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Why bother with nuclei?    They are too complicated 

• This is a valid point of view:  In many cases, our model-based approaches to
   many-nucleon systems prevent us from assigning meaningful errors to predictions

• But in applications to symmetries, often we are interested in discovery:  the
  underlying question may be a binary one — is there, or is there not…

• Nuclei have their virtues:

They can filter interactions
• Kinematically:    a remarkable example is       decay:  because of the nuclear 

pairing force, in 40+ cases the only open decay channel is second-order weak

• Through selection rules:    the quantum labels of nuclear states allow us to
         exploit parity, time reversal, and isospin to isolate interactions of interest
                 - we can see the weak force between nucleons by exploiting parity to
                   filter out the much stronger strong and E&M interactions

��



They can enhance sources of symmetry violation
• Through nuclear energy degeneracies: mixing of nearby states

• By competing symmetry-allowed but suppressed transitions (e.g., E1s in
        a self-conjugate nucleus) against a symmetry-forbidden strong one (M1)

• Through nuclear Fermi motion: proved important in dark matter

• Through the nuclear size

PNC asymmetries of o(1) have been found in nuclear systems,
                    when the natural scale is o(10-7)

Nuclear degeneracies related to collective modes in nuclei can enhance
                   electric dipole moments by factors of 103 - 105

The intrinsic velocities of bound nucleons enhance detection 
                    cross sections for many candidates WIMP DM interactions by 104

 The A2/3 growth of the nuclear anapole moment allows this weak 
                    radiative correction to dominate tree-level interactions in 133Cs



They provide experimentalists with opportunities
• We have many nuclei, but only two types of nucleons

                  
In the literature there are remarkable examples of opportunistic nuclear 
         physicists stringing together ideas to reach important conclusions

My two favorites (oldies but goodies)

                - #1  the 1957 Goldhaber-Grodzins-Sunyar experiment exploiting electron
                        capture on Eu152m to prove the neutrino is left-handed

                - #2  the 1936 paper of Gamow and Teller where they concluded from
                        Th chain beta decays that Fermi’s vector theory of the weak
                        interaction must be augmented by an axial interaction of
                        comparable strength (!)



Despite my (assigned) title… 

• Not an overview, but rather just three examples, chosen to illustrate why nuclei are 
useful in symmetry tests 

• But the topics are relevant to current experiments

          - hadronic parity violation:  after a 25-year drought, two new
            results announced this past year

          - electric dipole moments:  FRIB’s isotope harvesting will open up the possibility
            of using radioactive species in very competitive experiments

          - dark matter direct detection



hadronic weak interactions:  as the weak neutral current is suppressed in
weak processes,  neutral current can only be studied in               reaction 

NN and nuclear reactions the only feasible possibilities, isospin is the filter
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hadronic weak interactions:  as the weak neutral current is suppressed in
weak processes,  neutral current can only be studied in               reaction 

NN and nuclear reactions the only feasible possibilities
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leads to the expectation that the weak hadronic neutral current will dominate nuclear 
experiments sensitive to isovector PNC — this is the only SM current not yet isolated
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(pionless) Lagrangian, which reduces to the nonrelativistic form
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(As was done by Phillips, Schindler, and Springer [63], in Eq. (44) the factor
of 1/⇤3

� used by Girlanda has been absorbed into the coe�cients, making
them dimensional.)
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Returning to the “canonical form” of the S � P contact potential in
terms of the partial-wave operators of Eq. (36), the relationships between
the DDH, Girlanda, and Zhu forms of that potential can be summarized in
terms of coe�cients of that potential, as shown in Table 2. In using this
table it should be remembered that the DDH results include the assumption
that a one-boson exchange potential operates between strongly interacting
initial and final nuclear states. There are contributions from crossed-pion
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Largely equivalent DDH, Danilov, and Pionless EFT treatments
  
            Pionless EFT treatments
            - S. L. Zhu et al., Nucl. Phys. A748 (2005) 435
            - L. Girlanda, Phys. Rev. C77 (2008) 067001
            - D. R. Phillips, M. R. Schindler, and R. P. Springer, Nucl. Phys. A822 (2009) 1

            Danilov amplitude or contact interaction expansions
            - B. Desplanques and J. Missimer, Nucl. Phys. A300 (1978) 286
            - G. S. Danilov, Phys. Lett. 18 (1965) 40 and B35 (1971) 579

            and 1/Nc approaches
            - D. Phillips, D. Samart, and C. Schat, PRL 114 (2015) 062301
            - M. R. Schindler, R. P. Springer, and J. Vanasse, PRC 93 (2016) 025502
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Goal for some time:  an analysis based NN, few-body observables

Recent effort at LANSCE on                                  will need to be
made more precise at the SNS

One nuclear result is important, Pγ(18F): provides our best constraint on 
ΔI=1 PNC,  usual structure uncertainties can 
be eliminated using axial-charge β decay data

Best data: 
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Table 2: A large-Nc hadronic PNC “Rosetta stone”: The LECs for the S-P PNC potential
of Eq. (7) are organized according to the large-Nc classification of [7]. The relationships
to the DDH potential and to the coe�cients of Girlanda’s EFT potential are shown. Note
that multiplicative factor of 2mNm2

⇢ must be applied to the Girlanda entries to obtain the

dimensionless coe�cients ⇤, e.g., ⇤
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DDH parameters are also shown. On computing DDH best-value equivalents and comparing
them to large-Nc expectations, one finds
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with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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Figure 3: LO large-Nc solutions satisfying all low-energy constraints on hadronic PNC. The
left panel provides an expanded view of the region, interior to the ellipse, with �2 < 1. The
dot marks the best-fit point. On the right the constraints from AL(~pp) at low energies (blue
boundary), AL(~pp) at 221 MeV (red), AL(~p↵) (orange), and A�(19F) (green) are shown, along
fit the combined allowed region (dashed ellipse). The experimental bands are 1�. The LECs
are given in units of 10�7.

We now express all five results discussed above in the large-Nc LEC basis, sequestering the
N2LO terms in brackets
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The LO approximation corresponds to ignoring the bracketed terms while solving the three

remaining equations for ⇤+
0 and ⇤
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0 = 717 and ⇤
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324, with a nearly vanishing �2 (reflecting the almost exact overlap of the AL(~p↵) and A�(19F)
bands). The contour of �2 = 1 (the fit has one degree of freedom) encloses the region shown
in Fig. 3.

These best values are both more than a factor of two larger than the DDH benchmark
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Table 2: A large-Nc hadronic PNC “Rosetta stone”: The LECs for the S-P PNC potential
of Eq. (7) are organized according to the large-Nc classification of [7]. The relationships
to the DDH potential and to the coe�cients of Girlanda’s EFT potential are shown. Note
that multiplicative factor of 2mNm2
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with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.

12

Schindler et al.

Large Nc Classification



Table 2: A large-Nc hadronic PNC “Rosetta stone”: The LECs for the S-P PNC potential
of Eq. (7) are organized according to the large-Nc classification of [7]. The relationships
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with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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Figure 3: LO large-Nc solutions satisfying all low-energy constraints on hadronic PNC. The
left panel provides an expanded view of the region, interior to the ellipse, with �2 < 1. The
dot marks the best-fit point. On the right the constraints from AL(~pp) at low energies (blue
boundary), AL(~pp) at 221 MeV (red), AL(~p↵) (orange), and A�(19F) (green) are shown, along
fit the combined allowed region (dashed ellipse). The experimental bands are 1�. The LECs
are given in units of 10�7.

