

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Commissioning of and First Measurements with TRIUMF's ElectroMagnetic Mass Analyser (EMMA)

June 18th, 2018 Barry Davids TRIUMF & Simon Fraser University

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada iété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

EMMA in ISAC-II

PIRIUMF Nuclear Structure at the Extremes

- Single-particle structure at extreme N/Z values, particularly at \bigcirc and near closed shells (single-nucleon transfer)
- Pairing interactions in N ~ Z nuclei via (p,t), $(^3He,p)$, (d,α) , (t,p) \bigcirc
- Production and decay studies of highly neutron-rich nuclei via \bigcirc multi-neutron transfers, e.g. (18O,15O)
- High-spin physics in neutron-deficient nuclei via fusion- \bigcirc evaporation reactions (including isomers)

Nuclear Astrophysics

 Direct Studies: Radiative capture reactions $\Theta(\alpha, n)$ and (α, p) reactions \odot Time-reversed (α, p) reactions • Indirect Studies: • Spectroscopy of unbound states Particle-decay branching ratios

Defining the Problem I

- In transfer and fusion-evaporation reactions, spectroscopic information obtained from detecting light ejectiles and gamma rays
- Interpretation of spectra complicated or rendered impossible by background from other channels
- For transfers with light ejectile detection, kinematic lines obscured by diffuse background
- For fusion-evaporation, gamma spectra contaminated by lines from other nuclei, frequently produced much more copiously than the nucleus of interest
- Direct identification of residual nuclei required

Defining the Problem II

- Use of particle detectors to directly detect recoils complicated by 2 problems:
	- In both fusion-evaporation and transfer reactions in inverse \bigcirc kinematics, heavy recoils emerge from target within the cone of elastically scattered beam particles; for sufficiently intense beams, these detectors cannot count fast enough
	- For heavy recoils $(m > 100 u)$, energy resolution of these \odot detectors is insufficient to permit unique identification
- Recoil separator needed to separate recoils from beam, identify according to A and Z, and localize them for subsequent decay studies

- Must be capable of 0° operation with good beam rejection
- Short flight time will allow study of short half-life radioactivities
- Good energy resolution is not helpful
	- Energy and angular resolution of detected heavy recoils \bigcirc insufficient to resolve states for $A > 30$ beams
	- Energy-focussing operation desirable \bigcirc
- Large angular, mass/charge, and energy acceptances required for high collection efficiency
	- Angular acceptance should be symmetric \bigcirc
	- At least 2 charge states for sufficiently massive recoils \bigcirc

RETRIUMF Acceptance and Resolution

- Angular and energy spreads largest for fusion-evaporation reactions ($\Omega \sim 10{\text -}30$ msr, $\Delta E/E \sim \pm 20\%$)
- Angle and energy spread not independent
- To take advantage of large angular acceptance, need large energy acceptance
- Large energy acceptance requires minimal chromatic aberrations to maintain resolving power
- Mass resolution requirement set by single-nucleon transfer reactions in inverse kinematics: must have first order resolving power $M/\Delta M \geq 400$

TRIUMF **How About a Magnetic Spectrometer?**

9 $d(^{132}Sn, p)^{133}Sn$ at 6 A MeV with 100 μ g cm⁻² (CD₂)_n target; smallest achievable beam energy spread; protons from 90-170 deg in lab

RETRIUMF EMMA: The ISAC-II Recoil Spectrometer

- EMMA: recoil mass spectrometer spatially separates heavy products of nuclear reactions from beam & disperses according to mass/charge ratios
- 4 magnetic quadrupole lenses, 1 dipole magnet, 2 electrostatic deflectors, 3 slit systems, target chamber with integral Faraday cup, and modular focal plane detection system w/ PGAC, ionization chamber, and Si detectors
- Magnets and deflectors from contractor, other components TRIUMF-built

Elementary Ion Optics I

- Reference particle with mass m_0 , charge q_0 , and momentum p_0 or kinetic energy T_0
- Ion optical coordinates: *x*, *y*

$$
a = \frac{p_x}{p_0} \approx \theta, b = \frac{p_y}{p_0} \approx \phi
$$

$$
\delta_m = \frac{\frac{m}{q} - \frac{m_0}{q_0}}{\frac{m_0}{q_0}}, \text{and } \delta_T = \frac{\frac{T}{q} - \frac{T_0}{q_0}}{\frac{T_0}{q_0}}.
$$

$$
x_f = x_f(x_i, y_i, a_i, b_i, \delta_m, \delta_T).
$$

PETRIUMF Elementary Ion Optics II

• Notation:

$$
(x \mid x) \equiv \frac{\partial x_f}{\partial x_i}, (x \mid xy) \equiv \partial_{x_i} \partial_{y_i} x_f, \text{ etc.}
$$

$$
x = \sum_{j=1}^{6} r_j \left(x \mid r_j \right) + \frac{1}{2} \sum_{i=1}^{6} \sum_{j=1}^{6} r_i r_j \left(x \mid r_i r_j \right) + \frac{1}{6} \sum_{i=1}^{6} \sum_{j=1}^{6} \sum_{k=1}^{6} r_i r_j r_k \left(x \mid r_i r_j r_k \right) + \dots
$$

