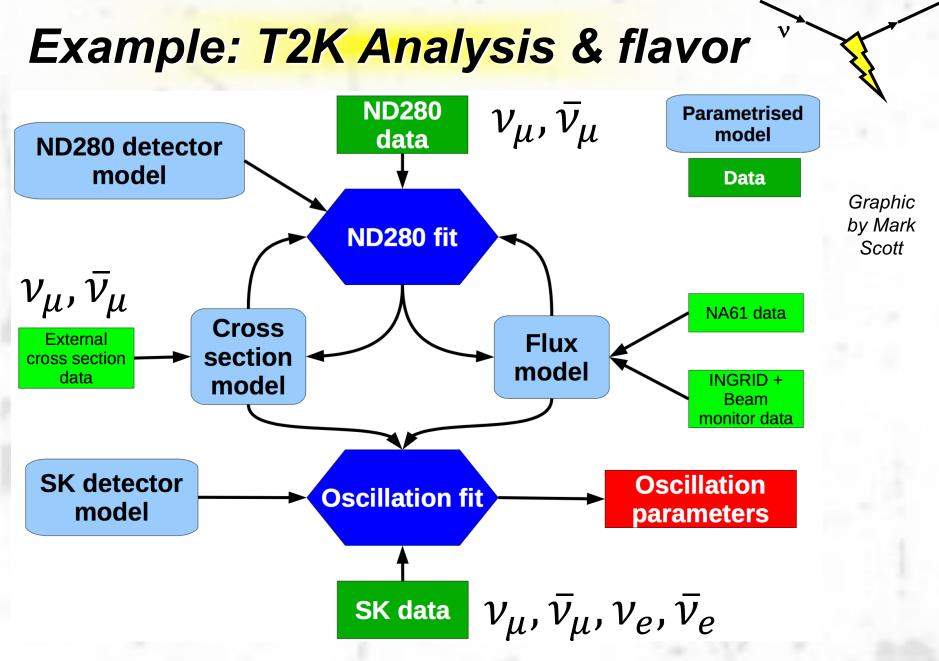

Predicting GeV Electron Neutrino Interactions from Muon Neutrino Interactions

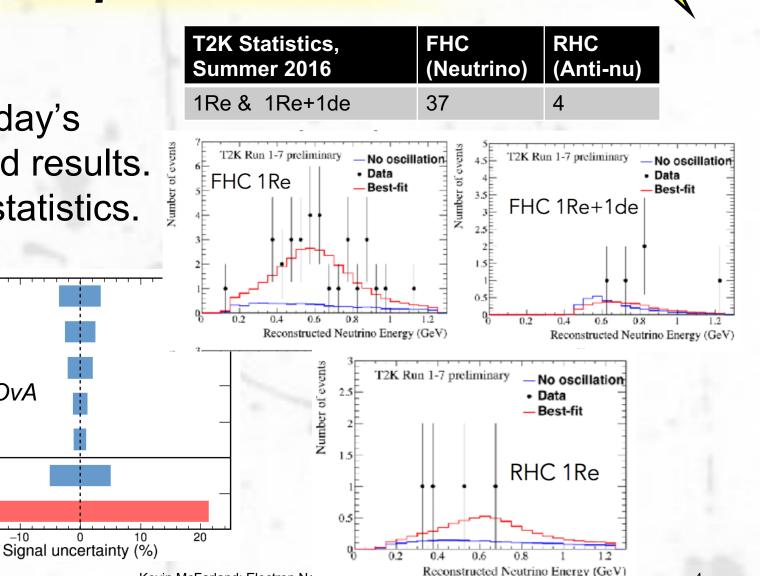


Kevin McFarland University of Rochester INT-18-02a 28 June 2018

Outline

- 1. Why are Electron and Muon Neutrino Interactions Different?
- 2. Effects in CC Elastic on Nucleons
- 3. Nuclear Effects
- 4. Effects of Radiative Corrections
- 5. Will Data Rescue Us?

Spoiler: We must work harder.



When is precision critical?

 Luckily, not in today's published results. 'Cause statistics.

