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The nuclear matrix element determining the pp ! de+⌫ fusion cross section and the Gamow-Teller
matrix element contributing to tritium �-decay are calculated with lattice Quantum Chromodynam-
ics (QCD) for the first time. Using a new implementation of the background field method, these
quantities are calculated at the SU(3)-flavor–symmetric value of the quark masses, corresponding
to a pion mass of m⇡ ⇠ 806 MeV. The Gamow-Teller matrix element in tritium is found to be
0.979(03)(10) at these quark masses, which is within 2� of the experimental value. Assuming that
the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange cur-
rents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the
calculated pp ! de+⌫ transition matrix element leads to a fusion cross section at the physical quark
masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial
counterterm of pionless e↵ective field theory is determined to be L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3

at a renormalization scale set by the physical pion mass, also in agreement with the accepted phe-
nomenological range. This work concretely demonstrates that weak transition amplitudes in few-
nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom
and opens the way for subsequent investigations of many important quantities in nuclear physics.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

Weak nuclear processes play a central role in many set-
tings, from the instability of the neutron to the dynam-
ics of core-collapse supernova. In this work, the results
of the first lattice Quantum Chromodynamics (LQCD)
calculations of two such processes are presented, namely
the pp ! de

+
⌫e fusion process and tritium �-decay. The

pp ! de

+
⌫ process is centrally important in astrophysics

as it is primarily responsible for initiating the proton-
proton fusion chain reaction that provides the dominant
energy production mechanism in stars like the Sun. Sig-
nificant theoretical e↵ort has been expended in refining
calculations of the pp ! de

+
⌫ cross section at the ener-

gies relevant to solar burning, and progress continues to
be made with a range of techniques [1–10], as summarized
in Ref. [11]. This process is related to the ⌫d ! nne

+

neutrino breakup reaction [12–14], relevant to the mea-
surement of neutrino oscillations at the Sudbury Neu-
trino Observatory (SNO) [15, 16], and to the muon cap-
ture reaction, µ�

d ! nn⌫µ, which is the focus of cur-
rent investigation in the MuSun experiment [17]. The

second process studied in this work, tritium �-decay, is
a powerful tool for investigating the weak interactions
of the Standard model and plays an important role in
the search for new physics. The super-allowed process
3H ! 3He e

�
⌫̄ is theoretically clean and is the simplest

semileptonic weak decay of a nuclear system. In con-
trast to pp fusion, this decay has been very precisely
studied in the laboratory (see Ref. [18] for a review)
and provides important constraints on the antineutrino
mass [19]. Tritium �-decay is also potentially sensitive to
sterile neutrinos [20, 21] and to interactions not present
in the Standard Model [21–24]. Although the dominant
contributions to the decay rate are under theoretical con-
trol as this is a super-allowed process, the Gamow-Teller
(GT) contribution (axial current) is somewhat more chal-
lenging to address than the Fermi (F) contribution (vec-
tor current). Improved constraints on multi-body con-
tributions to the GT matrix element will translate into
reduced uncertainties in predictions for decay rates of
larger nuclei and are a first step towards understanding
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ENERGIES FROM TWO-NUCLEON CORRELATION FUNCTIONS
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TABLE I: The parameters of the gauge-field ensembles used in this work. See Ref. [20] for more details.

ten Hybrid Monte Carlo evolution trajectories to reduce autocorrelations, with the total number of
configurations used for each ensemble, Ncfg given in Table I. An average of Nsrc measurements are
performed on each configuration. Various other properties of the ensembles are listed in Table I.
Given the large values of T and L relative to the inverse pion mass, both the thermal contamination
and the exponential finite-volume contamination of single-hadron masses and two-baryon energies
from pion propagation through the boundaries are strongly suppressed.

Sources are smeared with a gauge-invariant Gaussian profile with stout-smeared gauge links.
The quark propagators at the sink are either not smeared (smeared-point combination, SP) or
are smeared with the same smearing profile as that of the source operators (smeared-smeared
combination, SS). The plateau regions of the effective mass plots (EMPs) formed out of the SP and
SS correlation functions are found consistent in every case. Propagators are contracted at the sink
in blocks of three quarks to assemble a baryon field with given quantum numbers at the sink. In
particular, the baryon blocks are projected to a fixed three-momentum, enabling the two-baryon
interpolators at the sink to have either zero or non-zero CM momentum, with various possibilities for
the momentum of each baryon. As the next step, a fully-antisymmetrized quark-level wavefunction
with overall quantum numbers of the two-baryon system of interest is formed at the location of
the source. The contraction step is defined by the selection of the appropriate indices from the
baryon blocks at the source, in a way that is dictated by the quark-level wavefunction. More details
regarding the contraction algorithm for a general A-nucleon system are presented in Ref. [86] (with
a similar approach proposed in Refs. [87, 88]). The final products of the contraction step are two-
baryon correlation functions as a function of Euclidean time. These correspond to a definite total
momentum resulting from several (nearly orthogonal) choices of baryon momentum at the sink.

B. Analysis of correlation functions

To maximize confidence in the energy determinations and their uncertainties, five different anal-
ysis procedures were used, and the results obtained from each method were found to be consistent.
The statistical and fitting systematic uncertainties on the final results are taken from one analysis,
with an additional systematic uncertainty added to account for the small variations between the
five analyses.

The correlation function of a single or two-baryon system, projected to the total momentum
2⇡d/L, can be written as

CÔ,Ô0(⌧ ;d) =

X

x

e

2⇡id·x/Lh0| ˆO0
(x, ⌧)

ˆO†
(0, 0)|0i = Z 0

0Z†
0e

�E(0)⌧
+ Z 0

1Z†
1e

�E(1)⌧
+ . . . , (15)
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TRADITIONAL MATRIX ELEMENT CALCULATIONS: 3-POINT FUNCTIONS
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MATRIX ELEMENTS  FROM A COMPOUND PROPAGATOR/BACKGROUND FIELD

Savage et al (NPLQCD), Phys.Rev.Lett.119,062002(2017).

Buochard et al (CALLATT), Phys.Rev.D96,014504(2017). 
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FIG. 2. The field-strength dependency of sample correlation functions constructed from compound prop-
agators on a given configuration at a given time. The quantities shown are correlation functions with the

zero-field limit subtracted: Ĉ

(h)
�u;�d

(t) = C

(h)
�u;�d

(t) � C

(h)
�u=0;�d=0(t). The polynomial fits (solid curves) are

used to extract the requisite linear and quadratic responses. The points denote the results of numerical
calculations at six values of the field strength.

produce one value for each of the 437 configurations. These averaged values are then resampled
using a bootstrap procedure, with the variation over the bootstrap ensembles propagated to define
the statistical uncertainty of all derived quantities. Systematic uncertainties are addressed by
consideration of the choice of temporal fit ranges, higher-order terms (where appropriate), and
from the comparison of multiple independent analyses in which specific details of the fit procedures
were di↵erent. In what follows, figures from a single analysis are presented, but the final numerical
values include this additional uncertainty.

