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From nucleons to nuclei: enabling discovery for neutrinos, dark matter



Introduction

ATLAS collaboration, ‘14.
ATLAS & CMS, ‘16.

• the Standard Model works just fine
• last missing piece discovered @ LHC . . . and looks SM-like



Introduction

ATLAS Exotics summary plots

• a lot of work, no evidence for new particles



Introduction
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• neutrino masses • baryogenesis

• Dark matter

nuclei extremely sensitive probes
competitive & complementary to LHC



CP violation

H=−d S⃗⋅E⃗

H=d S⃗⋅E⃗

H=d S⃗⋅E⃗

SM
dn ∼ 10−19 e fm
M. Pospelov and A. Ritz, ‘05

current bound on dn

|dn| < 3.0 · 10−13 e fm
J. M. Pendlebury et al., ‘15

1. permanent Electric Dipole Moments

• signal of T and P violation ( CP )
• insensitive to CP violation in the SM

large window for new physics!
exciting experimental program to close it



The reach of EDM experiments
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one/two-loop running
to gCEDM, qCEDM

top CP-odd Yukawa and chromo-EDM
• important if baryogenesis comes from top sector
• EDM bounds much stronger than collider

Λ ∼ 1-4 TeV

• . . . but hadronic uncertainties weaken bounds



Lepton number violation
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KamLAND, ‘11

• neutrino have masses
• and know a great deal from oscillation
• what’s the origin of neutrino masses?

Dirac or Majorana?

BSM physics!
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Lepton number violation
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2. searches for ∆L = 2 signal probe ν Majorana nature

possible iff νs have a Majorana mass

• neutrinoless double beta decay (0νββ)
• (µ−, e+) conversion
• K+ → π−e+e+, π−e+µ+, π−µ+µ+

• pp→ jje−e−



Lepton number violation

thanks to V. Cirigliano
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Next generation of experiments sensitive to a variety of LNV scenarios

1. LNV originates at very high scales

• 0νββ only relevant experiment

K+ → π−l+l+, (µ−, e+) need to improve by 10-20 orders . . .

• direct connection between ν oscillations and 0νββ

• clear goals: rule out inverted hierarchy



Lepton number violation

thanks to V. Cirigliano
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Next generation of experiments sensitive to a variety of LNV scenarios

1. LNV originates at very high scales

• 0νββ only relevant experiment

K+ → π−l+l+, (µ−, e+) need to improve by 10-20 orders . . .

• direct connection between ν oscillations and 0νββ

• clear goals: rule out inverted hierarchy



Lepton number violation

thanks to V. Cirigliano
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Next generation of experiments sensitive to a variety of LNV scenarios

2. LNV at intermediate scales

• 0νββ is mediated by new particles

• could be accessible at colliders



Lepton number violation

T. Peng, M. Ramsey-Musolf, P. Winslow, ‘15

Next generation of experiments sensitive to a variety of LNV scenarios

2. LNV at intermediate scales

0νββ is mediated by new particles

could be accessible at colliders

general framework to interpret 0νββ exp?



Non-standard charged current interactions

• are there non-standard vector, axial, scalar, or tensor currents?

WR bosons, heavy Higgses, . . .

L = −
4GF√

2

{
ν̄Lγ

µeLd̄Lγµ
(

CLQ,DV†CKM − V†CKMCLQ,U

)
uL

+ν̄LeR

(
d̄RCLedQV†CKMuL + d̄LV†CKMC(1)

LeQuuR

)
+ ν̄Lσ

µνeR d̄LV†CKMC(3)
LeQuσµνuR

}



Non-standard charged current interactions at the LHC
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√
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• look at the mW
T spectrum in pp→ lν

and ml+l− in pp→ l+l−



Non-standard charged current interactions

Current β decays
Current LHC

Future β decays
Future LHC

global fit to nuclear β decay
M. González-Alonso, et al, ‘18

R. Gupta et al., ‘18

• εS and εT from pion and nuclear β decays

π → eνγ, β-ν correlation, Fierz interference term, . . .
• nice complementarity with LHC



The inverse problem

eV MeV GeV TeV?

