

NEUTRON CLUSTER.

Johannes Kirscher יוהנס קירשר

The City College of New York

A. Ogloblin and Y. Penionzhkevich in Treatise on Heavy-Ion Science V. 8 (1989)

NEUTRON CLUSTER.

Johannes Kirscher יוהנס קירשר

The City College of New York

(C. BERTULANI, V. ZELEVINSKY, Nature 4/2016)

$e^{-\lambda Q} | \text{July 4}^{\text{th}}, 2018 ; \text{INT(Seattle}+\epsilon) \rangle$

BRUNNIAN NEUTRON CLUSTER.

Johannes Kirscher יוהנס קירשר

The City College of New York

(C. BERTULANI, V. ZELEVINSKY, Nature 4/2016)

$e^{-\lambda Q} \left| \text{July 4th}, 2018 ; \text{INT(Seattle}+\epsilon) \right\rangle$

BRUNNIAN NEUTRON CLUSTER.

Johannes Kirscher יוהנס קירשר

The City College of New York

(R. Scharein, KnotPlot)

A. Ogloblin and Y. Penionzhkevich in Treatise on Heavy-Ion Science V. 8 (1989)

Precision models of the nuclear force $\stackrel{?}{\Leftrightarrow}$ bound neutron cluster

I) Modify AV18/IL2**

• $\Delta V_{NN}({}^{1}S_{0})$ long range (2π exchang $\Rightarrow \Delta \delta_{NN}({}^{1}S_{0}) \approx 12^{\circ}$ $\Rightarrow {}^{4}n \rightarrow {}^{2}n - {}^{2}n$ • $\Delta V_{NN}({}^{1}S_{0})$ short range $\Rightarrow {}^{4}n \rightarrow {}^{2}n - {}^{2}n$ • $V_{NNN}(T = {}^{3}/{}^{2})$ $\Rightarrow B({}^{6}\text{Li},{}^{6}\text{He}) \gg B_{exp}.$ • $V_{NNNN}(T = {}^{2})$ $\Rightarrow B({}^{5}\text{H}{}^{\parallel}) > 0$ II) Enhance^{††} only ${}^{3}PF_{2}$ channel of AV14, Reid 93, Nijm II, AV18

^{**} S. C. Pieper, Phys. Rev. Lett. 90, 252501 (2003)

[†][†]R. Lazauskas and J. Carbonell, Phys. Rev. C 71, 044004 (2005)

Precision models of the nuclear force $\stackrel{?}{\Leftrightarrow}$ bound neutron cluster

I) Modify AV18/IL2**

• $\Delta V_{NN}(^{1}S_{0})$ long range (2π exchange)

 $\Rightarrow \Delta \delta_{NN}({}^{1}S_{0}) \approx 12^{\circ}$ $\Rightarrow {}^{4}n \rightarrow {}^{2}n - {}^{2}n$

• $\Delta V_{NN}(^{1}S_{0})$ short range

 $\Rightarrow {}^4n \rightarrow {}^2n - {}^2n$

• $V_{NNN}(T = 3/2)$

 $\Rightarrow B(^{6}\text{Li}, {}^{6}\text{He}) \gg B_{exp}$

• $V_{NNNN}(T=2)$

 $\Rightarrow B(^{5}\mathrm{H}^{\parallel}) > 0$

II) Enhance^{††} only ³PF₂ channel of AV14, Reid 93, Nijm II, AV18

^{**} S. C. Pieper, Phys. Rev. Lett. 90, 252501 (2003)

^{††}R. Lazauskas and J. Carbonell, Phys. Rev. C 71, 044004 (2005)

Precision models of the nuclear force $\stackrel{?}{\Leftrightarrow}$ bound neutron cluster

I) Modify AV18/IL2**

• $\Delta V_{NN}(^{1}S_{0})$ long range (2π exchange)

- $\Rightarrow \Delta \delta_{NN}({}^{1}S_{0}) \approx 12^{\circ}$ $\Rightarrow {}^{4}n \rightarrow {}^{2}n {}^{2}n$
- • $\Delta V_{NN}(^{1}S_{0})$ short range

$$\Rightarrow {}^4n \rightarrow {}^2n - {}^2n$$

II) Enhance^{††} only ³PF₂ channel of AV14, Reid 93, Nijm II, AV18

^{**} S. C. Pieper, Phys. Rev. Lett. 90, 252501 (2003)