NOvA

-10

-20

Normalization

Calibration

Beam

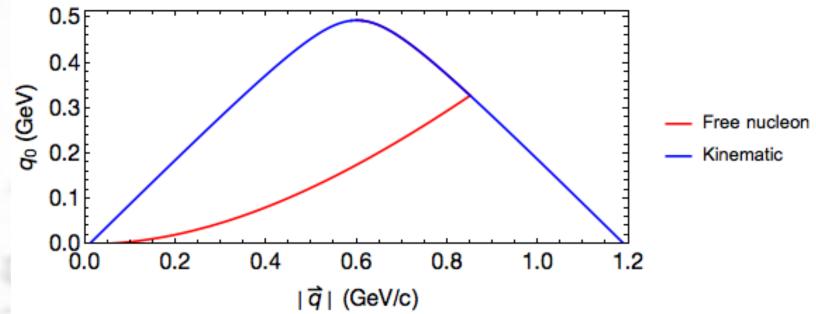
v Cross Sections

Detector Response

Total syst. error

Statistical error

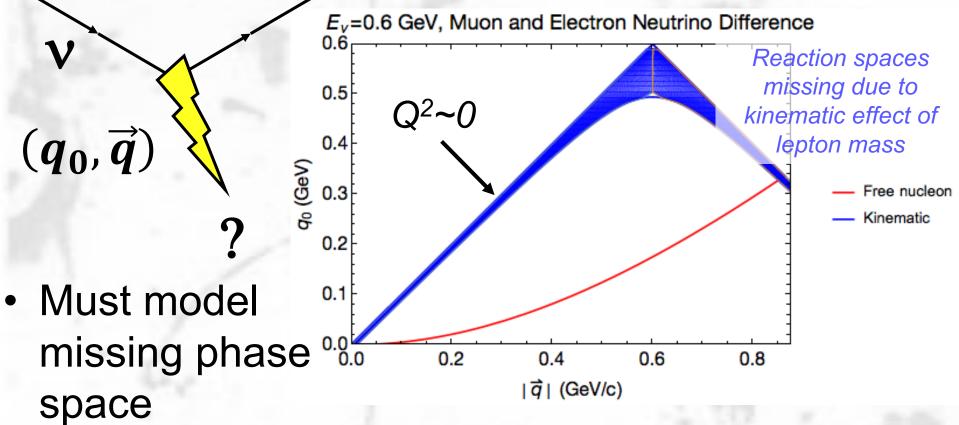
Kevin McFarland: Electron Ne


Flavor, Phase Space and Helicity

Flavor Matters

Consider kinematic boundaries for v scattering

 E_v =0.6 GeV, Muon Neutrino

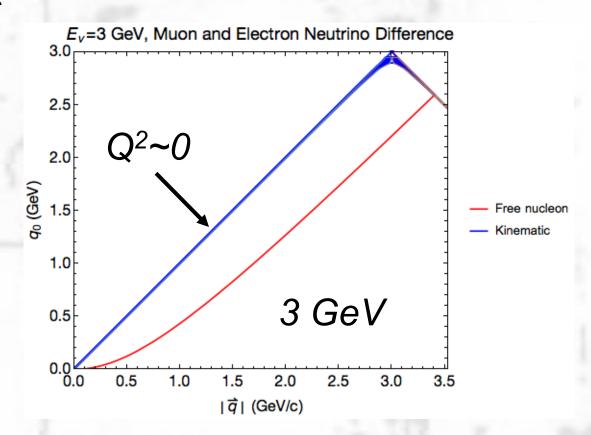


Kevin McFarland: Electron Neutrino Interactions

 (q_0, \vec{q})

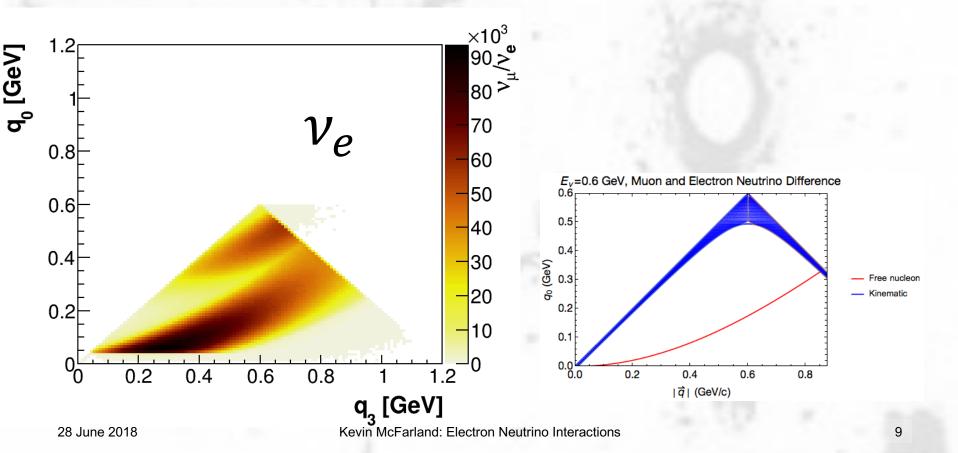
Flavor Matters (cont'd)