To determine the matrix elements of interest from the hadronic correlation functions, these
functions must be separated into linear, quadratic and higher powers of insertions of the up-
quark and down-quark axial-current operators, as described in Sec. III B. In Fig. 2, the field-
strength dependence of representative correlations functions is shown at a given timeslice and
on a particular gauge-field configuration, along with the fitted functional forms that enable the
extraction of the linear and quadratic responses. As discussed previously, with the number of field
strengths being equal to the number of terms in the polynomial, the fit is a direct solution. Fits
can be performed with additional field strengths, but they will only depart from the expected
polynomial behavior through numerical truncations. With the required linear and quadratic
field-strength dependencies of the correlation functions determined, the remaining task is to isolate
the matrix elements of interest through the time dependences of the combinations of correlation
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FIG. 2. The field-strength dependence of sample correlation functions constructed from compound prop-
agators on a given configuration at a given time (each configuration and timeslice shows similar poly-
nomial behavior). The quantities shown are correlation functions with the zero-field limit subtracted:

Ĉ
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Plots of the e↵ective-mass functions of the nucleon, deuteron, dineutron, and of the di↵erence
� = Enn�Ed are shown in Fig. IV, along with fits to the late-time behavior of the appropriate ratios
of the correlation functions. This figure shows that the deuteron and dinucleon zero-field correlation
functions are saturated by their ground-state contributions by timeslice 6. Consequently, in the
ratio Rnn!pp(t) and derived quantities, fits can only be performed over timeslices equal to or larger
than this threshold, even though the ratios may appear to plateau earlier.

The quantity R

+
3S1,1S0

(t), defined in Eq. (26), is shown in the left panel of Fig. 4, along with a fit
to this quantity at late times which is used to determine the value of the pp ! d axial transition
matrix element. In addition, the quantity R

�
3S1,1S0

(t), used to estimate the e↵ects of excited states
contaminating the extraction of the pp ! d transition matrix element, is shown in the right panel
of Fig. 4. The late-time behavior of this quantity saturates to a very small value indicating that the
Nc scaling is borne out (recall from Sec. III B 2 that this quantity vanishes as 1/N

4
c based on a large-

Nc analysis). With this supporting evidence, it is reasonable to conclude that the contaminating
term c� in Eq. (22) is O(1/N

4
c ) ⇠ O(1%) of the dominant term. To account for this systematic

e↵ect, an additional Wigner symmetry-breaking uncertainty of this size is added to the value of
the bare hd|J̃+

3 |ppi matrix element extracted from the late-time asymptote of R

+
3S1,1S0

(t).

Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each bootstrap
ensemble allow for the deuteron-pole term to be determined and subtracted in a correlated manner
(in all cases, the statistically cleaner SP results are used for this subtraction in the results shown

Tiburzi et al (NPLQCD), Phys. Rev. D 96, 054505 (2017).
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The nuclear matrix element determining the pp ! de+⌫ fusion cross section and the Gamow-Teller
matrix element contributing to tritium �-decay are calculated with lattice Quantum Chromodynam-
ics (QCD) for the first time. Using a new implementation of the background field method, these
quantities are calculated at the SU(3)-flavor–symmetric value of the quark masses, corresponding
to a pion mass of m⇡ ⇠ 806 MeV. The Gamow-Teller matrix element in tritium is found to be
0.979(03)(10) at these quark masses, which is within 2� of the experimental value. Assuming that
the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange cur-
rents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the
calculated pp ! de+⌫ transition matrix element leads to a fusion cross section at the physical quark
masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial
counterterm of pionless e↵ective field theory is determined to be L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3

at a renormalization scale set by the physical pion mass, also in agreement with the accepted phe-
nomenological range. This work concretely demonstrates that weak transition amplitudes in few-
nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom
and opens the way for subsequent investigations of many important quantities in nuclear physics.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

Weak nuclear processes play a central role in many set-
tings, from the instability of the neutron to the dynam-
ics of core-collapse supernova. In this work, the results
of the first lattice Quantum Chromodynamics (LQCD)
calculations of two such processes are presented, namely
the pp ! de

+
⌫e fusion process and tritium �-decay. The

pp ! de

+
⌫ process is centrally important in astrophysics

as it is primarily responsible for initiating the proton-
proton fusion chain reaction that provides the dominant
energy production mechanism in stars like the Sun. Sig-
nificant theoretical e↵ort has been expended in refining
calculations of the pp ! de

+
⌫ cross section at the ener-

gies relevant to solar burning, and progress continues to
be made with a range of techniques [1–10], as summarized
in Ref. [11]. This process is related to the ⌫d ! nne

+

neutrino breakup reaction [12–14], relevant to the mea-
surement of neutrino oscillations at the Sudbury Neu-
trino Observatory (SNO) [15, 16], and to the muon cap-
ture reaction, µ�

d ! nn⌫µ, which is the focus of cur-
rent investigation in the MuSun experiment [17]. The

second process studied in this work, tritium �-decay, is
a powerful tool for investigating the weak interactions
of the Standard model and plays an important role in
the search for new physics. The super-allowed process
3H ! 3He e

�
⌫̄ is theoretically clean and is the simplest

semileptonic weak decay of a nuclear system. In con-
trast to pp fusion, this decay has been very precisely
studied in the laboratory (see Ref. [18] for a review)
and provides important constraints on the antineutrino
mass [19]. Tritium �-decay is also potentially sensitive to
sterile neutrinos [20, 21] and to interactions not present
in the Standard Model [21–24]. Although the dominant
contributions to the decay rate are under theoretical con-
trol as this is a super-allowed process, the Gamow-Teller
(GT) contribution (axial current) is somewhat more chal-
lenging to address than the Fermi (F) contribution (vec-
tor current). Improved constraints on multi-body con-
tributions to the GT matrix element will translate into
reduced uncertainties in predictions for decay rates of
larger nuclei and are a first step towards understanding

p+ p ! d+ e+ + ⌫e

SINGLE-WEAK PROCESSES
3H ! 3He + e� + ⌫e
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where “
�

�

O(�j
q)

” denotes the piece proportional to �

j
q and n and m are summed over complete sets of

energy eigenstates, with eigenenergies En and Em, respectively.3 Using the Hamiltonian to express
the Euclidean time evolution, and performing the sum over the insertion time as an integral, which
is valid up to discretization corrections, the correlation function in Eq. (15) becomes

C

(p")
�u;�d=0(t)

�

�

�

O(�u)
=

t
X

t1=0

X

n,m

znz
†
me

�En(t�t1)
e

�Emt1hn|J̃ (u)
3 |mi

=
X

n,m

znz
†
m

e

�Ent � e

�Emt

aEm � aEn
hn|J̃ (u)