^{††}R. Lazauskas and J. Carbonell, Phys. Rev. C 71, 044004 (2005)

Precision models of the nuclear force $\stackrel{?}{\simeq}$ bound neutron cluster

I) Modify AV18/IL2**

• $\Delta V_{NN}(^{1}S_{0})$ long range (2π exchange)

- $\Rightarrow \Delta \delta_{NN}({}^{1}S_{0}) \approx 12^{\circ}$ $\Rightarrow {}^{4}n \rightarrow {}^{2}n {}^{2}n$
- • $\Delta V_{NN}(^{1}S_{0})$ short range
 - $\Rightarrow {}^4n \rightarrow {}^2n {}^2n$
- $\bullet V_{NNN}(T=3/2)$
 - $\Rightarrow B(^{6}\text{Li}, ^{6}\text{He}) \gg B_{exp.}$

II) Enhance^{††} only ${}^{3}PF_{2}$ channel of AV14, Reid 93, Nijm II, AV18

^{**} S. C. Pieper, Phys. Rev. Lett. 90, 252501 (2003)

^{††} R. Lazauskas and J. Carbonell, Phys. Rev. C 71, 044004 (2005)

Precision models of the nuclear force $\stackrel{?}{\cong}$ bound neutron cluster

I) Modify AV18/IL2**

• $\Delta V_{NN}(^{1}S_{0})$ long range (2π exchange)

- $\Rightarrow \Delta \delta_{NN}({}^{1}S_{0}) \approx 12^{\circ}$ $\Rightarrow {}^{4}n \rightarrow {}^{2}n {}^{2}n$
- • $\Delta V_{NN}(^{1}S_{0})$ short range
 - $\Rightarrow {}^4n \rightarrow {}^2n {}^2n$
- • $V_{NNN}(T = 3/2)$
 - $\Rightarrow B(^{6}\text{Li}, ^{6}\text{He}) \gg B_{exp.}$
- $$\begin{split} \bullet V_{NNNN}(T=2) \\ \Rightarrow B({}^{5}\mathrm{H}^{||}) > 0 \end{split}$$

II) Enhance^{††} only ${}^{3}PF_{2}$ channel of AV14, Reid 93, Nijm II, AV18

^{**}S. C. Pieper, Phys. Rev. Lett. 90, 252501 (2003)

[†][†]R. Lazauskas and J. Carbonell, Phys. Rev. C 71, 044004 (2005)

A. H. Wuosmaa et al., Phys. Rev. C 95, 014310 (2017)

Precision models of the nuclear force $\stackrel{?}{\Leftrightarrow}$ bound neutron cluster

I) Modify AV18/IL2** • $\Delta V_{NN}(^{1}S_{0})$ long range (2π exchange) $\Rightarrow \Delta \delta_{NN}(^1S_0) \approx 12^\circ$ $\Rightarrow {}^{4}n \rightarrow {}^{2}n - {}^{2}n$ • $\Delta V_{NN}(^{1}S_{0})$ short range $\Rightarrow {}^{4}n \rightarrow {}^{2}n - {}^{2}n$ • $V_{NNN}(T = 3/2)$ $\Rightarrow B(^{6}\text{Li}, {}^{6}\text{He}) \gg B_{exp}$ $\bullet V_{NNNN}(T=2)$ $\Rightarrow B(^{5}H^{\parallel}) > 0$

II) Enhance^{††} only ³PF₂ channel of AV14, Reid 93, Nijm II, AV18 ↓ stable ³n and unbound ²n

^{**}S. C. Pieper, Phys. Rev. Lett. 90, 252501 (2003)

^{††}R. Lazauskas and J. Carbonell, Phys. Rev. C 71, 044004 (2005)

A. H. Wuosmaa et al., Phys. Rev. C 95, 014310 (2017)

Precision models of the nuclear force $\stackrel{?}{\Leftrightarrow}$ bound neutron cluster