c©2016 C. Kuiper & J. de Vries



Effective Field Theories

new physics Λ� v

• model independent link
to collider phenomenology

SUL(2) invariant operators at EW scale
• minimal set of low-energy CPV, LNV, . . .
operators

• connection with flavor/low energy probes
CPV, LNV, . . . at 1 GeV

• from quarks to hadrons
non-perturbative matching (LQCD)

Chiral Effective Theory

• EDMs of nucleons & light nuclei
• 0νββ transition potential

Many body



EFT approach to LNV

• half-life anatomy(
T0ν

1/2

)−1
=

m2
ββ

m2
e

G01 g4
A |M0ν |2 + . . . M0ν = 〈0+|Vν |0+〉

parametrize 0νββ w. few coefficients
that can be matched to models

What EFTs can do:

identify QCD input & its uncertainty

systematically derive the ν potentials
check NME in simpler systems



Outline

1 The SM Effective Field Theory

2 From quarks to nucleons: the light neutrino exchange mechanism (revisited)

3 From quarks to nucleons: non-standard mechanisms

4 Phenomenology



The Standard Model as an Effective Field Theory

Write down all possible operators with
• SM fields
• local SU(3)c × SU(2)L × U(1)Y invariance
• dimension ≤ 4

mν = 0
no ∆L interactions

assume no light sterile νR



The Standard Model as an EFT

• why stop at dim=4?

L = LSM +
∑ ci, 5

Λ
O5 i +

∑ ci, 6

Λ2 O6 i +
∑ ci, 7

Λ3 O7 i + . . .

Λ� v = 246 GeV

• O have the same symmetries as the SM
gauge symmetry!
but not accidental symmetries as L

• one dimension 5 operator S. Weinberg, ‘79





1
Λ
εijεmnLT

i CLm HjHn → v2

Λ
νT

L CνL

neutrino masses and mixings

Λ ∼ 1014 GeV
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The Standard Model as an EFT

three/four bosons h self-coupling scalar-gauge

Yukawa dipole vector/axial currents four-fermion

• many dimension 6, ∝ v2/Λ2

Buchmuller & Wyler ‘86, Weinberg ‘89, de Rujula et al. ‘91, Grzadkowski et al. ‘10 . . .



LNV at dim. 7, dim. 9
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• dim.7 operators mostly induce β decay with “wrong” ν

=⇒ long range contribs. to 0νββ

• dim. 9 induce short-range contributions to 0νββ



Connection to models


R 

R


R

W
R

W
R

W
R

d

u

e-
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d u
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• specific models will match onto one or several operators
• e.g. LR symmetric model

dim. 5, 7 & 9 (with different Yukawas)

can match any model to EFT



The low-energy LNV Effective Lagrangian

d

u

e-







e-

e-

d u

d u

v
Λ

v3

Λ3
v3

Λ3 , v5

Λ5

L∆L=2(ν, e, u, d) = −1
2

(mν)ijν
TjCν i + CΓ ν

T C ΓeOΓ + CΓ′e
T C Γ′eQΓ′

quark bilinear four-quark

1. write down π, N, NN, . . ., operators with same chiral properties as L∆L=2

2. estimate the low energy constants
X well determined for nucleon bilinears
X and for mesonic operators
× not so much for short-distance mechanisms

3. write down 0νββ transition operators



Revisiting the light Majorana-ν exchange mechanism



Chiral EFT approach to light-ν exchange mechanism

n p

n p

e-

e-

• weak currents are mainly one-body

JµV = (gV , 0) gV = 1

JµA = −gA

(
0,σ −

q
q2 + m2

π

σ · q
)

gA = 1.27

• 0νββ mediated by exchange of potential neutrinos

Vν = Aτ (1)+τ (2)+ 1
q2

{
1(a) × 1(b) − g2

Aσ
(a) · σ(b)

(
2
3

+
1
3

m4
π

(q2 + m2
π)2

)
+ . . .

}
.

A = 2G2
Fmββ ēLC ēT

L



Standard mechanism. Higher orders

At N2LO O(q2/Λ2
χ), Λχ = 4πFπ ∼ 1 GeV

1. correction to the one-body currents (magnetic moment, radii, . . . )

gA(q2) = gA

(
1− r2

A
q2

6
+ . . .

