e \mathrm{fm}$
d_n	$< 3.0 \cdot 10^{-13} e \mathrm{fm}$
d_{199}_{Hg}	$< 6.2 \cdot 10^{-17} \ e \ { m fm}$
$d_{225}Ra$	$< 4.2 \cdot 10^{-17} \ e \ { m fm}$

• future bounds

$$\begin{array}{rl} d_e & < 5.0 \cdot 10^{-17} \ e \ {\rm fm} \\ d_n & < 1.0 \cdot 10^{-15} \ e \ {\rm fm} \\ d_{^{199}{\rm Hg}} & < 6.2 \cdot 10^{-17} \ e \ {\rm fm} \\ d_{^{225}{\rm Ra}} & < 1.0 \cdot 10^{-14} \ e \ {\rm fm} \end{array}$$

Left-right symmetric model

- model based on $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
- broken to SM group at $v_R \gtrsim 10$ TeV

 $K-\bar{K}$ oscillations and di-jet searches

• generate ν masses via type-I and type-II see-saw

need small Yukawas

▲□▶▲□▶▲□▶▲□▶ □ のQで

Left-right symmetric model

- model based on $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
- broken to SM group at $v_R \gtrsim 10$ TeV

 $K-\bar{K}$ oscillations and di-jet searches

• generate ν masses via type-I and type-II see-saw

need small Yukawas

▲□▶▲□▶▲□▶▲□▶ □ のQで

- also generate dim. 7, with one Yukawa
- and dim. 9, with no Yukawa suppression
Left-right symmetric model

- model based on $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
- broken to SM group at $v_R \gtrsim 10$ TeV

 $K-\bar{K}$ oscillations and di-jet searches

generate ν masses via type-I and type-II see-saw

need small Yukawas

- also generate dim. 7, with one Yukawa
- and dim. 9, with no Yukawa suppression