I) Modify AV18/IL2** • $\Delta V_{NN}(^{1}S_{0})$ long range (2π exchange) $\Rightarrow \Delta \delta_{NN}(^{1}S_{0}) \approx 12^{\circ}$ $\Rightarrow {}^{4}n \rightarrow {}^{2}n - {}^{2}n$ • $\Delta V_{NN}(^{1}S_{0})$ short range $\Rightarrow {}^{4}n \rightarrow {}^{2}n - {}^{2}n$ • $V_{NNN}(T = 3/2)$ $\Rightarrow B(^{6}\text{Li}, {}^{6}\text{He}) \gg B_{\text{exp.}}$ $\bullet V_{NNNN}(T=2)$ $\Rightarrow B(^{5}H^{\parallel}) > 0$

II) Enhance^{††} only ³PF₂ channel of AV14, Reid 93, Nijm II, AV18 ↓ stable ³n

and

unbound ^{2}n

^{**}S. C. Pieper, Phys. Rev. Lett. 90, 252501 (2003)

^{††} R. Lazauskas and J. Carbonell, Phys. Rev. C 71, 044004 (2005)

A. H. Wuosmaa et al., Phys. Rev. C 95, 014310 (2017)

HIERARCHY^{‡‡} BETWEEN 3- AND 4-NEUTRON RESONANCES.

^{‡‡}S. Gandolfi, H.-W. Hammer, P. Klos, J. E. Lynn, A. Schwenk, Phys. Rev. Lett. 118, 232501 (2017)

Hierarchy^{‡‡} between 3- and 4-neutron resonances.

¹¹ S. Gandolfi, H.-W. Hammer, P. Klos, J. E. Lynn, A. Schwenk, Phys. Rev. Lett. 118, 232501 (2017)

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

- i) Relevant uncertainties.
- ii) Appropriate parameterization of $\Delta(^2n)$.
- iii) Most susceptible ^{N}n observables.

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

i) Relevant uncertainties.

- ii) Appropriate parameterization of $\Delta(^2n)$.
- iii) Most susceptible ^{N}n observables.

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

- i) Relevant uncertainties.
- ii) Appropriate parameterization of $\Delta(^2n)$.
- iii) Most susceptible ^{N}n observables.

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

- i) Relevant uncertainties.
- ii) Appropriate parameterization of $\Delta(^2n)$.
- iii) Most susceptible ^{N}n observables.

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

i) Relevant uncertainties.

ii) Appropriate parameterization of $\Delta(^2n)$.

```
iii) Most susceptible ^{N}n observables.
```


^{*}E. S. Konobeevski*, Yu. M. Burmistrov, S. V. Zuyev, M. V. Mordovskoy, and S. I. Potashev, Phys. At. Nuc., 73, 8, (2010)

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

i) Relevant uncertainties.

ii) Appropriate parameterization of $\Delta(^2n)$.

iii) Most susceptible ^{N}n observables.

^{*} E. S. Konobeevski*, Yu. M. Burmistrov, S. V. Zuyev, M. V. Mordovskoy, and S. I. Potashev, Phys. At. Nuc., 73, 8, (2010)

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

46

) Relevant uncertainties.

ii) Appropriate parameterization of $\Delta(^2n)$.

iii) Most susceptible ^{N}n observables.