We now express all five results discussed above in the large-Nc LEC basis, sequestering the
N2LO terms in brackets
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The LO approximation corresponds to ignoring the bracketed terms while solving the three

remaining equations for ⇤+
0 and ⇤

1S0�3P0
2 . The best-value solution is ⇤+

0 = 717 and ⇤
1S0�3P0
2 =

324, with a nearly vanishing �2 (reflecting the almost exact overlap of the AL(~p↵) and A�(19F)
bands). The contour of �2 = 1 (the fit has one degree of freedom) encloses the region shown
in Fig. 3.

These best values are both more than a factor of two larger than the DDH benchmark

values for ⇤+
0 and ⇤

1S0�3P0
2 given in Eq. (19). This indicates that there may be a second

shortcoming in Fig. 1, from the perspective of large-Nc QCD: not only were the wrong isospin

axes used, but the marginalization that was done to remove the e↵ects of ⇤
1S0�3P0
2 from the

band for AL(~pp) likely underestimated the associated uncertainties. In the procedures leading

to Fig. 1 it was assumed that the value for h2
⇢, and consequently ⇤
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2 , would be good

to within the estimate reasonable range of ± 20% around the best value. But the best-value

value we found is far outside this band. In fact most of the allowed region for ⇤
1S0�3P0
2 within

the ellipse of Fig. 3 would have also been excluded from this band. Consequently it is not
surprising that there is a discrepancy between the isoscalar parameter employed in Fig. 1,
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!), and that associated with ⇤+
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Table 2: A large-Nc hadronic PNC “Rosetta stone”: The LECs for the S-P PNC potential
of Eq. (7) are organized according to the large-Nc classification of [7]. The relationships
to the DDH potential and to the coe�cients of Girlanda’s EFT potential are shown. Note
that multiplicative factor of 2mNm2

⇢ must be applied to the Girlanda entries to obtain the

dimensionless coe�cients ⇤, e.g., ⇤
1S0�3P0
1 = G2 [2mNm2

⇢].
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with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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Figure 3: LO large-Nc solutions satisfying all low-energy constraints on hadronic PNC. The
left panel provides an expanded view of the region, interior to the ellipse, with �2 < 1. The
dot marks the best-fit point. On the right the constraints from AL(~pp) at low energies (blue
boundary), AL(~pp) at 221 MeV (red), AL(~p↵) (orange), and A�(19F) (green) are shown, along
fit the combined allowed region (dashed ellipse). The experimental bands are 1�. The LECs
are given in units of 10�7.
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The LO approximation corresponds to ignoring the bracketed terms while solving the three

remaining equations for ⇤+
0 and ⇤

1S0�3P0
2 . The best-value solution is ⇤+

0 = 717 and ⇤
1S0�3P0
2 =

324, with a nearly vanishing �2 (reflecting the almost exact overlap of the AL(~p↵) and A�(19F)
bands). The contour of �2 = 1 (the fit has one degree of freedom) encloses the region shown
in Fig. 3.

These best values are both more than a factor of two larger than the DDH benchmark

values for ⇤+
0 and ⇤

1S0�3P0
2 given in Eq. (19). This indicates that there may be a second

shortcoming in Fig. 1, from the perspective of large-Nc QCD: not only were the wrong isospin

axes used, but the marginalization that was done to remove the e↵ects of ⇤
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2 from the

band for AL(~pp) likely underestimated the associated uncertainties. In the procedures leading

to Fig. 1 it was assumed that the value for h2
⇢, and consequently ⇤
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2 , would be good

to within the estimate reasonable range of ± 20% around the best value. But the best-value

value we found is far outside this band. In fact most of the allowed region for ⇤
1S0�3P0
2 within

the ellipse of Fig. 3 would have also been excluded from this band. Consequently it is not
surprising that there is a discrepancy between the isoscalar parameter employed in Fig. 1,
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!), and that associated with ⇤+
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that multiplicative factor of 2mNm2

⇢ must be applied to the Girlanda entries to obtain the

dimensionless coe�cients ⇤, e.g., ⇤
1S0�3P0
1 = G2 [2mNm2

⇢].

Coe↵ DDH Girlanda Large Nc

⇤+
0 ⌘ 3

4⇤
3S1�1P1
0 + 1

4⇤
1S0�3P0
0 �g⇢h

0
⇢(

1
2+

5
2�⇢) � g!h0

!(12 -
1
2�!) 2G1 + G̃1 ⇠ Nc

⇤�
0 ⌘ 1

4⇤
3S1�1P1
0 � 3

4⇤
1S0�3P0
0 g!h0

!(32 + �!) + 3
2g⇢h

0
⇢ �G1 � 2G̃1 ⇠ 1/Nc

⇤
1S0�3P0
1 �g⇢h

1
⇢(2+�⇢) � g!h1

!(2+�!) G2 ⇠ sin2 ✓w

⇤
3S1�3P1
1

1p
2
g⇡NNh1

⇡

⇣
m⇢

m⇡

⌘2
+ g⇢(h1

⇢ � h10
⇢ ) � g!h1

! 2G6 ⇠ sin2 ✓w

⇤
1S0�3P0
2 �g⇢h

2
⇢(2 + �⇢) �2

p
6G5 ⇠ Nc

DDH parameters are also shown. On computing DDH best-value equivalents and comparing
them to large-Nc expectations, one finds

(
DDH⇤+

0

DDH⇤
1S0�3P0
2

)
=

(
319

151

) 8
><

>:

DDH⇤�
0

DDH⇤
1S0�3P0
1

DDH⇤
3S1�3P1
1

9
>=

>;
=

8
><

>:

�70

21

1340

9
>=

>;
, (19)

with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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Figure 3: LO large-Nc solutions satisfying all low-energy constraints on hadronic PNC. The
left panel provides an expanded view of the region, interior to the ellipse, with �2 < 1. The
dot marks the best-fit point. On the right the constraints from AL(~pp) at low energies (blue
boundary), AL(~pp) at 221 MeV (red), AL(~p↵) (orange), and A�(19F) (green) are shown, along
fit the combined allowed region (dashed ellipse). The experimental bands are 1�. The LECs
are given in units of 10�7.

We now express all five results discussed above in the large-Nc LEC basis, sequestering the
N2LO terms in brackets

2

5
⇤+
0 +

1p
6
⇤

1S0�3P0
2 +


�6

5
⇤�
0 + ⇤

1S0�3P0
1

�
= 419 ± 43 AL(~pp)

1.3⇤+
0 +

h
�0.9⇤�

0 + 0.89⇤
1S0�3P0
1 + 0.32⇤

3S1�3P1
1

i
= 930 ± 253 AL(~p↵)

h
|2.42⇤

1S0�3P0
1 + ⇤

3S1�3P1
1 |

i
< 340 P�(

18F)

0.92⇤+
0 +

h
�1.03⇤�

0 + 0.67⇤
1S0�3P0
1 + 0.29⇤

3S1�3P1
1

i
= 661 ± 169 A�(

19F)
h
|⇤3S1�3P1

1 |
i

< ✏ 270 A�(~np ! d�) .(22)

The LO approximation corresponds to ignoring the bracketed terms while solving the three

remaining equations for ⇤+
0 and ⇤

1S0�3P0
2 . The best-value solution is ⇤+

0 = 717 and ⇤
1S0�3P0
2 =

324, with a nearly vanishing �2 (reflecting the almost exact overlap of the AL(~p↵) and A�(19F)
bands). The contour of �2 = 1 (the fit has one degree of freedom) encloses the region shown
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Table 2: A large-Nc hadronic PNC “Rosetta stone”: The LECs for the S-P PNC potential
of Eq. (7) are organized according to the large-Nc classification of [7]. The relationships
to the DDH potential and to the coe�cients of Girlanda’s EFT potential are shown. Note
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⇢ must be applied to the Girlanda entries to obtain the
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with the LO contributions on the left and the corrections on the right. The units are 10�7.