 In CC scattering, mass of lepton affects available energy and momentum transfer

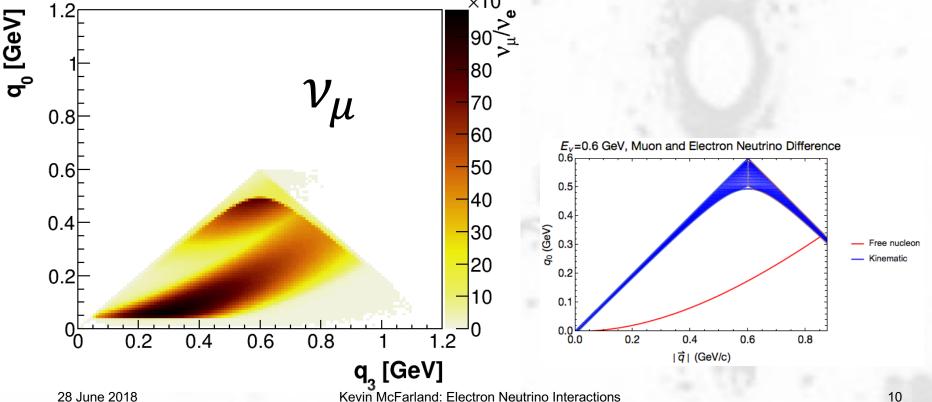

28 June 201

Flavor Matters (cont'd)

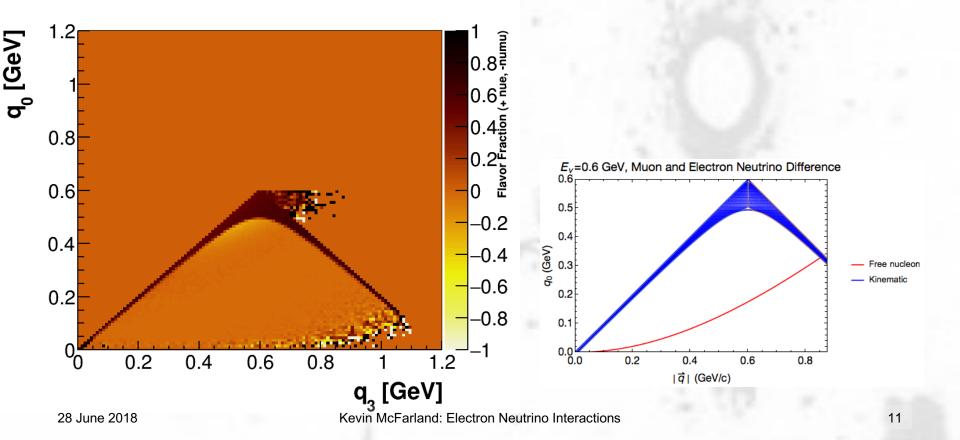
• In CC scattering, mass of lepton affects available energy and momentum transfer


 Must model missing phase
 Space 28 June 2018

 $(\boldsymbol{q_0}, \vec{\boldsymbol{q}})$


What does GENIE say?

- Nuclear effects smear out the "free nucleon" line, as expected.
- Can see the kinematic boundary. Uh... mostly... ??


What does GENIE say?

- The flavor dependence for the leading parts of the crosssection is clear.
- But not for all parts of the cross-section interestingly...
- Also note that high inelasticity "tip" increases for muons!

What does GENIE say?

- Flavor difference shows the expected features
 - Interpret lower right as stochastic variation of cross-section tail
 - Low Q² high q₀ enhancements for muons is interesting

Mass Terms in Lepton Current

 The lepton current itself also has lepton mass terms in it...

$$\begin{aligned} \frac{d^{2} \sigma^{\nu} \cdot \overline{\nu}}{d |q^{2}| d \nu} &= \frac{G^{2}}{32 \pi M E^{2}} \quad \overline{\Sigma} \sum m_{\mu\nu} \quad \overline{\Sigma} \sum W^{\mu\nu} \qquad \begin{array}{c} Ch. \ Llewellyn-Smith, \ Phys\\ Rept. \ 3C, \ 261-379 \ (1972). \end{array} \\ &= \frac{G^{2}}{8 M^{2} \pi E^{2}} \left[2 \left(m^{2} - q^{2}\right) W^{\nu}_{1} \cdot \overline{\nu} + (4 E E^{\dagger} + q^{2} - m^{2}) W^{\nu}_{2} \cdot \overline{\nu} - \frac{m^{2}(q^{2} - m^{2})}{M^{2}} W^{\nu}_{4} \cdot \overline{\nu} \right. \\ &\left. - \frac{2 E m^{2}}{M^{2}} W^{\nu}_{5} \cdot \overline{\nu} \ \pm \ \frac{W^{\nu}_{3} \cdot \overline{\nu}}{M^{2}} \left(E \left(q^{2} + m^{2}\right) + E^{\dagger} \left(q^{2} - m^{2}\right) \right) \right] \end{aligned}$$

... so this will similarly result in a difference

- Often difficult to probe these directly
 - Most straightforward would be comparison of polarized and unpolarized scattering or v_{μ} , v_e cross-sections. Oops.