PIEPER, PANDHARIPANDE, WIRINGA, AND CARLSON

PHYSICAL REVIEW C 64 014001

$$\begin{split} S_{\sigma}^{I} &= 2y_{ij}y_{jk}y_{kl} + \frac{2}{3} \sum_{cyc} \left(r_{ij}^{2} t_{ij}y_{jk}y_{kl} + C_{j}^{2} t_{ij}t_{jk}y_{kl} \right) \\ &+ \left[\sum_{cyc} \sigma_{i} \cdot \sigma_{j} \right] \left[\frac{2}{3} y_{ij}y_{jk}y_{kl} + \frac{1}{3} \sum_{cyc} r_{ij}^{2} t_{ij}y_{jk}y_{kl} \right] + \frac{1}{3} \sum_{cyc} \sigma_{i} \cdot \sigma_{k} C_{j}^{2} t_{ij}t_{jk}y_{kl} \\ &- \frac{1}{3} \sum_{cyc} \left(\sigma_{i} \cdot \mathbf{r}_{ij}\sigma_{j} \cdot \mathbf{r}_{ij}t_{ij}y_{kl}y_{kl} + \sigma_{i} \cdot \mathbf{r}_{kl}\sigma_{j} \cdot \mathbf{r}_{kl}t_{kl}y_{kl}y_{l} + \sigma_{i} \cdot \mathbf{r}_{k}\sigma_{j} \cdot \mathbf{r}_{jk}t_{jk}y_{ij} \right) \\ &+ \frac{1}{3} \sum_{cyc} \left(\sigma_{i} \cdot \mathbf{r}_{ij}\sigma_{j} \cdot \mathbf{r}_{kl}t_{kl}t_{jk}y_{ij} + \frac{1}{3} \sum_{cyc} \sigma_{i} \cdot \mathbf{a}\sigma_{j} \cdot \mathbf{a}(t_{ij}t_{jk}y_{kl} + t_{ij}y_{jk}t_{kl} + C_{k}t_{ij}t_{jk}t_{kl}), \end{split}$$
 (A4) $\mathbf{R} \cdot \mathbf{B} \cdot \mathbf{WIRINGA}, \mathbf{V}, \mathbf{G} \cdot \mathbf{STOKS}, \mathbf{AND} \mathbf{R} \cdot \mathbf{SCHIAVILLA} \qquad 51$

IV. PROJECTION INTO OPERATOR FORMAT

$$v_{ij} = \sum_{p=1,18} v_p(r_{ij})O_{ij}^p$$
. (25)

We can project the strong interaction potential given above from S, T, T_z states into an operator format with 18 terms

Here the first 14 operators are the same chargeindependent ones used in the Argonne v_{14} potential and are given by

$$\begin{split} O_{ij}^{p=1,14} &= 1, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j, \, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j, (\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j) (\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j), \, S_{ij}, S_{ij}(\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j), \, \mathbf{L} \cdot \mathbf{S}, \mathbf{L} \cdot \mathbf{S} (\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j), \\ L^2, L^2(\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j), \, L^2(\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j), L^2(\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j) (\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j), \, (\mathbf{L} \cdot \mathbf{S})^2, (\mathbf{L} \cdot \mathbf{S})^2(\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j) \,. \end{split}$$
(26)

 $A_{\sigma}^{I} = \frac{i}{3}$

and

+

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

Relevant uncertainties

ii) Appropriate parameterization of $\Delta(^2n)$.

iii) Most susceptible ^{N}n observables.

IARIPANDE, WIRINGA, AND CARLSON

PHYSICAL REVIEW C 64 01

$$\begin{split} S_{a}^{l} &= 2y_{ij}y_{ij}y_{ij} + \frac{2}{3} \sum_{c,r} (r_{j}^{1}t_{ij}y_{jj}y_{ik} + C_{j}^{1}t_{ij}t_{ij}y_{kj}y_{kl}) - \frac{2}{3} C_{i}C_{i}C_{i}C_{i}C_{i}t_{ij}t_{ij}t_{kl}} \\ &+ \left[\sum_{c,r} \sigma_{i} \cdot \sigma_{j}\right] \left[\frac{1}{2}y_{ij}y_{jk}y_{kl} + \frac{1}{2}\sum_{c,r} r_{j}^{2}t_{ij}y_{jk}y_{kl}\right] + \frac{1}{2}\sum_{c,r} \sigma_{i} \cdot \sigma_{k}C_{j}^{2}t_{ij}t_{jk}y_{kl}} \\ \hat{H}_{nucl} &= -\sum_{i}^{A} \frac{\nabla_{i}^{2}}{2m} + \sum_{i$$

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

) Relevant uncertainties.

ii) Appropriate parameterization of $\Delta(^2n)$.

iii) Most susceptible ^{N}n observables.

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

) Relevant uncertainties.

ii) Appropriate parameterization of $\Delta(^2n)$.

iii) Most susceptible ^{N}n observables.