)
rA = 0.47(7)fm

2. two-body corrections to V and A currents

3. pion-neutrino loops & local counterterms

UV divergences signal short-range sensitivity at N2LO



Standard mechanism. Higher orders
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At N2LO O(q2/Λ2
χ), Λχ = 4πFπ ∼ 1 GeV

1. correction to the one-body currents (magnetic moment, radii, . . . )

gA(q2) = gA

(
1− r2

A
q2

6
+ . . .

)
rA = 0.47(7)fm

2. two-body corrections to V and A currents

3. pion-neutrino loops & local counterterms

UV divergences signal short-range sensitivity at N2LOWARNING: based on naive
dimensional analysis

“Weinberg’s counting”



Is the Weinberg counting consistent for 0νββ?

=  ...

• Weinberg’s counting fails in 1S0 channel
D. Kaplan, M. Savage, M. Wise, ‘96

• study nn→ ppe−e− with LO χEFT strong potential

Vstrong(r) = C̃ δ(3)(r) +
g2

Am2
π

16πF2
π

e−mπr

4πr

• no problem with Yukawa potential

• and one insertion of short-range potential
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Inconsistency of the Weinberg counting

1
2 (1 + 2g2

A)
(

mN C̃
4π

)2 ( 1
ε

+ logµ2)

• two-loop diagrams w. two insertions of C̃ have UV log divergence

need a local LNV counterterm at LO!

• renormalization requires to modify the LO ν potential

VLNV = Vν − 2gντ (1)+τ (2)+A

• the coupling gν is larger than NDA

gν ∼
1

F2
π

� 1
(4πFπ)2
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Inconsistency of the Weinberg counting
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-2)

gν =
(

mN C̃
4π

)2
g̃ν

g̃ν ∼ b− 1
2 (1 + 2g2

A) log RS

• divergence is not an artifact of dim. reg.

regulate the short-range core as

δ(3)(r)→
1

π3/2R3
S

e
− r2

R2
S

and calculate

Aν =

∫
d3rψ−p′ (r)Vν(r)ψ+

p (r)

• Aν shows logarithmic dependence on RS (+ power corrections)



Relation between 0νββ and EM isospin breaking

G2
Fτ

(1)+τ (2)+ mββ

q2

(
τ (1)zτ (2)z − 1

3τ
(1) · τ (2)

)
e2

q2

• can we determine gν ?
• ν potential very similar to I = 2 piece of Coulomb potential
• & chiral symmetry relates I = 2 short-range operators

in 0νββ and NN scattering



Relation between 0νββ and EM isospin breaking

q
L

q
L

q
L

q
L

q
L

q
L,R

q
L,R

q
L,R

q
L,R

• only two I = 2 operators w. same properties as weak/EM currents

LI=2 = c C1

(
N̄QLNN̄QLN −

Tr[Q2
L]

6
N̄τN · N̄τN + L→ R

)

+ c C2

(
N̄QLNN̄QRN −

Tr[QLQR]

6
N̄τN · N̄τN + L→ R

)
QL = u†QLu QR = uQRu†, u = 1 +

iπ · τ
2Fπ

+ . . .

• weak interactions: QL = τ+, QR = 0, cLNV = 2G2
Fmββ ēLCēT

L

• EM interactions: QL = τ z

2 , QR = τ z

2 , ce2 = e2

4



Relation between 0νββ and EM isospin breaking
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• only two I = 2 operators w. same properties as weak/EM currents

LI=2 = c C1

(
N̄QLNN̄QLN −

Tr[Q2
L]

6
N̄τN · N̄τN + L→ R

)

+ c C2

(
N̄QLNN̄QRN −

Tr[QLQR]

6
N̄τN · N̄τN + L→ R

)
QL = u†QLu QR = uQRu†, u = 1 +

iπ · τ
2Fπ

+ . . .