There is a glaring discrepancy in the ⇤
3S1�3P1
1 isovector channel, where the pion contributes.

The DDH value for ⇤�
0 is also not negligible.

3.1 Experimental constraints on large-Nc LECs

In addition to the above results, we expect to have a new constraint from NPDGamma in hand
soon. NPDGamma data taking is finished and the statistical uncertainty of the result has been
given as approximately 13 ppb [3]. Current e↵orts are focused on measuring and subtracting
potential systematic e↵ects, including an asymmetry associated with aluminum in the target
window. Consequently we express the anticipated asymmetry as

|A� | < ✏ 1.3 ⇥ 10�8 (20)

under the conservative assumption that the result will be an upper bound (it need not be
so) which we set at the statistical uncertainty, while including a parameter ✏ > 1 that will
account for consequences of systematic errors, including that associated with the aluminum
subtraction. We then find [59, 5] (see also [60, 61])

|⇤3S1�3P1
1 | < ✏ 270 . (21)

The numerical coe�cient provides a measure of the potential impact of the result, given the
anticipated statistical error. This bound is important because it is approximately as restrictive
as that from P�(18F), but has a di↵erent dependence on the LECs.
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This large Nc analysis is more consistent with the data
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Figure 3: LO large-Nc solutions satisfying all low-energy constraints on hadronic PNC. The
left panel provides an expanded view of the region, interior to the ellipse, with �2 < 1. The
dot marks the best-fit point. On the right the constraints from AL(~pp) at low energies (blue
boundary), AL(~pp) at 221 MeV (red), AL(~p↵) (orange), and A�(19F) (green) are shown, along
fit the combined allowed region (dashed ellipse). The experimental bands are 1�. The LECs
are given in units of 10�7.

We now express all five results discussed above in the large-Nc LEC basis, sequestering the
N2LO terms in brackets

2

5
⇤+
0 +

1p
6
⇤

1S0�3P0
2 +


�6

5
⇤�
0 + ⇤

1S0�3P0
1

�
= 419 ± 43 AL(~pp)

1.3⇤+
0 +

h
�0.9⇤�

0 + 0.89⇤
1S0�3P0
1 + 0.32⇤

3S1�3P1
1

i
= 930 ± 253 AL(~p↵)

h
|2.42⇤

1S0�3P0
1 + ⇤

3S1�3P1
1 |

i
< 340 P�(

18F)

0.92⇤+
0 +

h
�1.03⇤�

0 + 0.67⇤
1S0�3P0
1 + 0.29⇤

3S1�3P1
1

i
= 661 ± 169 A�(

19F)
h
|⇤3S1�3P1

1 |
i

< ✏ 270 A�(~np ! d�) .(22)

The LO approximation corresponds to ignoring the bracketed terms while solving the three

remaining equations for ⇤+
0 and ⇤

1S0�3P0
2 . The best-value solution is ⇤+

0 = 717 and ⇤
1S0�3P0
2 =

324, with a nearly vanishing �2 (reflecting the almost exact overlap of the AL(~p↵) and A�(19F)
bands). The contour of �2 = 1 (the fit has one degree of freedom) encloses the region shown
in Fig. 3.

These best values are both more than a factor of two larger than the DDH benchmark

values for ⇤+
0 and ⇤

1S0�3P0
2 given in Eq. (19). This indicates that there may be a second

shortcoming in Fig. 1, from the perspective of large-Nc QCD: not only were the wrong isospin

axes used, but the marginalization that was done to remove the e↵ects of ⇤
1S0�3P0
2 from the

band for AL(~pp) likely underestimated the associated uncertainties. In the procedures leading

to Fig. 1 it was assumed that the value for h2
⇢, and consequently ⇤

1S0�3P0
2 , would be good

to within the estimate reasonable range of ± 20% around the best value. But the best-value

value we found is far outside this band. In fact most of the allowed region for ⇤
1S0�3P0
2 within

the ellipse of Fig. 3 would have also been excluded from this band. Consequently it is not
surprising that there is a discrepancy between the isoscalar parameter employed in Fig. 1,
�(h0

⇢ + 0.7h0
!), and that associated with ⇤+

0 , �(h0
⇢ + 0.2h0

!).
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With things beginning to align, one can see the experimental path forward      

LO couplings:  need a 10% measurement to complement
                        experimentally, no obvious candidate, but…

~p+ p
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Figure 4: As in Fig. 3, but adding the impact of a future LQCD calculation of the �I = 2

amplitude ⇤
1S0�3P0
2 to ± 10%, centered on the central value from Fig. 3.

4.1 Testing the LO Theory

Despite the quality of the LO fit, there is not a lot of redundancy, especially with the constraints
from AL(~p↵) and A�(19F) being so similar. Thus an additional independent measurement sen-
sitive to the LO couplings would be valuable. Furthermore, while the value of AL(~pp) is known
to 10%, the errors on the other two experiments exceed 25%. A new measurement matching

the precision of AL(~pp), but probing a di↵erent combination of ⇤+
0 and ⇤

1S0�3P0
2 , thus could

substantially shrink the allowed ellipse shown in Fig. 3. A more precise determination of the
LO LECs would be important for future searches for N2LO LECs: in experiments where these
terms arise in combination with LO terms, even modest errors in LO parameters would obscure
the e↵ects of N2LO corrections. There do appear to be opportunities to generate new, high
quality constraints on the LO parameters.

Lattice QCD: In lattice QCD (LQCD) one solves strongly interacting problems by replacing
the continuum problem with a discretized version, a finite grid in Euclidean space-time with
periodic boundary conditions. While this precludes any direct calculation of scattering ampli-
tudes [83], the distortion of the energy levels in a finite volume can be related to low-energy
scattering parameters [84, 85, 86] using techniques developed by Lüscher [87, 88]. Most NN
scattering calculations documented in the literature were performed with nuclear sources that
placed both nucleons at the same space-time point, limiting the results to s-waves. In contrast,
applications to hadronic PNC, where p-waves are clearly essential, require the use of extended
nuclear sources, placed on the lattice in a variety of configurations that, in sum, allow one
to associate lattice eigenvalues with partial waves having good spherical symmetry. This is a
nontrivial problem given the cubic symmetry of the lattice. The first calculation of parity-odd
two-nucleon scattering using Lüscher’s method were recently performed, demonstrating the
technique [89].

There is an e↵ort underway to apply LQCD to the problem of calculating ⇤
1S0�3P0
2 [4].