Form Factors and Charged Current Elastic Scattering on Nucleons

M. Day and KSM, Phys.Rev. D86 (2012) 053003

CC Elastic Scattering

- Straightforward to write framework *Ch. Llewellyn-Smith, Phys Rept.* for quasi-elastic scattering on nucleon ^{3C, 261–379 (1972).}
- Uncertainties in form factors of nucleon lead to uncertainties in the differences of muon and electron neutrino reaction rates.
- Six allowed form factors of the nucleon that enter:
 - Two "ordinary" vector and one axial form factor
 - o Vector form factors measured in electron scattering. Axial form factor from pion leptoproduction, neutrino CCQE on D₂.
 - One pseudoscalar form factor o Predicted by PCAC and Goldberger-Treiman to be small.
 - One vector and one axial "second class" current

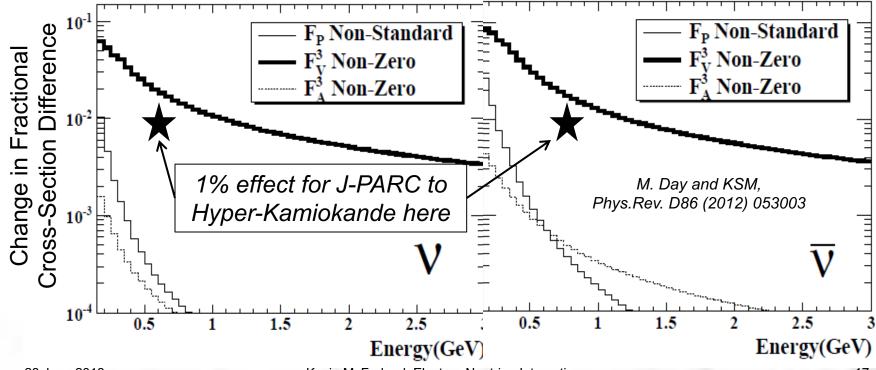
o Usually assumed zero because they violate charge symmetry (not a perfect symmetry, e.g., $m_n \neq m_p$) in nucleon system.

CC Elastic Scattering (cont'd)

• Sqeamish? $\frac{d\sigma}{dQ^2} \binom{\nu n \to l^- p}{\overline{\nu}_p \to l^+ n} = \left[A(Q^2) \mp B(Q^2) \frac{s - u}{M^2} + C(Q^2) \frac{(s - u)^2}{M^4} \right]$ Then avert your gaze... $\times \frac{M^2 G_F^2 \cos^2 \theta_c}{8\pi E_{\nu}^2 - Ch. \ Llewellyn-Smith, \ Phys \ Rept.$

$$\begin{split} & A(Q^2) = \frac{m^2 + Q^2}{4M^2} \left[\left(4 + \frac{Q^2}{M^2} \right) |F_A|^2 - \left(4 - \frac{Q^2}{M^2} \right) |F_V^1|^2 + \frac{Q^2}{M^2} \xi |F_V^2|^2 \left(1 - \frac{Q^2}{4M^2} \right) + \frac{4Q^2 \operatorname{Re} F_V^{1*} \xi F_V^2}{M^2} \\ & - \frac{Q^2}{M^2} \left(4 + \frac{Q^2}{M^2} \right) |F_A^3|^2 - \frac{m^2}{M^2} \left(|F_V^1 + \xi F_V^2|^2 + |F_A + 2F_P|^2 - \left(4 + \frac{Q^2}{M^2} \right) \left(|F_V^3|^2 + |F_P|^2 \right) \right) \right], \\ & B(Q^2) = \frac{Q^2}{M^2} \operatorname{Re} F_A^* \left(F_V^1 + \xi F_V^2 \right) - \frac{m^2}{M^2} \operatorname{Re} \left[\left(F_V^1 - \frac{Q^2}{4M^2} \xi F_V^2 \right)^* F_V^3 - \left(F_A - \frac{Q^2 F_P}{2M^2} \right)^* F_A^3 \right] \text{ and } \\ & C(Q^2) = \frac{1}{4} \left(|F_A|^2 + |F_V^1|^2 + \frac{Q^2}{M^2} \left| \frac{\xi F_V^2}{2} \right|^2 + \frac{Q^2}{M^2} |F_A^3|^2 \right). \end{split}$$

- Phase space
- Two terms, including those with F_P , and F_V^3 , enter with a factor of m^2/M^2 . These are relevant for muon neutrinos at low energies but not for electron neutrinos.

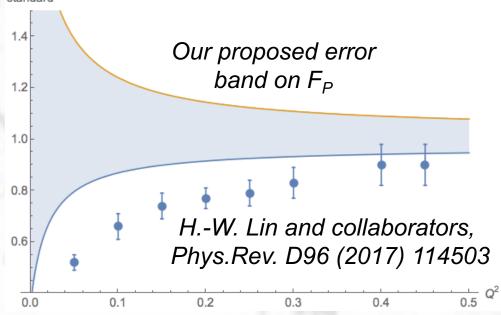


Know Nothing Approach

- Look at how large the possible effects of non-standard or unconstrained form factors could be, independent of theoretical prejudice.
 - Constraints on second class currents primarily from beta decay and muon capture on nuclei.
 - Pseudoscalar form factors and axial form factor measured in pion electroproduction.
 - Vector form factors from electron-nucleon elastic scattering.