3 |mi

t!1�! |z0|2e�E0t
h

c + t hp "|J̃ (u)
3 |p "i + O(e��̂t)

i

, (16)

where only states with zero spatial momentum and total spin equal to that of the spin-up proton
contribute to the sum in the first two lines, zn is proportional to the overlap of the interpolating
operator onto a given state, i.e., zn =

p
V hn|�p"(0)|0i, and quantities with subscript 0 correspond

to the ground state. Terms involving the time-independent constant c and the leading exponential
contamination are complicated functions of the energy gaps (denoted as �̂), excited-state overlap
factors and transition matrix elements. These terms will not produce linear time dependence in
the bracket in Eq. (16) at late times. Similar expressions can be obtained for the spin-down state
and for the response to the background field with �u = 0 and �d 6= 0. Finally, the bare isovector
axial matrix element can be obtained from the late-time behavior of the di↵erence4

Rp(t) ⌘ Rp(t + a) � Rp(t)
t!1�! hp|J̃3

3 |pi =
gA

2ZA
, (17)

where the ratios Rp(t) are spin-weighted averages,

Rp(t) =
X

s={#,"}

⌘s

2

C

(ps)
�u;�d=0(t)

�

�

�

O(�u)
� C

(ps)
�u=0;�d

(t)
�

�

�

O(�d)

C

(ps)
�u=0;�d=0(t)

, (18)

with ⌘" = �⌘# = �1. The factor ZA in Eq. (17) is the axial-current renormalization factor discussed
in Sec. III D.

2. �I = 1 two-nucleon axial transitions: pp ! de

+
⌫e

The transition correlation functions of the I3 = J3 = 0 two-nucleon system,5 used to access the
pp-fusion matrix element in Ref. [18], are at most cubic in the applied u and d fields. The forms
of these correlation functions are

C

(3S1,1S0)
�u;�d=0(t) = �u

t
X

t1=0

X

x,y

h0|�3S1
(x, t)J (u)

3 (y, t1)�
†
1S0

(0)|0i + c2�
2
u + c3�

3
u, (19)

C

(3S1,1S0)
�u=0;�d

(t) = �d

t
X

t1=0

X

x,y

h0|�3S1
(x, t)J (d)

3 (y, t1)�
†
1S0

(0)|0i + b2�
2
d + b3�

3
d, (20)

3 A nonrelativistic normalization of states is used throughout such that the complete set of states is
P

n |nihn| = 1,
and hn|mi = �m,n, where n is a collective label in the case of multi-particle states.

4 Note that the convention used for the axial current di↵ers from that of Ref. [18] by a factor of 1
2 , following the

definitions after Eq. (1).
5 J used here to represent the total angular momentum is not to be confused with the J used to denote the current.

OVERLAP 
FACTORS
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where �3S1
and �1S0

are interpolating operators for the I3 = J3 = 0 components of the J = 1
(isosinglet) and J = 0 (isotriplet) two-nucleon systems, respectively. The higher-order terms in field
strength, bi and ci, are not relevant to the present calculations. The linear terms are isolated using
polynomial fits in the applied field strengths. Labeling the 3

S1 (1S0) eigenstates with (without) a
prime, it is straightforward to show that the linear term of Eq. (19) can be expressed as

C

(3S1,1S0)
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3 |mi, (21)

having performed the sum over the insertion time as an integral, which is valid up to discretization
corrections. Separating ground-state contributions in the initial and/or final states leads to

C
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)

+ cosh

✓
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c+ + O(e��̃ t)

#

, (22)

where |np(1S0)i and |di refer to the ground state of the isotriplet channel and to the J3 = 0
component of the deuteron, respectively. Here and in what follows, Zn0 and Zm are the overlap
factors of the source and sink interpolators onto the n0 and m eigenstates of the 3

S1 and 1
S0 channels,

respectively, and Zd = Z00 , Znp(1S0) = Z0. The energy of the l0th excitation in the deuteron channel

is El0 = Enn + �l0 , and En = Enn + �n is the energy of the nth excited state of the channel with the
quantum numbers of the dinucleon (note that the energy gaps in both channels are defined relative
to Enn). Finally E = (Enn + Ed)/2, and �̃ ⇠ �m, �n0 denotes a generic gap between eigenenergies
of two-nucleon systems. Additionally, � = Enn � Ed as defined previously. The terms

c± =
X

m6=np(1S0)

Z

†
m

Z

†
np(1S0)

hd|J̃ (u)
3 |mi

a� + a�m
±

X

n0 6=d
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3 |np(1S0)i

a�n0
(23)

are t-independent factors involving energy gaps, ratios of overlap factors, and transition matrix
elements between the ground and excited states.

For arbitrary values of �, the extraction of the desired transition matrix element from Eq. (22)
will be challenging. In the present calculation, however, the splitting is small, a� < 0.01, which
a↵ords valuable simplifications. In the limit of exact SU(4) Wigner symmetry, � ! 0 (the 1

S0

and 3
S1 eigenstates belong to a single SU(4) multiplet in this limit) and the contribution from c�

to the correlation function vanishes. Thus, after removing the leading exponential dependence by
forming a ratio (see below), the ground-state transition matrix element can be extracted as the
coe�cient of the term linear in t. Away from this limit, the extraction of the ground-state transi-
tion matrix element from the linear term is contaminated by excited states through the c� term.
Although this contamination is not exponentially suppressed in time compared with the ground-
state contribution, it is still expected to be small. The energy splitting � is small as suggested by
the large-Nc limit of QCD (� ⇠ 1/N

2
c ), while the Ademollo-Gatto theorem [53] guarantees that

the excited-state to ground-state matrix element is suppressed by a further power of Nc relative
to the ground-state to ground-state matrix element. To further reduce SU(4) symmetry-breaking
contamination and to assess its magnitude, one may note that in the time-reversed correlation
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where �3S1
and �1S0

are interpolating operators for the I3 = J3 = 0 components of the J = 1
(isosinglet) and J = 0 (isotriplet) two-nucleon systems, respectively. The higher-order terms in field
strength, bi and ci, are not relevant to the present calculations. The linear terms are isolated using
polynomial fits in the applied field strengths. Labeling the 3

S1 (1S0) eigenstates with (without) a
prime, it is straightforward to show that the linear term of Eq. (19) can be expressed as
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having performed the sum over the insertion time as an integral, which is valid up to discretization
corrections. Separating ground-state contributions in the initial and/or final states leads to
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where |np(1S0)i and |di refer to the ground state of the isotriplet channel and to the J3 = 0
component of the deuteron, respectively. Here and in what follows, Zn0 and Zm are the overlap
factors of the source and sink interpolators onto the n0 and m eigenstates of the 3

S1 and 1
S0 channels,

respectively, and Zd = Z00 , Znp(1S0) = Z0. The energy of the l0th excitation in the deuteron channel

is El0 = Enn + �l0 , and En = Enn + �n is the energy of the nth excited state of the channel with the
quantum numbers of the dinucleon (note that the energy gaps in both channels are defined relative
to Enn). Finally E = (Enn + Ed)/2, and �̃ ⇠ �m, �n0 denotes a generic gap between eigenenergies
of two-nucleon systems. Additionally, � = Enn � Ed as defined previously. The terms
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are t-independent factors involving energy gaps, ratios of overlap factors, and transition matrix
elements between the ground and excited states.