Because this scattering amplitude carries �I = 2, there are no disconnected (quark loop)
contributions [90]. Thus the statistical noise in this channel should be significantly lower than
in �I = 0, 1 channels, opening up the possibility of a good LQCD “measurement” near the
physical pion mass. A calculation of hadronic PNC in the �I = 2 channel is expected to be
an order of magnitude less costly than a measurement in the �I = 1 channel. Preliminary

17

Impact of a 10% LQCD calculation of the I=2 amplitude  
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Lattice operators 
!  Non-local baryon operators are needed for good overlap with desired states  

 (for example parity odd P wave)  

!  Sophisticated software developed to calculate two baryon correlators 
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Higher partial waves 
%  For NN PV scattering: initial S-wave & final P-wave 

%  Both S and P wave phase shifts are needed 

%  Calculate S, P, D, F wave phase shifts in NN scattering first 

%  The lattice finite volume PV matrix element is related to the infinite volume using 
Lellouch-Luscher formalism 

I = 1, A1+
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Luscher 

Luscher formula: ΔE + i 

solid = 2 (mN
2 + pn

2)1/2 - 2mN, pn=2πn/L, non-interacting 

points = ENN(qn) – 2 mN,,  ENN(qn)= 2 (mN
2 + qn

2)1/2, interacting 

LQCD work on HPNC builds on recent efforts to build the technology to use 
                         extended nuclear sources required for calculating  NN partial
                         waves beyond s-wave 

Cubic to rotational symmetry

1S0

Higher partial waves with extended sources:
  E. Berkowitz et al. (CalLat Collab.) arXiv:1508.00886
  K. Murano et al. (HAL QCD Collab.) arXiv:1305.2293



HPNC Summary

• HPNC progress over the past three decades has until recently been slow
• only a few new experimental results
• idea of selecting two LO couplings — isoscalar and      — ran into the

          problem of a small
 
• now have NPDGamma, n+3He:  analysis in the large-Nc framework underway

• it may be that these results are too imprecise to have much impact
  
• This progress coincides with the advent of high flux cold neutron beams, 
   including the coming ESS

• so one can envision a period of progress   

h1
⇡

h1
⇡



Electric Dipole Moments and CP Violation

Permanent electric dipole moments of an elementary particle or a composite s     
requires requires both P and T violation

Two important motivations for edm searches

     CP phases show up generically in the Standard Model and its extensions

     The need for additional sources of CP violation to account for baryogengesis

•  Permanent electric dipole moments of an elementary particle or
   composite system requires time-reversal  and parity violation:

   By the CPT theorem, a nonzero T-violating edm implies CP violation

•  Two important motivations for edm searches
     ◊ CP-odd phases show up generically in the standard model and
         its extensions:  the SM contains two, the QCD θ parameter and
         the CKM phase in the quark mixing matrix
     ◊ the need for sufficient CP violation to account for baryogenesis --
         which appears to require beyond-the-SM sources

Electric Dipole Moments and CP Violation*

�s

�E
�E(t⇥ �t)⇥ �E

⇤ Hedm ⇥ �Hedm

Hedm = d �E · �s
�s(t⇥ �t)⇥ ��s

*See talks by Tim Chupp, Christian Plonka-Spehr,  Wolfgang Korsch, Stephan Paul, 
  V. V. Federov, and Yury Sobolev 



Experimental sensitivity:   The dipole moment of a classical distribution

Limit*  d(199Hg) < 7.5 × 10-30 e cm (95% c.l.)  corresponds to a strain over atom of 
10-19 — comparable to what LIGO achieves over a 4 km interferometer arm

E.g., expand the atom to the size of the earth:  equivalent to a shell of excess charge
(difference between + and - charge at the poles) of thickness ∼ 10-4 angstroms

The limit on the precession in the applied field (10-5 V/m) corresponds to a sensitivity
to a difference in the energies of atom levels of ∼ 10-26 eV

* B Graner et al. (Seattle group), PRL 116 (2016) 161601

~

d =

Z
d

3
x ~x ⇢(~x)

•  Experimental sensitivity:  the dipole moment of a classical charge 
   distribution is 

   The stringent limit on d(199Hg) < 2.1 × 10-28 e cm thus corresponds
   to a measured strain of 10-18, comparable to what LIGO achieves 

   E.g., expanding the atom to the size of the earth, equivalent to a shell 
   of excess charge (difference between + and - charge) at the poles of 
   thickness ∼ 0.001 angstroms

   
   The limit on the precession in the applied field (∼105 v/m) corresponds

   to a bound on shifts in atomic levels of ∼10-25 eV

⇥d =
�

d3x ⇥x�(⇥x)

�s

+

-



General classification of electromagnetic moments:   

edm is the C1 moment; other P- and T-odd moments include M2, C3, …, and are
present for J ≥ 1

General current for a spin-1/2 fermion:

•  General classification of electromagnetic moments:

    The edm is the C1 moment:  additional P-odd,T-odd moments include
    the C3, C5.... and M2, M4...,  if the object has the necessary spin ≥1

•  General current for a spin-1/2 fermion:  

  Multipole   P-even, T-even   P-odd, T-odd     P-odd,T-even    P-even,T-odd

     CJ
M                 even J≥0          odd J≥1               x                      x

     MJ
M                  odd J≥1         even J≥2               x                      x

     EJ
M                        x                   x                 odd J≥1          even J≥2

    

N̄(p�)
�

F1�µ + F2⇥µ�q� +
a(q2)
M2

(⇥qqµ � q2�µ)�5 + d(q2)⇥µ�q��5

⇥
N(p)

�p�|jem
µ |p⇥ =

      Charge     Magnetic                  Anapole                   Electric Dipole

•  General classification of electromagnetic moments:

    The edm is the C1 moment:  additional P-odd,T-odd moments include
    the C3, C5.... and M2, M4...,  if the object has the necessary spin ≥1

•  General current for a spin-1/2 fermion:  

  Multipole   P-even, T-even   P-odd, T-odd     P-odd,T-even    P-even,T-odd

     CJ
M                 even J≥0          odd J≥1               x                      x

     MJ
M                  odd J≥1         even J≥2               x                      x

     EJ
M                        x                   x                 odd J≥1          even J≥2

    

N̄(p�)
�

F1�µ + F2⇥µ�q� +
a(q2)
M2

(⇥qqµ � q2�µ)�5 + d(q2)⇥µ�q��5

⇥
N(p)

�p�|jem
µ |p⇥ =

      Charge     Magnetic                  Anapole                   Electric Dipole

hp|Jem
µ |pi =

h i

h i

h i



Experiments:   

e/p/n edm experiments break into three general categories
      —neutron or electron beam/trap/fountain edm experiments
      —paramagnetic (unpaired electrons) atoms or molecules with sensitivity to the
                electron edm
      —diamagnetic atoms (electrons paired, nonzero nuclear spin) with sensitivity to
                p and n edm and to CPNC nuclear interactions