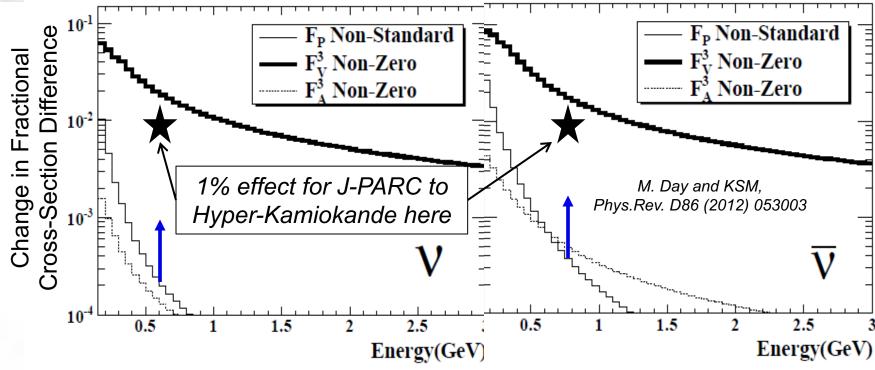
Results for Neutrino Cross-

- We concluded most form factor uncertainties are small
- Possible effect from F_V^3 of few % at J-PARC to T2K/HK
 - Neutrino and anti-neutrino effects are opposite in sign for second class currents, so could fake a CP asymmetry.


How to reduce second class current uncertainty?

- High statistics neutrino and anti-neutrino muon neutrino CCQE on nuclei has potential to constrain second-class currents
 - Effect is distinctive in Q² and energy.
 - Only seen in muon neutrinos.
 - MINERvA, T2K, NOvA should have useful data.
 - But nuclear uncertainties complicate this ⁽³⁾
- Could study muon and electron neutrinos together and compare cross sections.
- Can it be shown not to be large on the lattice? Nucleon level probably. Nuclei?

28 June 2018


This week's update: Revisiting F_P

- I learned at this meeting that there were recent, reliable lattice calculations of F_P!
- It turns out that these don't agree with our conclusions from the 2012 analysis.

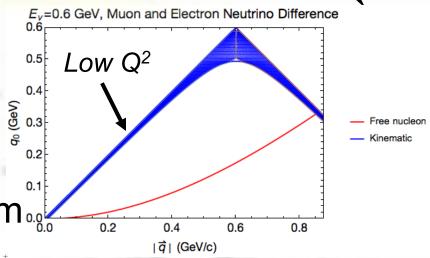
Revisiting Neutrino Cross- Section Differences on Nucleons

- Lattice result suggests that the F_P effect could be larger by a factor of "several".
- Still probably not a leading concern.

Speaking of working harder...

- I went through one example of nucleon level uncertainties for charged current elastic process.
- To briefly summarize, the physics in generators should (mostly) leave small uncertainties for cross section differences.
 - With work to be done to experimentally or theoretically constrain second class currents.
- But there are other processes to consider with different form factor uncertainties
 - Someone should analyze these!
 Especially for NOvA, DUNE...

Some work on this alredy! Paschos, E.A. et al. arXiv:1209.4219; *Rafi Alam, M. et al. Phys.Rev.* D88 (2013) 077301

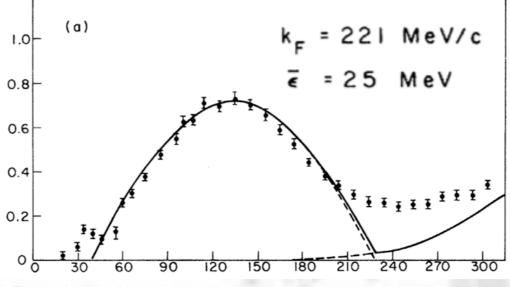

• And then there is the effect of the nucleus...

Nuclear Effects and Neutrino Flavor Differences

Work in progress from DUNE interaction "reweight" group: Kendall Mahn, Luke Pickering, Dan Ruterbories, KSM, Clarence Wret, Kirk Bays, Dan Cherdack Michigan State, Rochester, CalTech, Houston

What will change in the nucleus?

- Nuclear response changes the scattering in missing phase space
- E.g., nuclear screening from W+ by nuclear
 polarization (RPA)
 - EM analogy in atoms