• C1 = gν by chiral symmetry!
• C1 and C2 differ at multipion level

cannot disentangle in NN scattering
but give an idea of 0νββ counterterm



Weinberg counting for isospin breaking operators

• leading I = 2 potential in 1S0 channel from γ exchange & pion mass splitting

V lr
I=2 =

1
4

(
e2

q2 +
g2

A

F2
π

m2
π± − m2

π0

q2 + m2
π

)(
τ (1) zτ (2) z − 1

3
τ (1) · τ (2)

)
m2
π± − m2

π0 ∼ e2F2
π

• short-range contributions suppressed

Vsr
I=2 =

e2

2
C1 + C2

2

(
τ (1) zτ (2) z − 1

3
τ (1) · τ (2)

)
C1 ∼ C2 ∼

1
(4πFπ)2



Relation to charge-independence breaking
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Charge-independence breaking (CIB) observables, e.g.

aCIB =
ann + app

2
− anp

1. LO analysis of isospin breaking show log dependence

C1 + C2

2
=

(
mNC̃
4π

)2
C̃1 + C̃2

2
∼RS=0.5

16
(4πFπ)2

disagree with Weinberg’s counting!



Relation to charge-independence breaking

AV18 potential, Phys. Rev. C51 (1995) 38-51

2. in realistic potentials ( AV18, χ-EFT)

V lr
I=2 and Vsr

I=2 give effects of comparable size

• e.g. large C1 + C2 in χ-EFT potentials

C1 + C2

2
∼

50
(4πFπ)2

M. Piarulli et al, ‘16

• same effect in isotensor energy coeff. of light nuclei



Impact on 0νββ nuclear matrix elements

RS=0.6 fm

RS=0.3 fm

2 4 6 8 10
r (fm)

-1

1

2

3

4

ρ ( MeV
-1)

Aν =
∫

drρ(r)

nn→ pp

• assume C1(RS) = C2(RS)

• LNV matrix element is scale independent
• effect of short-range potential ∼ 10%

∆I = 0 transition



Impact on 0νββ nuclear matrix elements
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ρpp

rms pp = 3.48

ρnp

rms np = 3.57

ρnn

rms nn = 3.88

R. Wiringa, S. Pastore et al.
http://www.phy.anl.gov/theory/research/density2/

Ab initio calculation of 6He→ 6Be and 12Be→ 12C
• not a realistic double beta decay candidate
• . . . but same spin/isospin as 0νββ emitters
• . . . and fully controlled calculation



Impact on 0νββ nuclear matrix elements

0 2 4 6 8

-1
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ρ
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-
1
)

6He →6Be
|ρν |

|ρNN | (RS=0.8 fm)

|ρNN
(χ)

| (RS=0.8 fm)

ρNN
(A18)

VMC calculation
w. AV18 potential

∆I = 2

• extract CIB potential Vsr
I=2 from AV18,

rescaled by cLNV/ce2

• ∼ 10% corrections to ∆I = 0 transitions

MFν

g2
A

= 0.93 MGTν = 3.58
MF,NN

g2
A

= 0.30



Impact on 0νββ nuclear matrix elements

0 2 4 6 8

-0.5
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(f
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-
1
)

12Be →12C
ρν

|ρNN | (RS=0.8 fm)

ρNN
(χ)

| (RS=0.8 fm)

ρNN
(A18)

VMC calculation
w. AV18 potential

∆I = 2

• extract CIB potential Vsr
∆I=2 from AV18

• larger corrections to I = 2 transitions

MFν

g2
A

= 0.191 MGTν = 0.400
MF,NN

g2
A

= 0.29

O(1) correction!

• . . . but uncontrolled theory error from assuming C1 = C2!



Standard mechanism: summary

n p

n p

e-

e-

n p

n p

e-

e-

how to relate 0νββ to the neutrino masses?

• power counting & analogy to EM isospin breaking:

strong indication that 0νββ operator has significant short-range components

• need Lattice QCD calculation of nn→ ppe−e−

& matching to nuclear EFTs !

CalLat, NPLQCD
see Z. Davoudi’s talk last week

• can pinpoint C1 via pion double charge exchange?



Standard mechanism: summary

J. Engel and J. Menéndez, ‘16

• . . . just another uncertainty on top of many-body

see J. Menéndez’s talk
• mimicked by short-range correlations?