Key limits, from neutral systems, in units of e cm

Experiments

• e/p/n edm experiments break into three general categories
◊ neutron edm experiments
◊ paramagnetic (unpaired electrons) atoms or molecules with

sensitivity to the electron edm
◊ diamagnetic atoms (electrons paired, nonzero nuclear spin) with

sensitivity to the p and n edm and to CPNC nuclear interactions

• Key limits, done in neutral systems, in units e cm

     Particle edm limit system         SM prediction*

          p 7.9 × 10-25       Hg vapor cell            10-31

          n 2.9 × 10-26        ultracold n 10-31

       199Hg 3.1 × 10-29       Hg vapor cell          10-33

          e �.7 × 10-29        atomic Tl3 10-38

*CKM phase

7.5 x 10-30

2.0

n:     Baker et al, PRL 97 (2006) 131801;  Pendlebury et al., PRD 92 (2015) 9092003
e:     J. Baron et al., Science 343 (2014) 269
Hg:   B. Graner et al., PRL 116 (2016) 161601
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2.0
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Hg:   B. Graner et al., PRL 116 (2016) 161601

Potential
window for
discovery



199Hg vapor cells:   

7

199Hg vapor cells

– Number of  199Hg atoms: 1014

– Leakage currents at 10 kV: 0.5 – 1 pA

– N2 + CO buffer gas (500 Torr)

– Paraffin wall coating

– Spin relaxation time:  100 – 200 sec
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Frequency (GHz)

Absorption scan at 254 nm 

61S0! 63P1

F=1/2

F=3/2

Isotope

Nuclear spin

Nat. abundance

Enriched 199Hg

•  vapor cell restricts one to systems with electronic spin 0

•  Schiff shielding of nucleus, where edm resides ⇒ finite nuclear size

•  current limits on Hg (<2.1 ×10-28 ecm) and n (<2.9 ×10-26 ecm) compable

•  newest experiment now in blind analysis:  expected result (  ± 2) 10-29 ecm
⇒ significant improvement

(Heckel's workshop presentation)

Simple example: generation of a nuclear edm

•  Example of the QCD θ parameter -- one of two sources of SM CPNC

•  Induces a scalar CPNC πNN coupling, the leading ln (M/mπ) 
   contribution determined by current algebra

 

• 
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nuclear edm   =   1-body   +   polarization   +   exchange current

Nuclear edm:
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Nuclear edm:

smallest energy denominator is the typically nuclear              (nuclear size) ⇠ ~!



Dimensional estimate of the nuclear edm (good news):

                                                                
                                                                      a small         can greatly enhance  

                                                                      the potential can generally be related to   

                                e.g.,

Schiff screening:  Interaction energy of a non relativistic point nucleus with a nonzero 
edm, inside a neutral atom, is zero (bad news)

reduction in edm sensitivity                                     in heavy atoms

dNuclear ⇠ 10dn
~!
�E

•  So we find the overall scale of the polarization term

•  so one expects
     ◊  the polarizability to generally dominate the edm of a heavy nucleus
     ◊  potentially large enhancements in cases where a ground-state
          parity doublet exists, coupled by a dipole transition of reasonable
          strength     
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•  The polarization terms depends on the NN CPNC potential    

V1,2(r) = �0.9 dn m2
� ⇤⇥(1) · ⇤⇥(2) (⇤�(1)� ⇤�(2)) · r̂

e�m�r

m�r

�
1 +

1
m�r

⇥

Possible enhancements in cases of a parity doublet:
in some special cases enhancements of ∼1000 

S

�E
�E dNuclear

Also must account for Schiff screening of edms in diagmagnetic atoms

•  Measurable in a diamagnetic atom is the energy shift of a neutral atom
   in an applied field:  edm resides on the nucleus

•  As Schiff and many others have discussed, classical result for a point-like
   nucleus is that the change in interaction energy linear in E and dnuclear

   Atom neutral: no net displacement in applied field
   Nucleus charged but not accelerated -- sum of applied and induced
       fields must cancel at the nucleus:  no edm energy shift!  

Eext

atom polarized:  nucleus displaced 
relative to at center

field induced at nucleus
compensating applied field

⇠ (RN/RA)
2 ⇠ 10�3
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ACME ThO electron edm experiment

valence
electron

instead of a loss due to shielding, a
great gain is obtained from the extreme
internal fields found in polar molecules

           volts/cm in the lab  vs.

           volts/cm in ThO       huge fields⇠ 1011

From Doyle, KITP Workshop

⇠ 103



Nuclear Enhancements 

From collective motion:  In rotational
nuclei, intrinsic state breaks spherical
symmetry, deformed into a football,
restored by the “Goldstone mode of
rotations

Octupole deformation: deformed 
intrinsic state and its parity reflection
can be combined

Deformation violates P and T, 
symmetry restored by collective motion,
yielding parity doublets that strongly
mix through P-odd operators

  ⇒ CPNC polarization enhancement

|eveni = |+i+ |�i
|odd i = |+i � |�i

•  One kind of  T-odd enhancement comes from collective nuclear motion 

2

unable (obviously) to examine the effects of short-range
NN correlations.

We briefly review some definitions and ideas. The
Schiff moment is given by

S ≡ ⟨Ψ0|Ŝz|Ψ0⟩ =
∑

i̸=0

⟨Ψ0|Ŝz|Ψi⟩⟨Ψi|V̂PT |Ψ0⟩

E0 − Ei
+ c.c.,

(1)
where |Ψ0⟩ is the member of the ground-state multiplet
with Jz = J = 1/2 (positive parity), the sum is over

excited states, and Ŝz is the operator

Ŝz = e
10

∑

p

(

r2
p − 5

3
r2
ch

)

zp, (2)

with the sum here over protons, and r2
ch the mean-square

charge radius. The operator V̂PT in Eq. (1) is the T- (and
parity-) violating nucleon-nucleon interaction mediated
by the pion [7, 15]:

V̂PT (r1 − r2) = −
g m2

π

8πmN

{

(σ1 − σ2) · (r1 − r2)
[

ḡ0 τ⃗1 · τ⃗2 −
ḡ1

2
(τ1z + τ2z) + ḡ2(3τ1zτ2z − τ⃗1 · τ⃗2)

]

(3)

−
ḡ1

2
(σ1 + σ2) · (r1 − r2) (τ1z − τ2z)

}exp(−mπ|r1 − r2|)

mπ|r1 − r2|2

[

1 +
1

mπ|r1 − r2|

]

,

where arrows denote isovector operators, τz is +1 for neu-
trons, mN is the nucleon mass, and (in this equation
only) we use the convention h̄ = c = 1. The ḡ’s are the
unknown isoscalar, isovector, and isotensor T-violating
pion-nucleon coupling constants, and g is the usual strong
πNN coupling constant.

The asymmetric shape of 225Ra implies parity dou-
bling (see e.g. Ref. [16]), i.e. the existence of a very low-
energy |1/2−⟩ state, in this case 55 keV [17] above the
ground state |Ψ0⟩ ≡ |1/2+⟩, that dominates the sum in
Eq. (1) because of the corresponding small denominator.
With the approximation that the shape deformation is
rigid, the ground state and its negative-parity partner in
octupole-deformed nucleus are projections onto good par-
ity and angular momentum of the same “intrinsic state”
(see Fig. 1), which represents the wave function of the nu-
cleus in its own body-fixed frame with the total angular
momentum aligned along the symmetry axis. Equation
(1) then reduces to [3]

S ≈ −
2

3
⟨Ŝz⟩

⟨V̂PT ⟩

(55 keV)
, (4)

where the brackets indicate expectation values in the in-
trinsic state. Using Eq. (3) for V̂PT , we can express the
dependence of the Schiff moment on the undetermined
T-violating πNN vertices as

S = a0 g ḡ0 + a1 g ḡ1 + a2 g ḡ2 . (5)

The coefficients ai, which are the result of the calculation,
have units e fm3.