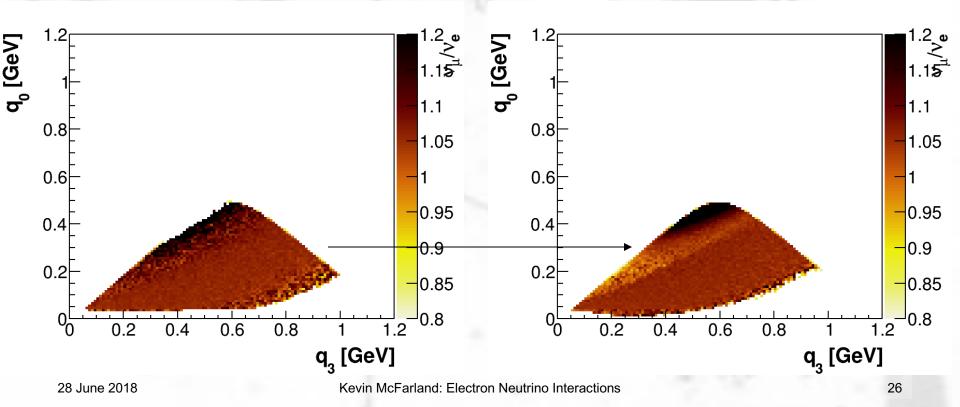

G. D. Megias, J. E. Amaro , M. B. Barbaro, J. A. Caballero T. W. Donnelly, I. Ruiz Simo, Phys.Rev. D94 (2016) no.9, 093004 M. Ericson, M.V. Garzelli, C. Giunti, M. Martini, Phys.Rev. D93 (2016) no.7, 073008

- Kinematic boundaries will shift due to nuclear effects (binding, Fermi motion)
 - To get this right, must treat these effects carefully
 - Probably insufficiently careful in generators today.

Binding and Fermi Motion

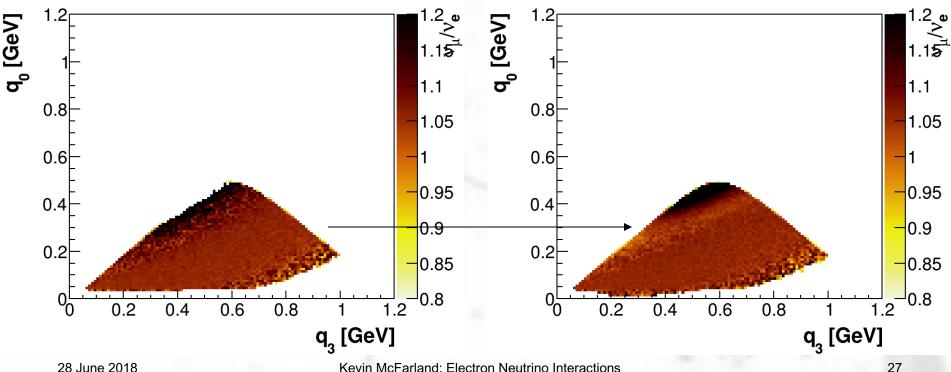
- There are uncertainties in Fermi motion (tails) and removal energy (see e.g., A. Bodek arXiv:1801.079)
- These effects shift population near flavor dependent kinematic boundaries.
- An overly short summary of uncertainties for neutrinos:
 - We use electron data to infer binding and Fermi Motion.
 - It pays to be careful.
 - Otherwise, might as well use R. Perry *et al* data

E.J. Moniz, I. Sick, R.R. Whitney, J.R. Ficenec, Robert D. Kephart, W.P. Trower. Phys.Rev.Lett. 26 (1971) 445



A Brief Summary of arXiv:1801.079

- The original analysis and many subsequent analyses of the Moniz data need corrections
 - Coulomb effects & Relativistic kinematics (averaged)
- If analyzed carefully, find consistency between shell model, (e,e'p) data, and Moniz data. Where all datasets exist, consistent w/in a few MeV
- Implementation in generators have to be careful of double counting effects like final state mass
 - GENIE has an O(10) MeV mistake due to a double counting of nuclear masses.
- Matters for v_{μ}/v_e . "This is a talk about v_{μ}/v_e ." Arlo Guthrie

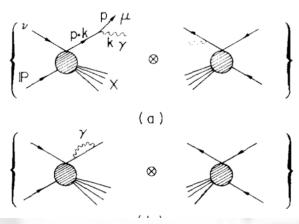

High Fermi momentum tail (Bodek-Ritchie model in GENIE)

• The effect of a (maybe unrealistic) truncation in the Bodek-Ritchie tail on v_{μ}/v_e .

Order ~10 MeV shift in removal energy

 The effect of a (maybe unrealistic) shift in removal energy on v_{μ}/v_e .

Radiative Corrections in Neutrino Scattering


A story in which we find we have the tools... but not the willpower (yet!) to get results. Encourage your theory friends to help us!

> Informed by work by R. Hill, KSM, manuscript still in preparation

Why might radiative corrections depend on flavor?