Chiral EFT for non-standard mechanisms



Chiral EFT for non-standard mechanisms

operators  
(Long- and pion-range) 

operators  
(short-range) 

En
er

gy

SM
-E

FT
SM

-E
FT

’
Ch

iP
T

dim � 5 dim � 7 dim � 9

BSM-
model

Ch
ira

l 
EF

T
M

an
y 

 
bo

dy
 

M
et

ho
ds

⇠ 100 MeV

⇠ 1 MeV

⇤

⇠ 100 GeV

⇠ 1 GeV

dim � 3

m�� : ⌫ ! ⌫c

⌫ ! ⌫c

0⌫�� 0⌫��

MF , MAA,AP,PP,MM
GT,T MF,sd, MAA,AP,PP

GT,sd , MAP,PP
T,sd

T 0⌫
1/2(0

+ ! 0+)

Electroweak symmetry 
breaking

Match to ChiPT  
(LECs in Table 1)

Construct             
operators (Eq. 24)

NMEs (Table 2)

Phase space integrals  
(Table 4)

0⌫��

n ! pe⌫ ⇡ ! e⌫ n ! p⇡eenn ! ppee ⇡⇡ ! ee

dim � 9

dd ! uuee

dim � 7

(d ! ue⌫) ⌦ @µ

dim � 6

d ! ue⌫

Master formula 
(Eq. 38)

need LQCD
input

sizable many
body err.

c©2018 W. Dekens and J. de Vries



Dim. 9 operators

n p

n p

e-

e-

n p

n p

e-

e-

n p

n p

e-

e-

1. LL LL : O1 = ūLγ
µdL ūL γµdL

2. LR LR : O2 = ūLdR ūL dR, O3 = ūαL dβR ūβL dαR

3. LL RR : O4 = ūLγ
µdL ūR γµdR, O5 = ūαL γ

µdβL ūβR γµdαR

• several unjustified assumptions in the literature . . .

e.g. 〈pp|ūLγ
µdL ūR γµdR|nn〉 = 〈p|ūLγ

µdL|n〉 〈p|ūR γµdR|n〉 = (1− 3g2
A)

inconsistent with QCD, miss chiral dynamics



LNV interactions from dim. 9 operators

n p

n p

e-

e-

n p

n p

e-

e-

n p

n p

e-

e-

• ππ couplings

Lπ =
F2

0

2

[
5
3

gππ1 C(9)
1L ∂µπ

−∂µπ− +
(

gππ4 C(9)
4L + gππ5 C(9)

5L − gππ2 C(9)
2L − gππ3 C(9)

3L

)
π−π−

]
×

ēLCēT
L

v5
+ (L↔ R) + . . .

• size depends on chiral properties of O1,...,5

gππ1 ∼ O(1), gππ2,3,4,5 ∼ O(Λ2
χ)



LNV interactions from dim. 9 operators

n p

n p

e-

e-

n p

n p

e-

e-

n p

n p

e-

e-

• πN couplings, only important for O1

• NN couplings

LNN =
(

gNN
1 C(9)

1L + gNN
2 C(9)

2L + gNN
3 C(9)

3L + gNN
4 C(9)

4L + gNN
5 C(9)

5L

)
(p̄n) (p̄n)

ēLCēT
L

v5

• size depends on chiral properties of O1,...,5

gNN
1 ∼ O(1), gNN

2,3,4,5 ∼ O

(
Λ2
χ

F2
π

)

enhanced w.r.t NDA!



ππ matrix elements

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
ε2π = (mπ/(4πFπ))2

−0.08

−0.06

−0.04

−0.02

0.00

0.02

O
i
[G

eV
4 ]

a ∼ 0.09 fm a ∼ 0.12 fm a ∼ 0.15 fm

A. Nicholson et al., CalLat collaboration, ‘18

gππ1 = +0.4

gππ2 = −(1.8 GeV)2

gππ3 = +(1.0 GeV)2

gππ4 = −(1.7 GeV)2

gππ5 = −(3.6 GeV)2

• ππ matrix elements well determined in LQCD

good agreement with NDA
• nn→ pp will allow to determine gNN

i

and test the chiral EFT power counting



0νββ potential

n p

n p

e-

e-

n p

n p

e-

e-

n p

n p

e-

e-

• NME differ dramatically from factorization
e.g C(9)

4

M = −
gππ4 C(9)

4

2m2
N

(
1
2

MGT
AP,sd + MGT

PP,sd

)
∼ −0.60C(9)

4

Mfact = −
3g2

A − 1
2g2

A

m2
π

m2
N

C(9)
4 MF,sd ∼ −0.04C(9)

4

bigger error than from NMEs . . .