The octupole deformation enhances ⟨Ŝz⟩, the first fac-
tor in Eq. (4), making it collective, robust, and straight-
forward to calculate with an error of a factor of two or
less. The interaction expectation value ⟨V̂PT ⟩ is harder
to estimate because it is sensitive to the nuclear spin

FIG. 1: (color online). Shape of the microscopically calcu-
lated [13] mass distribution in 225Ra, represented here by the
surface of a uniform body that has the same multipole mo-
ments Qλ0 for λ=0. . . 4 as our calculated density.

distribution, which depends on delicate correlations near
the Fermi surface. Our calculation allows the breaking
of Kramers degeneracy in the intrinsic frame and, conse-
quently, spin polarization.

To evaluate ⟨V̂PT ⟩ we constructed a new version of the
code HFODD (v2.14e) [18, 19]. The code uses a triax-
ial harmonic-oscillator basis and Gaussian integration to
solve self-consistent mean-field equations for zero-range
Skyrme interactions. Evaluating matrix elements of the
finite-range interaction (3) is much harder numerically,
but efficient techniques have already been developed [20]
for Gaussian interactions, which are separable in three
Cartesian directions. The spatial dependence in Eq. (3) is
different, the derivative of a Yukawa function, and we also
include short-range correlations between nucleons (which
the mean-field does not capture) by multiplying the in-
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unable (obviously) to examine the effects of short-range
NN correlations.

We briefly review some definitions and ideas. The
Schiff moment is given by

S ≡ ⟨Ψ0|Ŝz|Ψ0⟩ =
∑

i̸=0

⟨Ψ0|Ŝz|Ψi⟩⟨Ψi|V̂PT |Ψ0⟩

E0 − Ei
+ c.c.,

(1)
where |Ψ0⟩ is the member of the ground-state multiplet
with Jz = J = 1/2 (positive parity), the sum is over

excited states, and Ŝz is the operator
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with the sum here over protons, and r
2
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charge radius. The operator V̂PT in Eq. (1) is the T- (and
parity-) violating nucleon-nucleon interaction mediated
by the pion [7, 15]:

V̂PT (r1 − r2) = −
g m

2
π

8πmN

{

(σ1 − σ2) · (r1 − r2)
[

ḡ0 τ⃗1 · τ⃗2 −
ḡ1

2
(τ1z + τ2z) + ḡ2(3τ1zτ2z − τ⃗1 · τ⃗2)

]
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−
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}

exp(−mπ|r1 − r2|)
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[
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]

,

where arrows denote isovector operators, τz is +1 for neu-
trons, mN is the nucleon mass, and (in this equation
only) we use the convention h̄ = c = 1. The ḡ’s are the
unknown isoscalar, isovector, and isotensor T-violating
pion-nucleon coupling constants, and g is the usual strong
πNN coupling constant.

The asymmetric shape of
225

Ra implies parity dou-
bling (see e.g. Ref. [16]), i.e. the existence of a very low-
energy |1/2

−
⟩ state, in this case 55 keV [17] above the

ground state |Ψ0⟩ ≡ |1/2
+
⟩, that dominates the sum in

Eq. (1) because of the corresponding small denominator.
With the approximation that the shape deformation is
rigid, the ground state and its negative-parity partner in
octupole-deformed nucleus are projections onto good par-
ity and angular momentum of the same “intrinsic state”
(see Fig. 1), which represents the wave function of the nu-
cleus in its own body-fixed frame with the total angular
momentum aligned along the symmetry axis. Equation
(1) then reduces to [3]

S ≈ −
2

3
⟨Ŝz⟩

⟨V̂PT ⟩

(55 keV)
, (4)

where the brackets indicate expectation values in the in-
trinsic state. Using Eq. (3) for V̂PT , we can express the
dependence of the Schiff moment on the undetermined
T-violating πNN vertices as

S = a0 g ḡ0 + a1 g ḡ1 + a2 g ḡ2 . (5)

The coefficients ai, which are the result of the calculation,
have units e fm

3
.

The octupole deformation enhances ⟨Ŝz⟩, the first fac-
tor in Eq. (4), making it collective, robust, and straight-
forward to calculate with an error of a factor of two or
less. The interaction expectation value ⟨V̂PT ⟩ is harder
to estimate because it is sensitive to the nuclear spin

FIG. 1: (color online). Shape of the microscopically calcu-
lated [13] mass distribution in

225
Ra, represented here by the

surface of a uniform body that has the same multipole mo-
ments Qλ0 for λ=0. . . 4 as our calculated density.

distribution, which depends on delicate correlations near
the Fermi surface. Our calculation allows the breaking
of Kramers degeneracy in the intrinsic frame and, conse-
quently, spin polarization.

To evaluate ⟨V̂PT ⟩ we constructed a new version of the
code HFODD (v2.14e) [18, 19]. The code uses a triax-
ial harmonic-oscillator basis and Gaussian integration to
solve self-consistent mean-field equations for zero-range
Skyrme interactions. Evaluating matrix elements of the
finite-range interaction (3) is much harder numerically,
but efficient techniques have already been developed [20]
for Gaussian interactions, which are separable in three
Cartesian directions. The spatial dependence in Eq. (3) is
different, the derivative of a Yukawa function, and we also
include short-range correlations between nucleons (which
the mean-field does not capture) by multiplying the in-
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unable (obviously) to examine the effects of short-range
NN correlations.

We briefly review some definitions and ideas. The
Schiff moment is given by

S ≡ ⟨Ψ0|Ŝz|Ψ0⟩ =
∑

i̸=0

⟨Ψ0|Ŝz|Ψi⟩⟨Ψi|V̂PT |Ψ0⟩

E0 − Ei
+ c.c.,

(1)
where |Ψ0⟩ is the member of the ground-state multiplet
with Jz = J = 1/2 (positive parity), the sum is over

excited states, and Ŝz is the operator

Ŝz = e
10

∑
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(

r2
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3
r2
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)

zp, (2)

with the sum here over protons, and r2
ch the mean-square

charge radius. The operator V̂PT in Eq. (1) is the T- (and
parity-) violating nucleon-nucleon interaction mediated
by the pion [7, 15]:

V̂PT (r1 − r2) = −
g m2

π

8πmN

{

(σ1 − σ2) · (r1 − r2)
[

ḡ0 τ⃗1 · τ⃗2 −
ḡ1

2
(τ1z + τ2z) + ḡ2(3τ1zτ2z − τ⃗1 · τ⃗2)

]

(3)

−
ḡ1

2
(σ1 + σ2) · (r1 − r2) (τ1z − τ2z)

}exp(−mπ|r1 − r2|)

mπ|r1 − r2|2

[

1 +
1

mπ|r1 − r2|

]

,

where arrows denote isovector operators, τz is +1 for neu-
trons, mN is the nucleon mass, and (in this equation
only) we use the convention h̄ = c = 1. The ḡ’s are the
unknown isoscalar, isovector, and isotensor T-violating
pion-nucleon coupling constants, and g is the usual strong
πNN coupling constant.