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

) Relevant uncertainties.

ii) Appropriate parameterization of $\Delta(^2n)$.

iii) Most susceptible ^{N}n observables.

2 consequences of anti-symmetrization Sign inversion of effective interactions.

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

) Relevant uncertainties.

ii) Appropriate parameterization of $\Delta(^2n)$.

iii) Most susceptible ^{N}n observables.

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

i) Relevant uncertainties.

ii) Appropriate parameterization of $\Delta(^2n)$.

iii) Most susceptible ^{N}n observables.

How do significant ${}^{2}n$ uncertainties translate to the ${}^{N}n$ systems?

) Relevant uncertainties.

ii) Appropriate parameterization of $\Delta(^2n)$.

iii) Most susceptible ^{N}n observables.

Lore – J^{π} of ground state maximizes the number of configurations in minimal angular-momentum states with attractive pair and effective interactions.

"A bound state has no overlap with a basis state which contains repellent - assuming E-independence - substructures."

ISOSPIN SYMMETRY.

EFFECT OF A (NON-PERTURBATIVE) TENSOR INTERACTION: neutron-neutron vs. proton-proton

i) Comparison between PWA (- - -) and EFT(*#*) (tetra-neutron critical, —):
 Seemingly small difference in low-energy *P*-wave phase shifts.

⁺Workman, Briscoe, Strakovsky, NN PWA, PRC (2016)

ISOSPIN SYMMETRY.

EFFECT OF A (NON-PERTURBATIVE) TENSOR INTERACTION: deuteron & neuteron

- i) Coupled "low-L" neutron-proton system most ϵ -sensitive;
- ii) Many "higher-*L*" pairs more sensitive than one;
- iii) Hence, without $\hat{P}_{T_z=-1}$, the iterated tensor is inconsistent with B(np) = 2.22 MeV.

ISOSPIN SYMMETRY.

Comparison of renormalization schemes: $\epsilon_{\rm spin-orbit}$, $\epsilon_{\rm tensor}$, $\epsilon_{LS+S_{12}}$ & A.

ii) The tetraneutron can be stabilized with an interaction with smaller impact on the <u>same</u> 2-neutron partial wave.

COMPARISON OF CRITICAL INTERACTION STRENGTHS: dineutron & trineutron

i) An increasing attraction in the relative *nn P*-wave binds the trineutron $(J^{\pi} = \frac{1}{2}^{-})$ before **any** ${}^{3}P_{J}$ dineutron.

COMPARISON OF CRITICAL INTERACTION STRENGTHS: dineutron & trineutron

 $\times_0 J_{nn-GS} = 0 \qquad \times_1 J_{nn-GS} = 1 \qquad \times_2 J_{nn-GS} = 2$

i) Effective ${}^{3}P_{2} \stackrel{D}{-} n$ interaction too weak to stabilize ${}^{3}n$ before ${}^{2}n \dots$

- ii) The ϵ disturbance **cannot** overcome the limit set by the multiplicity of a ${}^{3}P_{0}$ or ${}^{3}P_{1}$ dineutron in the $\frac{1}{2}^{-}$ trineutron state.
- iii) Λ (RG) invariance.

COMPARISON OF CRITICAL INTERACTION STRENGTHS: dineutron & trineutron

 $\times_0 J_{nn-GS} = 0 \qquad \times_1 J_{nn-GS} = 1 \qquad \times_2 J_{nn-GS} = 2$

i) and for $J^{\pi} = \frac{1}{2}^{-}$, there is **no** contribution from a ${}^{3}P_{2} - \frac{s}{n}$ state.

ii) The ε disturbance cannot overcome the limit set by the multiplicity of a ³P₀ or ³P₁ dineutron in the ¹/₂⁻ trineutron state.
 (RG) invariance

COMPARISON OF CRITICAL INTERACTION STRENGTHS: dineutron & trineutron

 $\times_0 J_{nn-GS} = 0 \qquad \times_1 J_{nn-GS} = 1 \qquad \times_2 J_{nn-GS} = 2$

i) and for $J^{\pi} = \frac{1}{2}^{-}$, there is **no** contribution from a ${}^{3}P_{2} - n$ state.

ii) The ϵ disturbance **cannot** overcome the limit set by the multiplicity of a ${}^{3}P_{0}$ or ${}^{3}P_{1}$ **d**ineutron in the $\frac{1}{2}^{-}$ **tri**neutron state.

iii) Λ (RG) invariance.