Phenomenology



0νββ in the Left-Right Symmetric Model
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• generate dim. 5, 7 and 9
• dim. 7 and dim. 9 are chirally suppressed

Case 1 mWR = 4.5 TeV, m∆R = 10 TeV, UR = UPMNS,

mνR ∼ mWR

• strong collider bounds on mWR suppress dim. 7 and dim. 9 contribs.
• light-ν Majorana mass dominates in IH
• dim. 9 sizable in NH, but not in reach



0νββ in the LRSM

10-4 10-3 10-2 10-1 1 10
10-4

10-3

10-2

10-1

1

mν
lightest (eV)

|m
β
β
ef
f |
(e
V
)

Normal Hierarchy

mββ

LRM (ξ=mb/mt)
LRM (ξ=0)

10-4 10-3 10-2 10-1 1 10
10-4

10-3

10-2

10-1

1

mν
lightest (eV)

|m
β
β
ef
f |
(e
V
)

Inverted Hierarchy

mββ

LRM (ξ=mb/mt)
LRM (ξ=0)

Case 2 mWR = 4.5 TeV, m∆R = 10 TeV, UR = UPMNS,

mνR ∼ 10 GeV
• not ruled out by LEP, LHC searches
• dim. 9 contribution becomes dominant
• in conflict with current 0νββ limits



0νββ in the LRSM

mνR= 10 GeV

mνR =1 TeV

mββ

-1.0 -0.5 0.5 1.0
y =(E1-E2)/Q

0.2

0.3

0.4

0.5

0.6

0.7

1/Γ d Γ/dy

• disentangle LRSM from standard mechanism?
• different isotopes are largely degenerate
• electron energy and angular distributions as well

• need interplay with LHC searches!



Conclusion

• BSM searches with nuclei are complementary
& very competitive with the energy frontier

0νββ, EDMs, DM, . . .

• but need to control QCD & nuclear theory !

EFTs

• model independent link to collider phenomenology
• identify non-perturbative QCD input

Lattice QCD

• calculate few nucleon observables

dn, EDMs of light nuclei, 6He→6 Li e−ν̄

• provide input for many-body calculations

0νββ potentials, DM-nucleon currents, . . .





Backup



Usoft contribution to the amplitude

overlap 〈n|Jµ|i〉
same as in 2νββ!

4. soft neutrinos, which couple to the nuclear bound states

Tusoft(µus) =
Tlept

8π2

∑
n

〈f |Jµ|n〉〈n|Jµ|i〉
{

(E2+En−Ei)

(
log

µus

2(E2 + En − Ei)
+ 1
)

+1↔ 2
}
,

• corrections to the “closure approximation”
• suppressed by E/(4πkF)



Is the Weinberg counting consistent?

D. Kaplan, M. Savage, M. Wise, ‘96

m2
π

( 1
ε

+ logµ2)

• NDA does not work in NN scattering
• mπ dependence of short-range nuclear force should be subleading

L = −C̃(NT P
1S0 N)(NT P

1S0 N)† −
m2
π

(4πFπ)2
D2(NT P

1S0 N)(NT P
1S0 N)† + . . .

4πFπ = Λχ ∼ 1 GeV

• . . . but UV divergences in the LO amplitude require a promotion . . .

conflict between NDA & short-range core of nuclear force
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• NDA does not work in NN scattering
• mπ dependence of short-range nuclear force should be subleading

L = −C̃(NT P
1S0 N)(NT P

1S0 N)† −
m2
π

(��ZZ4πFπ)2
D2(NT P

1S0 N)(NT P
1S0 N)† + . . .