First Order Optics

• Mid-plane symmetry in non-dispersive direction implies terms linear in y and b vanish, so to 1st order

$$
x_f = (x \mid x)x_i + (x \mid a)a_i + (x \mid \delta_m)\delta_m + (x \mid \delta_T)\delta_T.
$$

• Spectrometers use quadrupoles and magnet edge angles to arrange a point-to-point angular focus:

$$
(x|a) = 0, \text{ so}
$$

$$
x_f = (x \, | \, x)x_i + (x \, | \, \delta_m)\delta_m + (x \, | \, \delta_T)\delta_T
$$

RETRIUMF Electromagnetic Spectrometers

- Energy focussing: $(x | \delta_T) = 0$
- Hence first order equations describing recoil mass spectrometers and magnetic spectrometers have identical form:

$$
x_f = (x \mid x)x_i + (x \mid \delta_m)\delta_m
$$

$$
x_f = (x \mid x)x_i + (x \mid \delta_p)\delta_p
$$

Resolving Power

• Resolving power, first order expression:

$$
R_m = \frac{m/q}{\Delta(m/q)} = \frac{(x|\delta_m)}{2(x|x)x_i} \text{ and } R_p = \frac{p/q}{\Delta(p/q)} = \frac{(x|\delta_p)}{2(x|x)x_i}
$$

- Limited by higher-order aberrations; some corrections possible
- Typical values:

TRIUMF

$$
R_p = 1000 - 20000
$$
 and $R_m = 100 - 600$

RETRIUMF EMMA Ion Optics: Spatial Focus

16 9 Adjacent Masses Emitted from Target with Vertical Angles of $0, \pm 2^{\circ}$

RETRIUMF EMMA Ion Optics: Energy Focus

17 Single Mass, Vertical Angles of 0, ±2°, Energies Deviating from Central Value by $0, \pm 7.5\%$ and $\pm 15\%$

TRIUMF Quadrupole Tests at Manufacturer

- Various properties of 4 quadrupole magnets measured by manufacturer:
- Field Gradient
- Effective Length
- **Effective Field** Boundary Locations
- **Higher Harmonic Content**
- Deviation of Mechanical and Magnetic Axes

RETRIUMF Quadrupole Tests at TRIUMF

- Field gradients of all 4 quadrupoles measured as a function of current using Hall effect magnetometer, which was calibrated using an NMR system and the uniform field of our dipole magnet
- Field is measured at all times using a reference probe, which was calibrated simultaneously

EMMA Quadrupole Lenses

Dipole Tests at Manufacturer

- 40 degree dipole magnet's field mapped at manufacturer
- Removable pole shims had to be machined three times before acceptance

RIUMF

Dipole Field Map Analysis

- Homogeneity and field boundary shape at 4 different currents analyzed at TRIUMF; magnet remapped at TRIUMF
- Maximum deviation from required effective length found at bending radius of 800 mm to be just under 0.3%; on average better than 0.1%

TRIUMF-Built HV Supplies

- Built 3 positive and 3 negative • All have been tested to $|V| \geq 325$ kV • Housed in re-entrant ceramic vessels
- Pressurized with 3 bar SF₆

Electric Dipole, Mark I

Electrostatics

- High voltage testing at Bruker's Karlsruhe factory ended badly in 2012
- Caused by design and manufacturing flaws
- Bruker lacked appropriate HV testing space, so agreed to ship upon successful factory inspection in exchange for price reduction
- Inspection of reworked parts at Karlsruhe factory took place in Jan 2013

Inspection Failures

1. The new corona ring assemblies were not properly aligned.

2. There were scratches on both anodes.

- 3. Four rectangular electrode covers had scratches, pits, or protrusions.
- 4. The field clamp on the exit port of ED2 had scratches.