COMPARISON OF CRITICAL INTERACTION STRENGTHS: dineutron & trineutron

 $\times_0 J_{nn-GS} = 0 \qquad \times_1 J_{nn-GS} = 1 \qquad \times_2 J_{nn-GS} = 2$

i) and for $J^{\pi} = \frac{1}{2}^{-}$, there is **no** contribution from a ${}^{3}P_{2} - n$ state.

- ii) The ϵ disturbance **cannot** overcome the limit set by the multiplicity of a ${}^{3}P_{0}$ or ${}^{3}P_{1}$ **d**ineutron in the $\frac{1}{2}^{-}$ **trineutron** state.
- iii) Λ (RG) invariance.

COMPARISON OF CRITICAL INTERACTION STRENGTHS: triton & trineutron

 $\times_0 J_{nn-GS} = 0 \qquad ----J_{nn-GS} = 1$

The stability of ³H reflects the insignificance of relative *P*-waves in its ground state.

Comparison of critical interaction strengths: trineutron & tetraneutron

 $\times_0 J_{nn-GS} = 0 \qquad \times_1 J_{nn-GS} = 1$

The tetraneutron is significantly more **sensitive** *wrt*. *P*-wave attraction compared with the trineutron.

Comparison of critical interaction strengths: A < 4n & tetraneutron

Numerical refinements $\Rightarrow \Delta \epsilon(A) < \Delta \epsilon(A') < 0$ for A' < A.

Attractive $nn {}^{1S_{0}}_{3P_{\Sigma}}$ imply effective trimer-fermion and dimer-dimer interactions \Rightarrow Ground-state quantum numbers of ${}^{4}n$. Effective ${}^{2}n - {}^{2}n$ and ${}^{3}n - n$ interactions $\epsilon =$ "UNPHYSICAL" TO BIND THE FRAGMENTS.

Attractive $nn \frac{1}{3p_{c}} \frac{1}{p_{c}}$ imply effective trimer-fermion and dimer-dimer interactions \Rightarrow Ground-state quantum numbers of 4n.

 $\begin{array}{cccc} [0\otimes 0]^0\otimes 0]^0 & & [[0\otimes 0]^0\otimes 2]^2 & & [1\otimes 0]^1\otimes 1]^{0,1,2} & & [1\otimes 0]^1\otimes 1]^{0,1,2} \\ \left[\left[\frac{1}{2}\otimes \frac{1}{2} \right]^0\otimes \left[\frac{1}{2}\otimes \frac{1}{2} \right]^0 \right]^0 & \Rightarrow J^\pi = 2^+ \neq 0^+ & & \left[\left[\frac{1}{2}\otimes \frac{1}{2} \right]^1\otimes \left[\frac{1}{2}\otimes \frac{1}{2} \right]^1 \right]^{0,1,2} & \left[\left[\frac{1}{2}\otimes \frac{1}{2} \right]^1 \otimes \left[\frac{1}{2}\otimes \frac{1}{2} \right]^1 \right]^{0,1,2} \end{array}$

Attractive $nn {}^{1S_{0}}_{_{3P_{\Sigma}}}$ imply effective trimer-fermion and dimer-dimer interactions \Rightarrow Ground-state quantum numbers of ${}^{4}n$.

Attractive $nn {}^{1S_0}_{3p_{\Sigma}}$ imply effective trimer-fermion and dimer-dimer interactions \Rightarrow Ground-state quantum numbers of 4n .