The asymmetric shape of 225Ra implies parity dou-
bling (see e.g. Ref. [16]), i.e. the existence of a very low-
energy |1/2−⟩ state, in this case 55 keV [17] above the
ground state |Ψ0⟩ ≡ |1/2+⟩, that dominates the sum in
Eq. (1) because of the corresponding small denominator.
With the approximation that the shape deformation is
rigid, the ground state and its negative-parity partner in
octupole-deformed nucleus are projections onto good par-
ity and angular momentum of the same “intrinsic state”
(see Fig. 1), which represents the wave function of the nu-
cleus in its own body-fixed frame with the total angular
momentum aligned along the symmetry axis. Equation
(1) then reduces to [3]

S ≈ −
2

3
⟨Ŝz⟩

⟨V̂PT ⟩

(55 keV)
, (4)

where the brackets indicate expectation values in the in-
trinsic state. Using Eq. (3) for V̂PT , we can express the
dependence of the Schiff moment on the undetermined
T-violating πNN vertices as

S = a0 g ḡ0 + a1 g ḡ1 + a2 g ḡ2 . (5)

The coefficients ai, which are the result of the calculation,
have units e fm3.

The octupole deformation enhances ⟨Ŝz⟩, the first fac-
tor in Eq. (4), making it collective, robust, and straight-
forward to calculate with an error of a factor of two or
less. The interaction expectation value ⟨V̂PT ⟩ is harder
to estimate because it is sensitive to the nuclear spin

FIG. 1: (color online). Shape of the microscopically calcu-
lated [13] mass distribution in 225Ra, represented here by the
surface of a uniform body that has the same multipole mo-
ments Qλ0 for λ=0. . . 4 as our calculated density.

distribution, which depends on delicate correlations near
the Fermi surface. Our calculation allows the breaking
of Kramers degeneracy in the intrinsic frame and, conse-
quently, spin polarization.

To evaluate ⟨V̂PT ⟩ we constructed a new version of the
code HFODD (v2.14e) [18, 19]. The code uses a triax-
ial harmonic-oscillator basis and Gaussian integration to
solve self-consistent mean-field equations for zero-range
Skyrme interactions. Evaluating matrix elements of the
finite-range interaction (3) is much harder numerically,
but efficient techniques have already been developed [20]
for Gaussian interactions, which are separable in three
Cartesian directions. The spatial dependence in Eq. (3) is
different, the derivative of a Yukawa function, and we also
include short-range correlations between nucleons (which
the mean-field does not capture) by multiplying the in-
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FRIB and the strange case of 229Pa 

WH and Henley paper:   First study of nuclear enhancements

There was a spectacular case of enhancement identified in that study, the 160 eV
parity doublet in 229Pa  (                      ) — a factor > 104

Half life of 1.5d, decays by electron capture

But the was no source of 229Pa that could satisfy the needs of a practical experiment

FRIB includes an isotopes harvesting program, focused on medical isotopes

In a parasitic mode, the production of 229Pa is anticipated to be high, 1010 atoms/sec

Harvesting over several hours would thus yield in excess of 1014 atoms/day

5/2+ $ 5/2�



225Ra comparisons: first edm study with a radioactive nucleus 

Existing example of use of a radioactive isotope (14.9 d) produced off-site,
utilizing a magneto optical trap:  1014 atoms used over the experiment’s lifetime

Achieved a bound of 

Projected statistical sensitivity of the experiment may be 

225Ra provides a factor 100 advantage over 199Hg:  55 keV degeneracy

229Pa provides a factor of 250 advantage over 225Ra:  160 eV degeneracy

While there have been exotic suggestions by experimentalists that a 229Pa 
experiment in the solid state, based on actinide optical crystals … might be
wise to just follow the Ra steps

 … The 229Pa nuclear edm, but not its Schiff moment, has been calculated                     

< 1.4⇥ 10�23 e cm

⇠ 10�28 e cm



The strange case of 229Pa 

The doublet parity mixing means there is a contribution to the edm proportional to

and the C1 matrix element can be taken from the lifetime of the 5/2- state

This state decays by internal conversion 100% due to its low energy: 
standard tables of IC coefficients (atomic HF)  needed matrix element

It is large (additional enhancement): 14 times the naive Nilsson model estimate

But the Schiff theorem has a generalization for dynamic transitions 

if the wavelength of the photon is long on the atomic scale:  yes in this crazy case                  
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Does this photo absorption argument also work for IC?

Applied an atomic RPA code: the RPA corrections change the HF result by a 
factor of 50, suppressing the decay

But the lifetime is measured, so to keep this fixed, the C1 amplitude must be
further enhanced by

Becomes 80 times the s.p. Nilsson model estimate 

     

It seems extreme …  large enhancement both because of the degeneracy, and 
because of the crazy C1 strength

It would be great if true

Enhanced C3 and C1 strengths accompany octupole deformation:  perhaps the
extreme degeneracy and the extreme C1 strengths are reflections of the same 
physics…       to be continued     

p
50



Direct detection of WIMPs

     □ collider searches

     □ indirect detection: astrophysical signals

     □ direct detection

             nucleus
                                       recoil

WIMPS



The parameters for the scattering are a bit unusual

•  WIMP velocity relative to our rest frame is quite small  

•  if mass is on the weak scale, WIMP momentum transfers in elastic
   scattering can be large, up to 200 MeV/c:

               RNUC ∼ 1.2 A1/3 f  ⟹  qmax R ∼ 3.2 ⬄ 6.0  for F ⬄ Xe
               the WIMP can “see” the structure of the nucleus

• WIMP kinetic energy ~ 30 keV:   elastic scattering is the only open channel,
   unless the first nuclear excited state is quite near the g.s.

⇠ 10�3
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Xe:                Xenon 100/1T; LUX/LZ; XMASS; Zeplin; NEXT

Si:                 CDMS; DAMIC

Ge:               COGENT; Edelweiss; SuperCDMS; TEXONO; CDEX; GERDA; 
Majorana

NaI:              DAMA/LIBRA;  ANAIS;  DM-ice;  SABRE;  KamLAND-PICO

CsI:               KIMS

Ar:                DEAP/CLEAN;  ArDM; Darkside

Ne:               CLEAN

C/F-based:   PICO; DRIFT; DM-TPC

CF3I:             COUP

Cs2:             DRIFT

TeO2:           CUORE

CaWO4:       CRESST  

A large variety of nuclei with
different spins, isospin, masses

unpaired valence nucleons
carrying a variety of values

of the orbital angular momentum

~j = ~̀+ ~s



One persistent claim of a signal:

DAMA/LIBRA:  9.3σ annual 
fluctuation,  attributed to the variation 
of a DM signal due to effects Earth’s 
velocity as we
travel through a WIMP sea

MWIMP ∼ 10 GeV ⇾ ERmax ∼10 keV
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Figure 2: Experimental residual rate of the single-hit scintillation events measured
by DAMA/LIBRA–phase1 in the (2–4), (2–5) and (2–6) keV energy intervals as a
function of the time. The time scale is maintained the same of the previous DAMA
papers for coherence. The data points present the experimental errors as vertical bars
and the associated time bin width as horizontal bars. The superimposed curves are
the cosinusoidal functions behaviours A cosω(t − t0) with a period T = 2π

ω = 1 yr, a
phase t0 = 152.5 day (June 2nd) and modulation amplitudes, A, equal to the central
values obtained by best fit on the data points of the entire DAMA/LIBRA–phase1.
The dashed vertical lines correspond to the maximum expected for the DM signal
(June 2nd), while the dotted vertical lines correspond to the minimum.
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LUX, PRL 116 (2016) 161301 (for an update)
Xenon 1t has first results

5

0.64 ± 0.16 events from ER leakage are expected below
the NR mean, for the search dataset. The spatial
distribution of the events matches that expected from the
ER backgrounds in full detector simulations. We select
the upper bound of 30 phe (S1) for the signal estimation
analysis to avoid additional background from the 5 keV

ee

x-ray from 127Xe.