For arbitrary values of �, the extraction of the desired transition matrix element from Eq. (22)
will be challenging. In the present calculation, however, the splitting is small, a� < 0.01, which
a↵ords valuable simplifications. In the limit of exact SU(4) Wigner symmetry, � ! 0 (the 1

S0

and 3
S1 eigenstates belong to a single SU(4) multiplet in this limit) and the contribution from c�

to the correlation function vanishes. Thus, after removing the leading exponential dependence by
forming a ratio (see below), the ground-state transition matrix element can be extracted as the
coe�cient of the term linear in t. Away from this limit, the extraction of the ground-state transi-
tion matrix element from the linear term is contaminated by excited states through the c� term.
Although this contamination is not exponentially suppressed in time compared with the ground-
state contribution, it is still expected to be small. The energy splitting � is small as suggested by
the large-Nc limit of QCD (� ⇠ 1/N

2
c ), while the Ademollo-Gatto theorem [53] guarantees that

the excited-state to ground-state matrix element is suppressed by a further power of Nc relative
to the ground-state to ground-state matrix element. To further reduce SU(4) symmetry-breaking
contamination and to assess its magnitude, one may note that in the time-reversed correlation
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where �3S1
and �1S0

are interpolating operators for the I3 = J3 = 0 components of the J = 1
(isosinglet) and J = 0 (isotriplet) two-nucleon systems, respectively. The higher-order terms in field
strength, bi and ci, are not relevant to the present calculations. The linear terms are isolated using
polynomial fits in the applied field strengths. Labeling the 3

S1 (1S0) eigenstates with (without) a
prime, it is straightforward to show that the linear term of Eq. (19) can be expressed as
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having performed the sum over the insertion time as an integral, which is valid up to discretization
corrections. Separating ground-state contributions in the initial and/or final states leads to
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where |np(1S0)i and |di refer to the ground state of the isotriplet channel and to the J3 = 0
component of the deuteron, respectively. Here and in what follows, Zn0 and Zm are the overlap
factors of the source and sink interpolators onto the n0 and m eigenstates of the 3

S1 and 1
S0 channels,

respectively, and Zd = Z00 , Znp(1S0) = Z0. The energy of the l0th excitation in the deuteron channel

is El0 = Enn + �l0 , and En = Enn + �n is the energy of the nth excited state of the channel with the
quantum numbers of the dinucleon (note that the energy gaps in both channels are defined relative
to Enn). Finally E = (Enn + Ed)/2, and �̃ ⇠ �m, �n0 denotes a generic gap between eigenenergies
of two-nucleon systems. Additionally, � = Enn � Ed as defined previously. The terms
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are t-independent factors involving energy gaps, ratios of overlap factors, and transition matrix
elements between the ground and excited states.

For arbitrary values of �, the extraction of the desired transition matrix element from Eq. (22)
will be challenging. In the present calculation, however, the splitting is small, a� < 0.01, which
a↵ords valuable simplifications. In the limit of exact SU(4) Wigner symmetry, � ! 0 (the 1

S0

and 3
S1 eigenstates belong to a single SU(4) multiplet in this limit) and the contribution from c�

to the correlation function vanishes. Thus, after removing the leading exponential dependence by
forming a ratio (see below), the ground-state transition matrix element can be extracted as the
coe�cient of the term linear in t. Away from this limit, the extraction of the ground-state transi-
tion matrix element from the linear term is contaminated by excited states through the c� term.
Although this contamination is not exponentially suppressed in time compared with the ground-
state contribution, it is still expected to be small. The energy splitting � is small as suggested by
the large-Nc limit of QCD (� ⇠ 1/N

2
c ), while the Ademollo-Gatto theorem [53] guarantees that

the excited-state to ground-state matrix element is suppressed by a further power of Nc relative
to the ground-state to ground-state matrix element. To further reduce SU(4) symmetry-breaking
contamination and to assess its magnitude, one may note that in the time-reversed correlation
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FIG. 3. E↵ective-mass plots for the deuteron (upper-left panel), dineutron (upper-right panel), nucleon
(lower-left panel), and the quantity � = Enn � Ed (lower-right panel). Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The dashed lines in the
upper-panel plots correspond to twice the mass of the nucleon. In all figures, the horizontal bands show
constant fits to the late-time behavior of the SP quantities. The SS points are slightly o↵set in t for clarity.
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FIG. 4. The left panel shows the quantity R

+
3S1,1S0

(t) used to extract the bare pp ! d transition matrix

element. The right panel shows R

�
3S1,1S0

(t) , used to estimate the magnitude of excited-state contamination
in the extraction of the pp ! d bare matrix element (see Sec. III B 2). Blue circles and orange diamonds
denote results obtained using SP and SS correlation functions, respectively. The horizontal bands show
constant fits to the late-time behavior of the SP quantities. The SS points are slightly o↵set in t for clarity.

below). The results obtained for Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and
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function, i.e., C
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in which the residual contamination in the time-reversal (T) even combination of correlation func-
tions scales as O(1/N

4
c ) ⇠ 1%, given the Nc scalings discussed above. Additionally, the T-odd

combination, C

�
�u;�d=0(t)

�

�

�

O(�u)
, provides a numerical estimate of the magnitude of the O(1/N

4
c )

contamination (see Sec. IV). The T-even and T-odd correlation functions for �u = 0, �d 6= 0 can
be formed similarly.

Assuming isospin symmetry, the bare pp ! d matrix element can be extracted from the late-time
behavior of the ratio
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Explicitly, R

+ can be used to isolate the term that is linear in t in Eq. (22),
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while R

�
3S1,1S0

(t), defined analogously using R

�
3S1,1S0

(t), is used to assess the size of excited-state
contamination from broken Wigner symmetry. Note that the term proportional to c+ does not
introduce any linear dependence in time with a� ⌧ 1.