4πFπ = Λχ ∼ 1 GeV

• . . . but UV divergences in the LO amplitude require a promotion . . .

conflict between NDA & short-range core of nuclear force



Nuclear matrix elements

76 82 130136 76 82 130136 76 82 130136 76 82 130136 76 82 130136

A

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

MF MGT,AA MGT,AP MGT,PP MGT,MM

QRPA, Hyvärinen et al. `15

shell model, Meńendez `17

IBM−2 Barea, et al. `17

calculations differ by
factor of 2-3

• at LO in χEFT, all nuclear matrix elements (NME)
can be expressed in terms of existing calculations

• 8 long-range NME

contribute to light ν exchange

• 6 short-range NME

contribute to heavy Majorana ν exchange



Low-energy Effective Lagrangian for ∆L = 2



∆L = 2 Lagrangian at 1 GeV





L∆L=2 = L∆e=0
∆L=2 + L∆e=1

∆L=2 + L∆e=2
∆L=2

• L∆e=0
∆L=2 includes ν masses, magnetic moments, . . .

L∆L=2 = −
1
2

(mν)ij ν
T j
L Cν i

L + . . . mν ∼ O
(

v2

Λ

)



∆L = 2 Lagrangian at 1 GeV

e



e



e



e



L∆L=2 = L∆e=0
∆L=2 + L∆e=1

∆L=2 + L∆e=2
∆L=2

• L∆e=1
∆L=2 starts at dim. 6, C(6)

i = O
(

v3

Λ3

)
L(6)

∆L=2 =
2GF√

2

{
C(6)

VL d̄Lγ
µuL ν

T
L CγµeR + C(6)

VR d̄Rγ
µuR ν

T
L CγµeR

+C(6)
SL d̄RuL ν

T
L CeL + C(6)

SR d̄LuR ν
T
L CeL + C(6)

T d̄Rσ
µνuL ν

T
L CσµνeL

}
β decay w. the “wrong” neutrino & all possible Lorentz structures



∆L = 2 Lagrangian at 1 GeV

e

e

e

e

e

e

e

e

dim. 7 ops. dim. 9 ops.

• L∆e=2
∆L=2 starts at dim. 9

L(9)
∆L=2 =

2G2
F

v

[ ∑
i=scalar

(
C(9)

i ēLC ēT
L + C(9)′

i ēRC ēT
R

)
Oi + ēRγµC ēT

L

∑
i=vector

C(9)
iV Oµi

]

• a small set receives contributions from dim. 7 operators

C(9)
1 ,C(9)

4,5 ∼ O
(

v3

Λ3

)
, C(9)

i =∼ O
(

v5

Λ5

)
• straightforward to include pQCD corrections



CP violation

TRIUMF

LANL
SNS

PSI

TUM
ILL

PNPI

RCNP

nEDM
pEDM, dEDM
EDM

ACME

J-PARC

ThO, HfF
Hg, Xe, Ra

• current bounds

de < 8.7 · 10−16 e fm
dn < 3.0 · 10−13 e fm

d199Hg < 6.2 · 10−17 e fm
d225Ra < 4.2 · 10−17 e fm

• future bounds

de < 5.0 · 10−17 e fm
dn < 1.0 · 10−15 e fm

d199Hg < 6.2 · 10−17 e fm
d225Ra < 1.0 · 10−14 e fm



Left-right symmetric model
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L

• model based on SU(3)c × SU(2)L × SU(2)R × U(1)B−L

• broken to SM group at vR & 10 TeV

K-K̄ oscillations and di-jet searches
• generate ν masses via type-I and type-II see-saw

need small Yukawas

• also generate dim. 7, with one Yukawa
• and dim. 9, with no Yukawa suppression
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• and dim. 9, with no Yukawa suppression
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• model based on SU(3)c × SU(2)L × SU(2)R × U(1)B−L

• broken to SM group at vR & 10 TeV

K-K̄ oscillations and di-jet searches
• generate ν masses via type-I and type-II see-saw

need small Yukawas

• also generate dim. 7, with one Yukawa
• and dim. 9, with no Yukawa suppression
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