FIG. 4. The LUX WIMP signal region. Events in the
118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. 3, with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation
analysis.

Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
modeled using a standard isothermal Maxwellian velocity
distribution [36], with v

0

= 220 km/s; v
esc

= 544 km/s;
⇢

0

= 0.3 GeV/c

3; average Earth velocity of 245 km s�1,
and Helm form factor [37, 38]. We conservatively model
no signal below 3.0 keV

nr

(the lowest energy for which
direct NR yield measurements exist [30, 40]). We do
not profile the uncertainties in NR yield, assuming a
model which provides excellent agreement with LUX
data (Fig. 1 and [39]), in addition to being conservative
compared to past works [23]. We also do not account
for uncertainties in astrophysical parameters, which are
beyond the scope of this work. Signal models in S1 and S2

are obtained for each WIMP mass from full simulations.
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [41] (dark yellow line), CDMS II [42] (green line),
ZEPLIN-III [43] (magenta line) and XENON100 100 live-
day [44] (orange line), and 225 live-day [45] (red line) results.
The inset (same axis units) also shows the regions measured
from annual modulation in CoGeNT [46] (light red, shaded),
along with exclusion limits from low threshold re-analysis
of CDMS II data [47] (upper green line), 95% allowed
region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].
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erally conservative in o�cially reporting the first limits
in this article. WIMP NR modeling with a tuned NEST
could result in an even more stringent limit (see Fig. 16
in Supplemental Material [[14]]), and a more elaborated
treatment of FV cuts would also help.
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FIG. 5: The 90% C.L. upper limits for the
spin-independent isoscalar WIMP-nucleon cross sections
from the combination of PandaX-II Run 8 and Run 9
(red solid). Selected recent world results are plotted for
comparison: PandaX-II Run 8 results [5] (magenta),
XENON100 225 day results [22] (black), and LUX 2015
results [4](blue). The 1 and 2-� sensitivity bands are
shown in green and yellow, respectively.

In conclusion, we report the combined WIMP search
results using data from Run 8 and Run 9 of the PandaX-
II experiment with an exposure of 3.3⇥104 kg-day. No
dark matter candidates were identified above background
and 90% upper limits were set on the spin-independent

elastic WIMP-nucleon cross sections with a lowest ex-
cluded value of 2.5⇥10�46 cm2 at a WIMP mass of
40 GeV/c2, the world best reported limit so far. The
result is complementary to the searches performed at
the LHC, which have produced various WIMP-nucleon
cross section limit in the range from 10�40 to 10�50 (c.f.
Refs. [23] and [24]), dependent on the dark matter pro-
duction models. The PandaX-II experiment continues to
take physics data to explore the previously unattainable
WIMP parameter space.
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□ Experiments are frequently analyzed and compared in a formalism 
   in which the nucleus is treated as a point particle
        
                 S.I.  

                 S.D.

□ Is this an adequate formalism for comparing experiments?

□ Does is properly encode what you can learn about the universe of UV theories
   from direct detection experiments…?

         

) hg.s.|
AX

i=1

(aF0 + aF1 ⌧3(i)) |g.s.i

) hg.s.|
AX

i=1

~�(i) (aGT
0 + aGT

1 ⌧3(i)) |g.s.i



□ A familiar electroweak interactions problem:   What is the form of the elastic 
response for a nonrelativistic theory with vector and axial-vector interactions?

charges:

currents:

even odd

vector C0 C1

axial C5
0 C5

1

even odd even odd even odd

axial spin L5
0 L5

1 T 5el
2 T 5el

1 T 5mag
2 T 5mag

1

vector velocity L0 L1 T el
2 T el

1 Tmag
2 Tmag

1

vector spin� velocity L0 L1 T el
2 T el

1 Tmag
2 Tmag

1

UV to Nucleon Scale to an Exclusive Nuclear Process



Response constrained by good parity and time reversal of nuclear g.s.
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Response constrained by good parity and time reversal of nuclear g.s.

General I talk about the Galilean ET formalism we developed to explain these
responses:  now in use by LUX, CDMX, PandaX
               but here … focus just on the concept of nuclear velocity enhance,ent 
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vector spin� velocity L0 L1 T el
2 T el

1 Tmag
2 Tmag

1



Six is not two:  so we are missing something …

What is missing is the universe of theories with derivative couplings, so interactions
involving velocities

Are derivative couplings not relevant (e.g.,not measurable in current experiments)?

Direct detection can be reformulated in a complete way in Galilean effective theory,
where the variables are

Another (but actually the same) question is:  what is the scale that goes with q?

               

If we remember our scales,             relative to our target nucleus is only              
So a velocity-dependent amplitude would contribute to cross sections at 
Ignoring velocities sounds rather reasonable…    

 

S�, SN , v? ⌘ vWIMP � vN ,
q

M

vWIMP ⇠ 10�3

⇠ 10�6



Effective theory instructs one to construct all the possible operators out  to some order

Let’s take an example:   consider

the velocity is defined by Galilean invariance

• In the point-nucleus limit

                so a S.I. interaction suppressed by 

• But in reality the nucleus is not a point

                             

AX

i=1

~S� · ~v?(i)

~v?(i) ⌘ ~v� � ~vN

~S� · ~vWIMP

AX

i=1

1(i)

~vWIMP ⇠ 10�3

{~v?(i), i = 1, · · · , A} $ {~vWIMP; ~̇v, i = 1, · · · , A� 1}

~̇v(i) ⇠ 10�1 >> ~vWIMP



•  The          carry odd parity and cannot contribute by themselves to elastic nuclear       
matrix elements.

•  But in elastic scattering, momentum transfers are significant.   The full
    velocity operator is

•  We can combine the two vector nuclear operators                 to form a
    scalar, vector, and tensor.   Expanding the exponential, take the vector case

So velocity-dependent interactions generate much larger contributions to the 
scattering and several new operators and responses:   current generation experiments
are probing these

and there is our ET mass:                                         Fermi momentum enhancement

~̇v(i)

ei~q·~r(i) ~̇v(i) where ~q · ~r(i) ⇠ 1

~̇v(i), ~r(i)

iq~r ⇥ ~̇v = i
q

mN
~r ⇥ ~̇p = � q

mN

~̀

v̇ ⇠ 10�1 ⇠ q

mN
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Note that five of the eight terms above are accompanied by a factor of ~q 2/m2
N

. This is the parameter identified
in Sec. 2.3 that governs the enhancement of the composite operators with respect to the point operators
for those O

i

where composite operators contribute. Thus one can read o↵ those response functions that are
generated by composite operators from this factor. The DM particle response functions are determined by
the c⌧
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The six nuclear operators appearing in Eq. (37), familiar from standard-model electroweak interaction
theory, are constructed from the Bessel spherical harmonics and vector spherical harmonics, M
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The point-nucleus world is what we thought we could probe
But the derivative coupling world is completely available to current detectors



Conclusion

If you like symmetries
nuclei are your friends!