 Consider the leading logs from the lepton leg in neutrino charged current scattering

Lepton mass

 $\begin{aligned} & \text{Nucl. Phys. B154 394 (1979)} \\ & \frac{\mathrm{d}\sigma_{\mathrm{obs}}}{\mathrm{d}E_{\mu} \ \mathrm{d}\Omega} = \frac{\mathrm{d}\sigma_{\mathrm{B}}}{\mathrm{d}E_{\mu} \ \mathrm{d}\Omega} + \frac{\alpha}{2\pi} \ln \frac{4E_{\mu}^{*2}}{\mu^{2}} \int_{0}^{1} \mathrm{d}z \frac{1+z^{2}}{1-z} \\ & \times \left\{ \frac{1}{z} \frac{\mathrm{d}\sigma_{\mathrm{B}}}{\mathrm{d}\tilde{E}_{\mu} \ \mathrm{d}\Omega} \right|_{\tilde{E}_{\mu} = E_{\mu}/z} \quad \theta(z - z_{\mathrm{min}}) - \frac{\mathrm{d}\sigma_{\mathrm{B}}}{\mathrm{d}E_{\mu} \ \mathrm{d}\Omega} \right\} + O\left(\frac{\alpha}{2\pi}\right), \\ & 4E_{\mu}^{*2} = 2m_{\mathrm{p}}E_{\nu}(1-y+xy) = [Q^{2} + 2m_{\mathrm{p}}E_{\mu}]^{2}/2m_{\mathrm{p}}E_{\nu}, \\ & z_{\mathrm{min}} = \frac{E_{\mu}}{E_{\nu}} \left(1 + \frac{E_{\nu}}{m_{\mathrm{p}}}(1-\cos\theta_{\mathrm{lab}})\right), \end{aligned}$

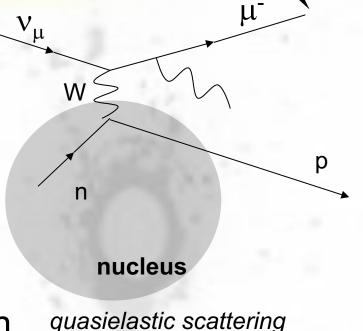
deRújula, Petronzio, Savoy-Navarro,

- in a large log $z_{\min} = \frac{E_{\mu}}{E_{\nu}} (1)$ • So the effects of radiative
- So the effects of radiative corrections will certainly depend on neutrino flavor

What has been done?

- Deep Inelastic Scattering, $\nu q \rightarrow \nu / \ell q'$
 - Outdated calculations using quark mass regularization
 - Modern calculations
 in unrealistic observables
 - Modern calculations in realistic observables!

D.Yu. Bardin, V.A. Dokuchaeva Sov.J.Nucl.Phys. 39 (1984) 563, Yad.Fiz. 39 (1984) 888-894


K.P.O. Diener, S. Dittmaier, W. Hollik, Phys.Rev. D69 (2004) 073005 A.B. Arbuzov, D.Yu. Bardin, L.V. Kalinovskaya, JHEP 0506 (2005) 078

K.-P.O. Diener , S. Dittmaier, W. Hollik, Phys.Rev. D72 (2005) 093002

- Neutrino-Electron Elastic Scattering
 - Modern calculations for observables for both accelerator and solar energies.
 S. Sarantakos, A. Sirlin, W.J. Marciano, Nucl.Phys. B217 (1983) 84-116
 John N. Bahcall, Marc Kamionkowski, Alberto Sirlin, Phys.Rev. D51 (1995) 6146-6158
 M. Passera, Phys.Rev. D64 (2001) 113002
- So tools exist for the calculations

What do we need to study?

- Inclusive scattering rate?
 - KNL theorem suggests lepton mass effects from lepton leg should be small
 - Box diagrams? T2K guesses effect might be ~2%, but there is no guidance from calculation.

- Radiation of real photons
 - As in the diagram above, effect will be different for muon and electron neutrinos
 - Comments follow about relevance of this process.

Does Lepton Mass affect an "Inclusive" Cross Section?

 By inclusive cross-sections, I mean the exclusive low energy processes that dominate at T2K, NOvA, low part of DUNE energies

W

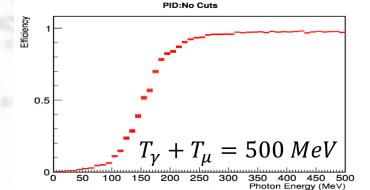
n

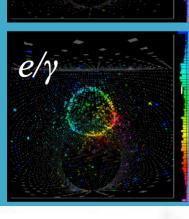
nucleus

- E.g., quasielastic scattering v_{μ}
- I recognize the horrors implicit in the "Feynman diagram" on the right
 - And pion production is only worse to contemplate.
- But if this is difference at the few % level in ν_μ and ν_e scattering, it really matters!

р

Real Photons & Reconstruction


- Consider two cases
 - Collinear(ish) radiation with lepton
 - Other
- If radiation is collinear, what does it do?
 - It can disrupt lepton energy reconstruction
 - Different for electrons (adds to electron energy) and muons (reconstruction by range vs total ionization)
 - Most frighteningly, it can make muons look like they are electrons (electromagnetic shower of photon)
 o Remember that muons are common and electrons are rare in these experiments!


μ

Muon+photon fakes Electron?