3. Second-order matrix elements in the dinucleon system

The second-order axial matrix elements of the dinucleon system are the primary focus of this
work. Only the I = 2 second-order matrix elements can be correctly recovered from compound
propagators that are computed at linear order in the axial fields, as discussed in Section II. The
relevant background-field correlation functions are
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FIG. 3. The ratios of correlation functions that deter-
mine the unrenormalized isovector axial matrix element in
the Jz = Iz = 0 coupled two-nucleon system (upper panel),
and the unrenormalized di↵erence between the axial matrix
element in this channel and 2gA (lower panel). The orange di-
amonds (blue circles) correspond to the SS (SP) e↵ective cor-
relator ratios and the bands correspond to fits to the asymp-
totic plateau behavior and include the statistical and fitting
systematic uncertainties.

matrix elements and transition amplitudes requires the
framework developed in Refs. [62, 63].

To isolate the two-body contribution, the combina-
tion L

sd�2b
1,A (t)/ZA = [R3S1,1S0

(t) � 2Rp(t)]/2 is formed
as shown in the lower panel of Fig. 3. Taking advantage
of the near-degeneracy of the 3

S1 and 1
S0 two-nucleon

channels at the quark masses used in this calculation, it
is straightforward to show that this correlated di↵erence
leads directly to the short-distance two-nucleon quantity,
L

sd�2b
1,A . Fitting a constant to the late-time behavior of

this quantity leads to

L

sd�2b
1,A

ZA
=

⌦
3
S1; Jz = 0

��
A

3
3

�� 1
S0; Iz = 0

↵� 2gA
2ZA

= �0.011(01)(15) , (13)

where the first uncertainty is statistical and the second
encompasses fitting and analysis systematics.

In light of the mild quark-mass dependence of the anal-
ogous short-distance, two-body quantity contributing to
np ! d� [39], Lsd�2b

1,A is likely to be largely insensitive to
the pion mass between m⇡ ⇠ 806 MeV and its physical
value. This approximate independence and the associ-
ated systematic uncertainty will need to be refined in
subsequent calculations. Based on this expectation, the
result obtained here atm⇡ ⇠ 806 MeV is used to estimate
the value of Lsd�2b

1,A at the physical pion mass by includ-
ing an additional 50% additive uncertainty. Propagating
this uncertainty through Eq. (8), the threshold value of
⇤(p) in this system at the physical quark masses is deter-
mined to be ⇤(0) = 2.659(2)(9)(5), where the uncertain-
ties are statistical, fitting and analysis systematic, and

quark-mass extrapolation systematic, respectively. Un-
certainties in the scattering parameters and other physi-
cal mass inputs are also propagated and included in the
systematic uncertainty. This result is remarkably close to
the currently accepted, precise phenomenological value,
⇤(0) = 2.65(1) [11] (see also Ref. [64]). The N2LO rela-
tion of Ref. [4], when enhanced by the summation of the
e↵ective ranges to all orders using the dibaryon field ap-
proach [10, 59, 60], gives ⇤(0) = 2.62(1) + 0.0105(1)L1,A,
enabling a determination of the ⇡/EFT coupling blue

L1,A = 3.9(0.2)(1.0)(0.4)(0.9) fm3
, (14)

at a renormalization scale µ = m⇡. The uncertainties
are statistical, fitting and analysis systematic, mass ex-
trapolation systematic, and a power-counting estimate
of higher order corrections in ⇡/EFT, respectively. This
value is also very close to previous phenomenological es-
timates, as summarized in Refs. [11, 14].

Summary: The primary results of this work are the
isovector axial-current matrix elements in two and three-
nucleon systems calculated directly from the underly-
ing theory of the strong interactions using lattice QCD.
These matrix elements determine the cross section for the
pp fusion process pp ! de

+
⌫ and the Gamow-Teller con-

tribution to tritium �-decay, 3H ! 3He e

�
⌫. While the

calculations are performed at unphysical quark masses
corresponding to m⇡ ⇠ 806 MeV and at a single lattice
spacing and volume, the mild mass dependence of the
analogous short-distance quantity in the np ! d� mag-
netic transition enables an estimate of the pp ! de

+
⌫

matrix element at the physical point, and the results are
found to agree within uncertainties with phenomenol-
ogy. Future LQCD calculations including electromag-
netic e↵ects beyond Coulomb at lighter quark masses
with isospin splittings, larger volumes, and finer lattice
spacings, making use of the new techniques that are in-
troduced here, will enable extractions of these axial ma-
trix elements with fully quantified uncertainties and will
be of great importance in phenomenology, providing in-
creasingly precise values for the pp-fusion cross section
and GT matrix element in tritium �-decay.
Beyond the current study, background axial-field cal-

culations also allow the extraction of second-order, as
well as momentum-dependent, responses to axial fields.
Second-order responses are important for determining
nuclear ��-decay matrix elements, both with and with-
out (for a light Majorana neutrino) the emission of associ-
ated neutrinos. Momentum-dependent axial background
fields will allow the determination of nuclear e↵ects in
neutrino-nucleus scattering. In both cases, LQCD calcu-
lations of these quantities in light nuclei will provide vi-
tal input with which to constrain the nuclear many-body
methods that are used to determine the matrix elements
for these processes in heavy nuclei.
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of these ratios lead to

gA(3H)

ZA
= 1.272(6)(22),

gA(3H)

gA
= 0.979(3)(10), (6)

where the first uncertainties are statistical and the second
arise from systematics as described for gA. The result for
gA(3H)/gA is quite close to the precise, experimentally-
determined value of hGTi = 0.9511(13) [6] at the phys-
ical quark masses. In the context of ⇡/EFT, the short-
distance two-nucleon axial-vector operator, with coe�-
cient L1,A [4], is expected to give the leading contribution
to the di↵erence of this ratio from unity.

The Low-Energy Proton-Proton Fusion Cross Section:

The low-energy cross section for pp ! de

+
⌫ is dictated

by the matrix element

��⌦
d; j

��
A

�
k

��
pp

↵�� ⌘ gAC⌘

r
32⇡

�

3
⇤(p) �jk, (7)

where A

a
k(x) is the axial current with isospin and spin

components a and k respectively, j is the deuteron spin
index, C⌘ is the Sommerfeld factor and � is the deuteron
binding momentum. The quantity ⇤(p) has been calcu-
lated at threshold in ⇡/EFT to N2LO [3] and N4LO [4]
and later with a dibaryon approach [10]. With the ap-
proach of Ref. [4], resumming all of the e↵ective range
contributions [10, 56, 57], ⇤(0) at N2LO is related to the
renormalization-scale independent short-distance quan-
tity L

sd�2b
1,A that is a solely two-body contribution, along

with scattering parameters and Coulomb corrections:

⇤(0) =
1p

1� �⇢

{e� � �app[1� �e

��(0,�)] +

1

2
�

2
app

p
r1⇢}� 1

2gA
�app

p
1� �⇢ L

sd�2b
1,A . (8)

Here � = ↵Mp/�, where ↵ is the QED fine-structure
constant and Mp is the mass of the proton. The pp scat-
tering length is app, r1 and ⇢ are the e↵ective ranges in
the 1

S0 and 3
S1 channels, respectively, and �(0,�) is the

incomplete gamma function. A determination of Lsd�2b
1,A ,

or equivalently of the ⇡/EFT coupling L1,A which is de-
termined from the scale-independent constant

L1,A =
1

2gA

1� �⇢

�

L

sd�2b
1,A � 1

2

p
r1⇢ (9)

(as shown explicitly in Ref. [4]), is a goal of the present
LQCD calculations.