 $L_{\rm rel} = {\rm odd \ inaccessible \ for \ bosons} \ \curvearrowright \ J^{\pi}(^4n) = 0^+$

^{*} D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, PRL 93 (2004), P. Pieri and G. C. Strinati, PRB 61 (2000)

fermion-fermion attractive \Rightarrow dimer-dimer attractive:

$$\lim_{a_{nn}/r\to\infty}\frac{a_{DD}}{a_{nn}}\approx * 0.6$$

^{*}D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, PRL 93 (2004), P. Pieri and G. C. Strinati, PRB 61 (2000)

2-neutron attraction (assumed) insufficient for bound dimers. \Rightarrow Detune to analyze $\hat{V}_{eff}.$

^{*}D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, PRL 93 (2004), P. Pieri and G. C. Strinati, PRB 61 (2000)

Bosonic S-wave dimers:

 $0 < a_{DD} < a_{nn}$ and $-a^{-1} = k \cot \delta$ implies $\delta_{DD} > \delta_{nn}$

^{*}D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, PRL 93 (2004), P. Pieri and G. C. Strinati, PRB 61 (2000)

Effective ${}^{2}n - {}^{2}n$ and ${}^{3}n - n$ interactions $\epsilon =$ "unphysical" to bind the fragments.

Bosonic *P*-wave dimers:

 $0 < a_{DD} < a_{nn}$ and $-a^{-1} = k^3 \cot \delta$ implies $\delta_{DD} > \delta_{nn}$

 \Rightarrow ⁴*n* sustains **2** bound states.

$$\lim_{\Lambda \to \infty} B^{(0,1)}({}^4n) = \lim_{r/a \to 0} B^{(0,1)}({}^4n) = \infty$$

Effective ${}^{2}n - {}^{2}n$ and ${}^{3}n - n$ interactions

 $\epsilon =$ "unphysical" to bind the fragments.

Why is ${}^{4}n$ not bound although the 2-2 interaction is more attractive than the 1-1, which sustains a stable ${}^{2}n$?

Why is ${}^{4}n$ not bound although the 2-2 interaction is more attractive than the 1-1, which sustains a stable ${}^{2}n$?

For energies $E(^4n) > 2 \times B(^2n)$ other states could be accessible, *e.g.*, the $\frac{1}{2}^-$ trineutron.

Why is ${}^{4}n$ not bound although the 2-2 interaction is more attractive than the 1-1, which sustains a stable ${}^{2}n$?

For energies $E(^4n) > 2 \times B(^2n)$ other states could be accessible, *e.g.*, the $\frac{1}{2}^-$ trineutron.

Such a channel increases the likelihood of a bound ${}^{4}n$ if the trineutron-neutron effective interaction is attractive in the L_{rel} which are relevant for $J^{\pi}({}^{4}n) = 0^{+}$.

Why is ${}^{4}n$ not bound although the 2-2 interaction is more attractive than the 1-1, which sustains a stable ${}^{2}n$?

For energies $E(^4n) > 2 \times B(^2n)$ other states could be accessible, *e.g.*, the $\frac{1}{2}^-$ trineutron.

Such a channel increases the likelihood of a bound ${}^{4}n$ if the trineutron-neutron effective interaction is attractive in the L_{rel} which are relevant for $J^{\pi}({}^{4}n) = 0^{+}$.

Nucleons in a $m_{\pi} = 806$ MeV universe provide a concrete example:

Nuclei from QCD — Nuclear data at $m_{\pi} = 806$ MeV

2 nucleons at $m_{\pi} = 806$ MeV. \rightsquigarrow

Elastic ^Nn - n scattering @ $m_{\pi} = 806$ MeV.

Elastic ^Nn - n scattering @ $m_{\pi} = 806$ MeV.

D) With **our** Λ - ϵ parametrization, shallow ^{*N*}*n* states are fine-tuned.

8)

Elastic ${}^{N}n - n$ scattering @ $m_{\pi} = 806$ MeV.

D) With **our** Λ - ϵ parametrization, shallow ^{*N*}*n* states are fine-tuned.

8)

Elastic ^Nn - n scattering @ $m_{\pi} = 806$ MeV.

 $\epsilon(^4n) < \epsilon(^3n) < \epsilon(^2n)$

[...] I scorn the man who is not trying On his own work to meditate. [...]^{\dagger}

[...] I scorn the man who is not trying On his own work to meditate. [...]^{\dagger}

*A*_{crit}-neutron nucleus is bound at nuclear scales

 $\forall M < A_{\rm crit}$:

the *M*-neutron is either unstable or decoupled.