 Increased fuzziness of electron ring at bottom compared to muon at top

- If the collinear photon has a significant fraction of the muon energy, it will appear as an electron
 - Roughly requires photon energy to be 40% of muon energy for a significant probability in Super-K
 - Rare, very bad, event

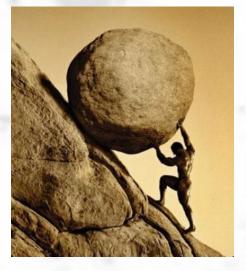
SK MC

More Reconstruction Woes

- Consider two cases
 - Collinear(ish) radiation with lepton
 - Other
- If radiation is not collinear, what does it do?
 - If detector is just summing final state energy (DUNE, NOvA) it probably of little consequence
 - But at T2K and Hyper-K, it is very bad

 o Reconstruction will often infer the presence of a
 π⁰ → γγ with a missed photon, and it will remove
 the event from the quasielastic (oscillation) sample
- Oh and we can't measure this. $\pi^0 \rightarrow \gamma \gamma$ bkgnd.

μ

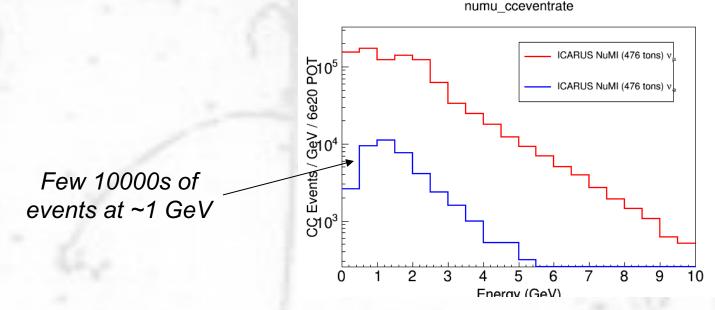

Radiative Corrections Summary

- Virtual corrections to the total cross-sections are a real concern. Not known. Guess is "small"
- We also need calculations of differential crosssections for reactions with photons
 - In particular, total energy in energetic photons that are collinear, and energy and angles of energetic noncollinear photons
- Energetic?
 Collinear?
 Depends
 on detector

	Scintillator	Water	LArgon
	(NOvA)	(T2K, HK)	(DUNE)
Collinear with lepton?	<7°	<12°	<15°
Photon energy	30 (100 for	25	10 (100+
threshold (MeV)	PID)		for PID)

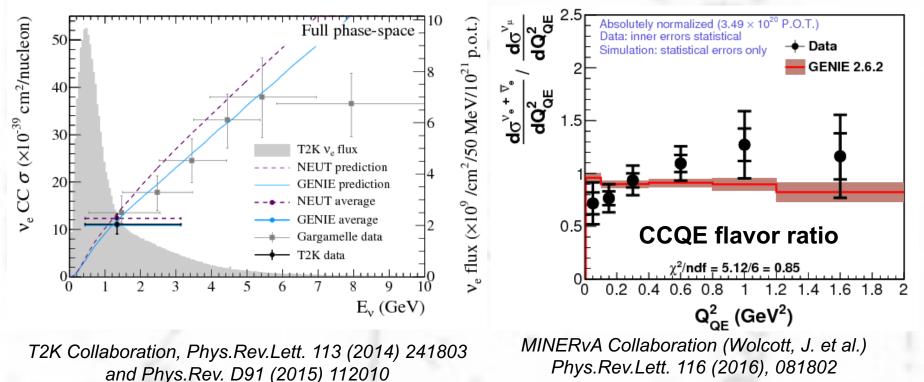
Measurements of Electron Neutrino Interactions

Sisyphus never had it so hard...



Another tough way to make a living...

- Accelerator experiments can try to measure v_e scattering directly
- But large backgrounds from the factor of ~100 more ν_μ in the beam, and different electron reconstruction systematics than μ
- All the modern experiments are trying this.
- NOvA and ICARUS have combinations of statistics, detector, that *may* be most favorable.


NOvA and ICARUS

- NOvA is a huge detector with a lot of statistics.
- ICARUS sits far off axis for NuMI beam, so 1% electron neutrinos becomes ~10% for ~1 GeV.
 - Many effects should be biggest at low energies.

Recent Results

- Published measurements of inclusive v_e scattering (T2K) and v_e CCQE (MINERvA)
 - Data is not sensitive to smaller than ~20% differences

Summary and Conclusions

Summary and Conclusions

- Today, differences between v_{μ} and v_{e} are either controlled, or small enough that we are "safe"
- This happy accident of imprecise data will not persist forever. We hope not, anyway!
- Need work (now!) on inelastic processes, nuclear models and radiative corrections

Summary and Conclusions

- Today, differences between v_{μ} and v_{e} are either controlled, or small enough that we are "safe"
- This happy accident of imprecise data will not persist forever. We hope not, anyway!
- Need work (now!) on inelastic processes, nuclear models and radiative corrections
- And maybe we'll
 just get lucky?

"I'm a great believer in luck, and I find the harder I work the more I have of it."

- THOMAS JEFFERSON