A background isovector axial-vector field mixes the
Jz = Iz = 0 components of the 3

S1 and 1
S0 two-

nucleon channels, enabling the pp-fusion matrix element
to be accessed. Using the new background field construc-

tion, the relevant o↵-diagonal matrix element C(3S1,
1S0)

�u;�d
(t)

is a cubic polynomial in both �u and �d. In Ref. [39],
the analogous mixing between the two-nucleon channels
induced by an isovector magnetic field was treated by di-
agonalizing a (channel-space) matrix of correlators and

determining the splittings between energy eigenvalues.
This provided access to the matrix element dictating
np ! d� at low energies, as was proposed in Ref. [58].
Such a method can also be used for the axial field, but
the improved approach implemented here makes use of
the finite-order polynomial structure to access the matrix
element directly. For a background field that couples to
the u quarks,

C

(3S1,
1S0)

�u;�d=0(t) = �u
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X
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3
u, (10)

where �

3
3S1

(�1S0
) is an interpolating field for the Jz = 0

(Iz = 0) component of the 3
S1 (1S0) channel, A

u
3 =

u�3�5u, and c2,3 are irrelevant terms. Calculations of
the axial matrix element at three or more values of �u

allow for the extraction of the term that is linear in �u.
A similar procedure yields the term that is linear in �d

from background fields coupling to the d quark. Taking
the di↵erence of the ratios of these terms to the corre-
sponding zero-field two-point functions determines the
transition matrix element in the finite lattice volume;
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.(11)

Consequently, the di↵erence between ratios at neighbor-
ing timeslices determines the isovector matrix element;
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, (12)

in the limit where �E = Ed � Epp is small (as is
the case with the quark masses used in this calcu-
lation [47]), and when the contributions from excited
states are suppressed. This quantity, measured with
both SS and SP correlators, is shown in Fig. 3, along
with the extracted value of the axial matrix element,⌦
3
S1; Jz = 0

��
A

3
3

�� 1
S0; Iz = 0

↵
/ZA = 2.568(5)(17), where

the first uncertainty is statistical and the second is a
systematic encompassing choices of fit ranges in time
and field strength as well as variations in analysis tech-
niques. At the pion mass of this study, the initial and
final two-nucleon states are deeply bound [47] and the
finite-volume e↵ects in the matrix elements are negligi-
ble [59, 60]. At lighter values of the quark masses, where
the np(1S0) system and/or the deuteron are unbound or
only weakly bound, the connection between finite-volume
matrix elements and transition amplitudes requires the
framework developed in Refs. [59, 60].
To isolate the two-body contribution, the combina-

tion L

sd�2b
1,A (t)/ZA = [R3S1,1S0

(t) � 2Rp(t)]/2 is formed
as shown in the lower panel of Fig. 3. Taking advantage
of the near-degeneracy of the 3

S1 and 1
S0 two-nucleon
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The nuclear matrix element determining the pp ! de+⌫ fusion cross section and the Gamow-Teller
matrix element contributing to tritium �-decay are calculated with lattice Quantum Chromodynam-
ics (QCD) for the first time. Using a new implementation of the background field method, these
quantities are calculated at the SU(3)-flavor–symmetric value of the quark masses, corresponding
to a pion mass of m⇡ ⇠ 806 MeV. The Gamow-Teller matrix element in tritium is found to be
0.979(03)(10) at these quark masses, which is within 2� of the experimental value. Assuming that
the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange cur-
rents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the
calculated pp ! de+⌫ transition matrix element leads to a fusion cross section at the physical quark
masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial
counterterm of pionless e↵ective field theory is determined to be L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3

at a renormalization scale set by the physical pion mass, also in agreement with the accepted phe-
nomenological range. This work concretely demonstrates that weak transition amplitudes in few-
nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom
and opens the way for subsequent investigations of many important quantities in nuclear physics.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

Weak nuclear processes play a central role in many set-
tings, from the instability of the neutron to the dynam-
ics of core-collapse supernova. In this work, the results
of the first lattice Quantum Chromodynamics (LQCD)
calculations of two such processes are presented, namely
the pp ! de

+
⌫e fusion process and tritium �-decay. The

pp ! de

+
⌫ process is centrally important in astrophysics

as it is primarily responsible for initiating the proton-
proton fusion chain reaction that provides the dominant
energy production mechanism in stars like the Sun. Sig-
nificant theoretical e↵ort has been expended in refining
calculations of the pp ! de

+
⌫ cross section at the ener-

gies relevant to solar burning, and progress continues to
be made with a range of techniques [1–10], as summarized
in Ref. [11]. This process is related to the ⌫d ! nne

+

neutrino breakup reaction [12–14], relevant to the mea-
surement of neutrino oscillations at the Sudbury Neu-
trino Observatory (SNO) [15, 16], and to the muon cap-
ture reaction, µ�

d ! nn⌫µ, which is the focus of cur-
rent investigation in the MuSun experiment [17]. The

second process studied in this work, tritium �-decay, is
a powerful tool for investigating the weak interactions
of the Standard model and plays an important role in
the search for new physics. The super-allowed process
3H ! 3He e

�
⌫̄ is theoretically clean and is the simplest

semileptonic weak decay of a nuclear system. In con-
trast to pp fusion, this decay has been very precisely
studied in the laboratory (see Ref. [18] for a review)
and provides important constraints on the antineutrino
mass [19]. Tritium �-decay is also potentially sensitive to
sterile neutrinos [20, 21] and to interactions not present
in the Standard Model [21–24]. Although the dominant
contributions to the decay rate are under theoretical con-
trol as this is a super-allowed process, the Gamow-Teller
(GT) contribution (axial current) is somewhat more chal-
lenging to address than the Fermi (F) contribution (vec-
tor current). Improved constraints on multi-body con-
tributions to the GT matrix element will translate into
reduced uncertainties in predictions for decay rates of
larger nuclei and are a first step towards understanding
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ysis) and the second is systematic (arising from choices
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separation as well as from di↵erences in analysis tech-
niques). Including the renormalization factor yields an
axial charge of gA = 1.13(2)(7), which is consistent with
previous determinations from standard three-point func-
tion techniques at this pion mass [52, 53].
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The nuclear matrix element determining the pp ! de+⌫ fusion cross section and the Gamow-Teller
matrix element contributing to tritium �-decay are calculated with lattice Quantum Chromodynam-
ics (QCD) for the first time. Using a new implementation of the background field method, these
quantities are calculated at the SU(3)-flavor–symmetric value of the quark masses, corresponding
to a pion mass of m⇡ ⇠ 806 MeV. The Gamow-Teller matrix element in tritium is found to be
0.979(03)(10) at these quark masses, which is within 2� of the experimental value. Assuming that
the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange cur-
rents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the
calculated pp ! de+⌫ transition matrix element leads to a fusion cross section at the physical quark
masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial
counterterm of pionless e↵ective field theory is determined to be L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3

at a renormalization scale set by the physical pion mass, also in agreement with the accepted phe-
nomenological range. This work concretely demonstrates that weak transition amplitudes in few-
nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom
and opens the way for subsequent investigations of many important quantities in nuclear physics.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

