Determining the subleading 3N contact interaction

A. Kievsky

INFN, Sezione di Pisa (Italy)

INT Program INT-18-2a, Seattle June 12 - July 13, 2018 Fundamental Physics with Electroweak Probes of Light Nuclei

 Ω

4 m a 4 m a 4 m

People involved

- M. Viviani, L.E. Marcucci, L. Girlanda, INFN, Pisa University and Lecce University, (Italy)
- M. Gattobigio, INLN, Nizza (France)
- R. Schiavilla, Old Dominion and Jeff. Lab
- B. Wiringa, S. Pieper, M. Piarulli, A. Lovato, Argonne NL
- S. Pastore, Los Alamos NL
- A. Baroni, USC

Motivation

Actual description of $A = 2, 3, 4$ systems using potential models:

- 2N system: χ^2 per datum ≈ 1
- 3N and 4N systems using a 2N interaction: χ^2 per datum >> 1
- 3N and 4N systems using a 2N+3N interaction: χ^2 per datum $>> 1$

Theoretical inputs:

• The 3N force models, leading and subleading terms

 \bullet A = 3,4 systems using the Hyperspherical Harmonic method

Strategy:

- Matricial form of scattering states in $A = 3$
- Fitting the 3N force to 3N data
- χ^2 per datum and predictions

イロト イ押ト イラト イラト

Motivation

Actual description of $A = 2, 3, 4$ systems using potential models:

- 2N system: χ^2 per datum ≈ 1
- 3N and 4N systems using a 2N interaction: χ^2 per datum >> 1
- 3N and 4N systems using a 2N+3N interaction: χ^2 per datum $>> 1$

Outline

Theoretical inputs:

- The 3N force models, leading and subleading terms
- \bullet A = 3,4 systems using the Hyperspherical Harmonic method

Strategy:

- Matricial form of scattering states in $A = 3$
- Fitting the 3N force to 3N data
- χ^2 per datum and predictions

イロト イ押ト イラト イラト

university-logo

Some comments

- During the 90's strong efforts have been done to describe the NN data base using a NN interaction
- Different strategies to construct the interaction have been used. We call these potentials realistic potentials. Examples are: AV18, CD bonn, Nijmegen I and II, Reid soft core (new version)
- At the same time a different framework appears: ChPT
- In this framework the different components of the NN and NNN interaction terms are organized in a perturbation series
- The convergence properties of the series have to be studied following the capability of the interaction to describe the data
- For example the LO term is: $V_{LQ} = V_0 P_{01} + V_1 P_{10} + V_{0PEP}$ with V_0 and V_1 contact interactions
- Contact interaction are patological so a possibility is to extend its range: $V_S = C_S exp(-\Lambda^2 r^2)$

イロメス 倒 トス ヨメス ヨメ

 $\overline{}$

What about the 3N interaction

- Realistic potentials cannot reproduced the $B(3H)$ or/and $B(4He)$
- They were supplemented with NNN interactions. For example: URIX, TM, Brazil, IL7
- Widely used models (even today) are: AV18+UIX or CD Bonn+TM
- Using ChPT the first NNN interaction term appears at N2LO (we will comment on that) with two new LECs: c_F and c_D : $V_{N2LO}^{3N} = V_{sr} + V_{2\pi}$ V_{sr} is the contact interaction containing the two LECS c_{F} , c_{D}
- At N3LO no new LECs appear, however the NNN interaction at that order has a very complicate structure. Its implementation did not help to improve the description of the 3N data
- New LECs appear in the short-range NNN interaction at N4LO
- b[e](#page-26-0) $B(\overline{4}\text{He})$ $B(\overline{4}\text{He})$ $B(\overline{4}\text{He})$, the [d](#page-0-0)oublet a_{nd} scattering len[gth](#page-4-0) [o](#page-6-0)r [tri](#page-5-0)[ti](#page-6-0)[um](#page-0-0) β de[ca](#page-0-0)[y.](#page-26-0) Many calculations at present are done using the mixed order N3LO for the NN interaction and N2LO for the NNN interaction with c_E , c_D determined from $B(3H)$ and one more data that could

university-logo

È

 $2Q$

イロメス 御き スミメス ミメ

p-d sacttering at 3 MeV with INV2a and INV2a+TNI

4. 17. 18

画

 \sim \mathcal{A} ∍

pionless EFT

There is another way of organizing the nuclear interaction based on an EFT in which the pion degrees of freedom are integrated out. The 2N LO potential is

 $V_{LO}^{(2N)} = V_0 \mathcal{P}_{01} + V_1 \mathcal{P}_{10}$

This potential produces the Thomas collapse in the 3N sector. A contact 3N term is added for regularization and the complete LO potential is

 $V_{LO}^{\dagger} = V_{LO}^{(2N)} + V_{LO}^{(3N)} = V_0 \mathcal{P}_{01} + V_1 \mathcal{P}_{10} + W_0 (3N)$

The LO potential in pionless EFT and ChPT is different. This might produces differences in the LO description of nuclei as the number of particles increases. As alternative a LO potential including a 3N contact term can be consider:

$$
V_{LO} = V_{LO}^{(2N)} + V_{LO}^{(3N)} = V_0 \mathcal{P}_{01} + V_1 \mathcal{P}_{10} + V_{OPEP} + W_0(3N)
$$

イロト イ押ト イラト イラト

university-logo

The motivation of this discussion is to consider the possibility of promoting the contact term to LO and the subleading terms to N2LO

 299

イロメス 御き スミメスきょ

The motivation of this discussion is to consider the possibility of promoting the contact term to LO and the subleading terms to N2LO

 QQ

イロメス 何 メスコメスコ

3N Subleading contact interaction

$$
V_{3N}^{CT} = V^{(0)} + V^{(2)}
$$

$$
V^{(0)} = \sum_{i \neq j \neq k} E_0 Z_0(r_{ij}) Z_0(r_{ik})
$$

$$
V^{(2)} = \sum_{i \neq j \neq k} (E_1 + E_2 \tau_i \cdot \tau_j + E_3 \sigma_i \cdot \sigma_j + E_4 \tau_i \cdot \tau_j \sigma_i \cdot \sigma_j)
$$

\n
$$
\left[Z''_0(r_{ij}) + 2 \frac{Z'_0(r_{ij})}{r_{ij}} \right] Z_0(r_{ik})
$$

\n
$$
+ (E_5 + E_6 \tau_i \cdot \tau_j) S_{ij} \left[Z''_0(r_{ij}) - \frac{Z'_0(r_{ij})}{r_{ij}} \right] Z_0(r_{ik})
$$

\n
$$
+ (E_7 + E_8 \tau_i \cdot \tau_k) (\mathbf{L} \cdot \mathbf{S})_{ij} \frac{Z'_0(r_{ij})}{r_{ij}} Z_0(r_{ik})
$$

\n
$$
+ (E_9 + E_{10} \tau_j \cdot \tau_k) \sigma_j \cdot \hat{\mathbf{r}}_{ij} \sigma_k \cdot \hat{\mathbf{r}}_{ik} Z'_0(r_{ij}) Z'_0(r_{ik})
$$

university-logo

with the profile function

$$
Z_0(r;\Lambda)=\int \frac{d^3p}{(2\pi)^3}e^{i\mathbf{p}\cdot\mathbf{r}}F(p^2;\Lambda)
$$

with the cutoff function

$$
F(p^2; \Lambda) = \exp\big[-\left(\frac{p^2}{\Lambda^2}\right)^2\big]
$$

The Hamiltonian of the system is:

$$
H = T + V_{2N} + V_{3N} + V_{3N}^{CT} = T + V_{2N} + V_{3N} + V^{(0)} + V^{(2)}
$$

Here I will show a hybrid scheme to analyse the capability of the subleading term $V^{(2)}$ to improve the description of the 3N data in which $V_{2N} + V_{3N} = AV18+URIX$

 Ω

イロト イ押ト イラト イラト

with the profile function

$$
Z_0(r;\Lambda)=\int \frac{d^3p}{(2\pi)^3}e^{i\mathbf{p}\cdot\mathbf{r}}F(p^2;\Lambda)
$$

with the cutoff function

$$
F(p^2; \Lambda) = \exp\big[-\left(\frac{p^2}{\Lambda^2}\right)^2\big]
$$

The Hamiltonian of the system is:

$$
H = T + V_{2N} + V_{3N} + V_{3N}^{CT} = T + V_{2N} + V_{3N} + V^{(0)} + V^{(2)}
$$

Here I will show a hybrid scheme to analyse the capability of the subleading term $V^{(2)}$ to improve the description of the 3N data in which $V_{2N} + V_{3N} = AV18+URIX$

 Ω

 $(0.12.10)$ $(0.12.10)$ $(0.12.10)$

Determination of the subleading LECs

The N-d scattering wave function is

$$
\Psi_{LSJJ_z} = \Psi_C + \Psi_A
$$

the internal part, Ψ_C is expanded in The HH basis

$$
\Psi_\mathsf{C} = \sum_\mu c_\mu \Phi_\mu
$$

the asymptotic part,
$$
\Psi_A
$$
 is
\n
$$
\Psi_A^{LSJJz} = \Omega_{LSJJz}^R + \sum_{L'S'} \mathcal{R}_{LS,L'S'}^J(q) \Omega_{L'S'JJz}^J
$$