Weak nuclear processes play a central role in many set-
tings, from the instability of the neutron to the dynam-
ics of core-collapse supernova. In this work, the results
of the first lattice Quantum Chromodynamics (LQCD)
calculations of two such processes are presented, namely
the pp ! de

+
⌫e fusion process and tritium �-decay. The

pp ! de

+
⌫ process is centrally important in astrophysics

as it is primarily responsible for initiating the proton-
proton fusion chain reaction that provides the dominant
energy production mechanism in stars like the Sun. Sig-
nificant theoretical e↵ort has been expended in refining
calculations of the pp ! de

+
⌫ cross section at the ener-

gies relevant to solar burning, and progress continues to
be made with a range of techniques [1–10], as summarized
in Ref. [11]. This process is related to the ⌫d ! nne

+

neutrino breakup reaction [12–14], relevant to the mea-
surement of neutrino oscillations at the Sudbury Neu-
trino Observatory (SNO) [15, 16], and to the muon cap-
ture reaction, µ�

d ! nn⌫µ, which is the focus of cur-
rent investigation in the MuSun experiment [17]. The

second process studied in this work, tritium �-decay, is
a powerful tool for investigating the weak interactions
of the Standard model and plays an important role in
the search for new physics. The super-allowed process
3H ! 3He e

�
⌫̄ is theoretically clean and is the simplest

semileptonic weak decay of a nuclear system. In con-
trast to pp fusion, this decay has been very precisely
studied in the laboratory (see Ref. [18] for a review)
and provides important constraints on the antineutrino
mass [19]. Tritium �-decay is also potentially sensitive to
sterile neutrinos [20, 21] and to interactions not present
in the Standard Model [21–24]. Although the dominant
contributions to the decay rate are under theoretical con-
trol as this is a super-allowed process, the Gamow-Teller
(GT) contribution (axial current) is somewhat more chal-
lenging to address than the Fermi (F) contribution (vec-
tor current). Improved constraints on multi-body con-
tributions to the GT matrix element will translate into
reduced uncertainties in predictions for decay rates of
larger nuclei and are a first step towards understanding
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states in this correlation function are partially expanded, giving
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The energies and overlap factors are defined as in the previous section, see the discussion after
Eq. (22). To arrive at Eq. (32), the deuteron-dineutron energy splitting is assumed to be modest
compared with the inverse of the time separation between the source and the sink used to ex-
tract the matrix elements, while the energy splittings between ground and exited states in both
channels are assumed to be large, so that e

��l0 t ! 0 and e

��nt ! 0. If this is not the situation,
the correlation functions with background-field insertions on all timeslices cannot be used to un-
ambiguously extract the terms relevant for this analysis.7 In the numerical calculations discussed
below, the requisite hierarchy is found to be satisfied. As the deuteron is lower in energy than
the dinucleon external states, and hence gives rise to a growing exponential contribution (after the
overall exponential e

�Ennt is factored out of Eq. (32)), this contribution has been singled out in the
summation over states in Eq. (32). The deuteron contribution is close to quadratic in t (it would
be exactly quadratic if � = 0), and the coe�cient of this term is known from the first-order axial
response in Eq. (26). Ground-state overlap factors and the overall exponential time dependence
can be removed by forming the ratio

Rnn!pp(t) =
Cnn!pp(t)

2C

(nn)
0;0 (t)

, (33)

which will be investigated in Sec. IV. Using Eq. (32), it is easy to show that this ratio has the form

a
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where the first term is the long-distance contribution to the matrix element from the deuteron
intermediate state and the second term is the short-distance contribution arising from all excited
intermediate states coupling to the axial current, i.e., the isotensor axial polarizability as defined
in Eq. (4). The coe�cients c and d are complicated terms involving ground-state and excited-state
overlap factors and matrix elements, as can be read from Eq. (32), but have no time dependence.
The critical aspect of Eq. (34) is that both the short-distance and the long-distance contributions
can be isolated from the excited external-state contributions through their distinct dependence on
time. This form will be used to analyze the numerical correlation functions in Section IV.

7 Inserting the background field on a range of timeslices separated from the source and sink can address this issue
[22], provided the separation is su�ciently large.
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The matrix elements of the two identical quark-bilinear currents involve the contractions of the
currents with anti-quark (quark) pairs at the source (sink), giving rise to four possibilities, while
the compound-propagator method already enforces the contractions of each quark and anti-quark
pair in the source and sink through only one of the currents, reducing the possibilities to two. Thus,
a factor of 1

2 is required to relate the second-order terms in Eqs. (27)-(29) to the current matrix
elements. The pieces of these correlation functions that are quadratic in the field strength can be
determined exactly, given calculations at a su�ciently large number of values of the background
axial-field strength.6 The correlation function for the nn ! pp transition can be formed utilizing
Eq. (10),
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where the objects on the right-hand side are extracted from the compound-propagator method and
the correlation function on the left-hand-side encodes the desired matrix element for the nn ! pp

transition. After inserting complete sets of states and using Euclidean time evolution, Cnn!pp(t)
becomes
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where the summations over time have been performed as integrals (the analysis is not altered
significantly if the discrete summation is used). Here, |ni, |mi and |l0i are zero-momentum energy
eigenstates with the quantum numbers of the pp, nn and deuteron systems, respectively. With
the assumption of isospin symmetry and in the absence of electromagnetism, which is the case for
the calculations presented in this work, the nn and pp states are degenerate. Eq. (31) resembles a
second-order weak correlation function calculated in the kaon system in Ref. [22].