The Kohn variational principle requires the functional

$$
\left[\mathcal{R}_{\text{LS},\text{L}'\text{S}'}^{\text{J}}(\textit{q})\right]=\mathcal{R}_{\text{LS},\text{L}'\text{S}'}^{\text{J}}(\textit{q})-\langle\Psi_{\text{L}'\text{S}'\text{JJ}_{\text{Z}}}|H-E|\Psi_{\text{LSJJ}_{\text{Z}}}\rangle
$$

to be stationary

university-logo

The linear equations

The stationary condition implies: $\sum_{\tilde{L}\tilde{\text{S}}} \mathcal{R}_{L\text{S},\tilde{L}\tilde{\text{S}}}^J$ X $_{L'S',\tilde{L}\tilde{\text{S}}}$ = $\text{Y}_{L\text{S},L'S'}$ where $X_{\mathsf{LS},\mathsf{L}'\mathsf{S}'}=\langle \Omega_{\mathsf{LS},\mathsf{U}_\mathsf{Z}}^{\mathsf{I}}+\Psi_{\mathsf{C}}^{\mathsf{I}}|\underline{\mathsf{H}}-\mathsf{E}|\Omega_{\mathsf{L}'\mathsf{S}',\mathsf{U}_\mathsf{Z}}^{\mathsf{I}}\rangle$ $Y_{LS,L'S'} = -\langle \Omega_{LSJJz}^{l} + \Psi_C^R | H - E | \Omega_{L'S'JJz}^{l} \rangle$ and the internal functions Ψ_C^λ are solutions of

$$
\sum_{\mu'} \langle \Phi_{\mu} | H - E | \Phi_{\mu'} \rangle c_{\mu'}^{\lambda} = - \langle \Phi_{\mu} | H - E | \Omega_{LSJJz}^{\lambda} \rangle,
$$

with $\lambda = R$, I. Decomposing the hamiltonian as

$$
H = T + V = T + V_{2N} + V_{3N} = H_L + V^{(0)} + V^{(2)}
$$

the linear equations can be put in the matricial form

$$
\sum_{\mu'} \left(H^L_{\mu\mu'} + \sum_{i=0,10} E_i V^i_{\mu\mu'} - EN_{\mu\mu'} \right) c_{\mu'}^{\lambda} = -H^L_{\mu\lambda} + \sum_{i=0,10} E_i V^i_{\mu\lambda} - EN_{\mu\lambda}.
$$

Constructing the observables

The transition matrix is

$$
M_{\nu\nu'}^{SS'}(\theta) = f_c(\theta)\delta_{SS'}\delta_{\nu\nu'} + \frac{\sqrt{4\pi}}{k}\sum_{L,L',J}\sqrt{2L+1}(L0S\nu|J\nu)(L'M'S'\nu'|J\nu) \times \exp[i(\sigma_L + \sigma_{L'} - 2\sigma_0)] \frac{J}{L_{LL'}}\gamma_{L'M'}(\theta,0)
$$

the matrix M is 6×6 , due to the couplings of the spin 1 (deuteron) and spin 1/2 (nucleon) to S, S $^{\prime}$ = 1/2, 3/2 with projections ν and $\nu^{\prime}.$

Solving the linear system for different J^{π} states, the observables are then calculated: $\sigma = tr(M^{\dagger}M), A_{V} = tr(M^{\dagger}\sigma_{V}M), \ldots$

The LECs E_0,\ldots,E_{10} are obtained minimizing the χ^2 function

$$
\chi^2 = \sum_i \frac{(\boldsymbol{d}_i^{\text{exp}} - \boldsymbol{d}_i^{\text{th}})^2}{(\sigma_i^{\text{exp}})^2},
$$

 $(0.12.10)$ $(0.12.10)$ $(0.12.10)$

university-logo

Results for $p - d$ scattering at 3 MeV

university-logo

predictions at lower energies

A. Kievsky (INFN-Pisa) [Three-Nucleon contact interaction](#page-0-0) INT program 18/23

 \sim

目

 299

K ロト K 御 ト K 君 ト K 君

Conclusions

- The subleading 3N contact interaction has been used to improve the description of the low energy 3N data
- Widely used realistic potentials consisting in 2N+ 3N interactions describe low energy p-d data with χ^2 \approx 100
- Using the subleading terms we were able to fit p-d data with a χ^2 $<$ 2, comparable to the 2N case
- The fit was done at a single energy
- **Predictions at lower energies were acceptable**

• Work in progress:

- Multi energy fit
- Energies above the deuteron breakup threshold
- Predictions in the four-nucleon system
- Predictions in $A > 4$

イロメ イ母 トイラ トイラメ

university-logo and the contract of the contra

Conclusions

- The subleading 3N contact interaction has been used to improve the description of the low energy 3N data
- Widely used realistic potentials consisting in 2N+ 3N interactions describe low energy p-d data with χ^2 \approx 100
- Using the subleading terms we were able to fit p-d data with a χ^2 $<$ 2, comparable to the 2N case
- The fit was done at a single energy
- **Predictions at lower energies were acceptable**
- Work in progress:
	- Multi energy fit
	- Energies above the deuteron breakup threshold
	- Predictions in the four-nucleon system
	- Predictions in $A > 4$

イロメス 倒 トス ヨメス ヨメ

university-logo and the contract of the contra