In order to make the matrix element between ground-state dinucleons explicit, the sums over

6 Isospin symmetry equates C(np(1S0))
�u;�d=0 (t) and C(np(1S0))

�u=0;�d
(t) in the case when �u = �d.
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function, i.e., C
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in which the residual contamination in the time-reversal (T) even combination of correlation func-
tions scales as O(1/N

4
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Explicitly, R
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(t), is used to assess the size of excited-state
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FIG. 4. The left panel shows the quantity R
+
3S1,1S0

(t) used to extract the pp ! d bare transition matrix

element from the constant fit to its late-time region [16]. The right panel is a plot of quantity R
+
3S1,1S0

(t) used
to estimate the magnitude of excited-state contamination to the extraction of pp ! d bare matrix element,
see Sec. III B 2. Blue circles and orange diamonds denote results determined using SP and SS correlation
functions, respectively. The horizontal bands show constant correlated SP-SS fits to the late-time behavior
of the quantities.

transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-
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FIG. 5. The (a) ratio Rnn!pp(t) and (b) subtracted ratio R(sub)
nn!pp(t) that are constructed from the SP and

SS correlation functions, as given in Eq. (31) and Eq. (33) respectively. Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The horizontal bands show
constant correlated SP-SS fits to the late-time behavior of the quantities.
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alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with external currents, can be systematically studied in the framework
of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧

+
�3), it is convenient to

construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,

CNN,NN ⌘
0

@

Cnn,nn Cnn,np(3S1) Cnn,pp

Cnp(3S1),nn Cnp(3S1),np(3S1) Cnp(3S1),pp

Cpp,nn Cpp,np(3S1) Cpp,pp

1

A

. (46)

The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†

, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as

Z ⌘
0

@

Zs 0 0
0 Zt 0
0 0 Zs

1

A

, (48)

where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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1

C
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(49)

to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1

2M
p
r1r3

l1,A and h̃2,S = 1
2Mr1

h2,S , and � denotes the

3S1
1S0
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withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.
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whilethethirddoesnotcontributethe�-decay.
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whilethethirddoesnotcontributethe�-decay.
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FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A

+
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withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
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FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A

+
µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective

two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A

+
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+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform
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FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A
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µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective

two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A
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+
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withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
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�ĩl1,ADsDt�Dt�ĩl1,ADsDt�
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FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A

+
µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective

two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A

+
µA

+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.
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ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform
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FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A

+
µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective

two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A

+
µA

+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.
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elementinducedbythebackgroundaxialfieldusedinthiswork(A+

3⇠⌧

+
�3),itisconvenientto

constructthecorrelationfunctionmatrixinthe{nn,np(3S1),pp}channelchannels.Explicitly,

CNN,NN⌘
0

@

Cnn,nnCnn,np(3S1)Cnn,pp

Cnp(3S1),nnCnp(3S1),np(3S1)Cnp(3S1),pp

Cpp,nnCpp,np(3S1)Cpp,pp

1

A

.(46)

ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform
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13⇥3�I(E)·D(E)
·Z†

,(47)

whereEdenotesthetotalenergyofthetwo-nucleonstate,andthetotalmomentumisprojected
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧

+
�3), it is convenient to

construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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1

A

. (46)

The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†

, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as

Z ⌘
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0 0 Zs
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A

, (48)

where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A+

µ , described by Eq. (44), with coe�cients g

A and l

1,A respectively, and the e↵ective
two-body operator corresponding to two insertions of the axial current (right), A+

µ
A+

⌫ , described by Eq. (45),
with coe�cient h

2,S . The first two interactions gives rise to an e↵ectively quenched value of g

A in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A

+
3 ⇠ ⌧+�

3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) ·
1

13⇥3 � I(E) · D(E) · Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A

+
µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective

two-body operator corresponding to two insertions of the axial current (right), A

+
µ A

+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧

+
�3), it is convenient to

construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†

, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1
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A short-range contribution not 
accounted for before

Give partly the dominant long-range contribution

EFT VERTICES AND CORRELATION FUNCTIONS USING DIBARYONS



AXIAL POLARIZABILITY COULD BE IMPORTANT. CANNOT 
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The nuclear matrix element determining the pp ! de+⌫ fusion cross section and the Gamow-Teller
matrix element contributing to tritium �-decay are calculated with lattice Quantum Chromodynam-
ics (QCD) for the first time. Using a new implementation of the background field method, these
quantities are calculated at the SU(3)-flavor–symmetric value of the quark masses, corresponding
to a pion mass of m⇡ ⇠ 806 MeV. The Gamow-Teller matrix element in tritium is found to be
0.979(03)(10) at these quark masses, which is within 2� of the experimental value. Assuming that
the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange cur-
rents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the
calculated pp ! de+⌫ transition matrix element leads to a fusion cross section at the physical quark
masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial
counterterm of pionless e↵ective field theory is determined to be L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3

at a renormalization scale set by the physical pion mass, also in agreement with the accepted phe-
nomenological range. This work concretely demonstrates that weak transition amplitudes in few-
nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom
and opens the way for subsequent investigations of many important quantities in nuclear physics.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

Weak nuclear processes play a central role in many set-
tings, from the instability of the neutron to the dynam-
ics of core-collapse supernova. In this work, the results
of the first lattice Quantum Chromodynamics (LQCD)
calculations of two such processes are presented, namely
the pp ! de

+
⌫e fusion process and tritium �-decay. The

pp ! de

+
⌫ process is centrally important in astrophysics

as it is primarily responsible for initiating the proton-
proton fusion chain reaction that provides the dominant
energy production mechanism in stars like the Sun. Sig-
nificant theoretical e↵ort has been expended in refining
calculations of the pp ! de

+
⌫ cross section at the ener-

gies relevant to solar burning, and progress continues to
be made with a range of techniques [1–10], as summarized
in Ref. [11]. This process is related to the ⌫d ! nne

+

neutrino breakup reaction [12–14], relevant to the mea-
surement of neutrino oscillations at the Sudbury Neu-
trino Observatory (SNO) [15, 16], and to the muon cap-
ture reaction, µ�

d ! nn⌫µ, which is the focus of cur-
rent investigation in the MuSun experiment [17]. The

second process studied in this work, tritium �-decay, is
a powerful tool for investigating the weak interactions
of the Standard model and plays an important role in
the search for new physics. The super-allowed process
3H ! 3He e

�
⌫̄ is theoretically clean and is the simplest

semileptonic weak decay of a nuclear system. In con-
trast to pp fusion, this decay has been very precisely
studied in the laboratory (see Ref. [18] for a review)
and provides important constraints on the antineutrino
mass [19]. Tritium �-decay is also potentially sensitive to
sterile neutrinos [20, 21] and to interactions not present
in the Standard Model [21–24]. Although the dominant
contributions to the decay rate are under theoretical con-
trol as this is a super-allowed process, the Gamow-Teller
(GT) contribution (axial current) is somewhat more chal-
lenging to address than the Fermi (F) contribution (vec-
tor current). Improved constraints on multi-body con-
tributions to the GT matrix element will translate into
reduced uncertainties in predictions for decay rates of
larger nuclei and are a first step towards understanding

n+ n ! p+ p+ e� + e� + ⌫e + ⌫e

n
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