5. The interiors of 6 HVPS ceramic feedthroughs had gouges in their surfaces.

Electrostatics Shipment

PETRIUMF

Electrode Supports

RETRIUMF Broken Ceramic Insulators

- 6 insulating supports arrived broken
- 4 were cracked but still intact
- 6/16 insulators had incomplete braze joints and 5 more had irregular appearances

RETRIUMF Replacement Insulating Supports

30 Redesigned insulating supports arrived from Bruker in March 2015, passed load tests with no appreciable deflection

@TRIUMF Re-polished Support Plate

Electrode Measurements

Anode Shape Problem

Aligning centres for 125 mm gap implies 124 mm gap for one pair, 123.6 mm gap for other

RETRIUMF Finite Element Simulation

Effective field length is 0.25% larger due to anode radius

Complete ED2 Electrode

I

EMMA Dipoles

HV Conditioning

- Both anodes and cathodes conditioned alone to potential difference of 250 kV with respect to ground
- ED2 conditioned to $\Delta V = 430$ kV, ED1 has only stably reached $\Delta V = 340 \text{ kV}$ so far; after cleaning, noticed that electrostatic shield had rotated, exposing sharp bolts

Vacuum Systems

RIUMF

- Typical pressures in 3/4 vacuum sections in nTorr range; 1000 l/s turbos and 1500 l/s cryos
- Focal plane box has a single 1000 l/s turbo; pressure in 10-7 Torr range

Target Chamber I

- Designed to accommodate 12/16 TIGRESS HPGe gamma-ray detectors
- Pumped by beam line 500 l/s turbo; pressure in low 10-7 Torr range

Target Chamber II

• Integral Faraday cup with 1 mm entrance aperture coincides spatially with target position

RETRIUMF

- Target fan with 3 positions
- Mounts for 2 Si surface barrier detectors downstream
- Upstream and downstream mounts for annular DSSDs of the S2 variety

Slit Systems

- Plate slit systems upstream and downstream of dipole magnet
- More complex focal plane slit system has 2 plates and 2 rotatable fingers, allowing for 3 openings of variable width and position

Focal Plane Detectors

- PGAC measures position (m/q), energy loss
- Ionisation chamber measures energy losses
- Si detector measures residual energy

TRIUMF

December 2016 Test: Ar

- There was no time to commission with an alpha source prior to December 16th beam time
- Bombarded thick Au foil with 80 MeV 36Ar beam
- Tuned for multiply scattered beam with very large angular spread

TRIUMF

December 2016 Test: Ar

- Si-detector measured residual energy spread of 40% FWHM
- Consistent with $\frac{2}{5}$ filling nominal energy acceptance of $+25\%$, -17%

Residual Energy (arbitrary units)

TRIUMF December 2016 Test: Ar

Measured Focal Plane Position Spectrum of Scattered 36Ar

EMMA's First M/Q Spectrum

Measured mass/charge dispersion consistent with ion optical calculations

TRIUMF

December 2016 Test: Au

- Si-detector measured residual energy spread of 111% FWHM
- **Consistent with** filling energy acceptance + energy loss straggling in PGAC windows

Residual Energy (arbitrary units)

TRIUMF December 2016 Test: Au

Measured Focal Plane Position Spectrum of Scattered 197Au

Set for ¹⁹⁷Au⁹⁺, observed single mass peak, little background in hour-long run with 109 ions/s on target

@TRIUMF Transmission Studies with Slits

ED1 Voltage Variation

RIUMF Acceptance Measurements

- Trajectories within spectrometer depend only upon angle and deviations of mass/charge and kinetic energy/charge with respect to central value
- Can mistune spectrometer in mass/charge to study mass/charge acceptance
- Mistune spectrometer in kinetic energy/charge to infer energy/charge acceptance
- Central value is irrelevant, so can use alpha source or elastic scattering to characterize

TRIUMF September 2017 Test Run

- Bombarded 50 μ g/cm² Au target with 120 MeV 40Ar beam
- Set spectrometer for elastically backscattered 66 MeV ¹⁹⁷Au recoils in various charge states
- Excellent beam suppression
- Measured charge state distribution
- Used angular apertures in target chamber to define entrance angles, map out mass/charge and energy/ charge acceptances
- Incident flux measured with SSBs in target chamber

PETRIUMF Au Charge State Distribution

Gaussian fit integrates to 96(3)% of incident beam current

197Au M/Q Spectrum

 M/Q dispersion = 10 mm/%

 $Q = 25$ peak has FWHM of 2.9 mm, implying resolving power of 340

M/Q Acceptance

Fractional Mass/Charge Deviation $\delta m = (m/q - m_0/q_0) / (m_0/q_0)$

Full aperture: ±3[∘] by ±3[∘] Consistent with ±3.5% m/q acceptance

E/Q Acceptance

with various angular apertures; here ±1.2° by ±1.2° 56 Measurements with 148Gd source at target position

TRIUMF

Left Aperture

Fractional Energy Deviation $\delta E = (E/q - E_0/q_0) / (E_0/q_0)$

Left Aperture: -3° to -0.6° by ±1.2°

Right Aperture

Fractional Energy Deviation $\delta E = (E/q - E_0/q_0) / (E_0/q_0)$

Right Aperture: 0.6[∘] to 3[∘] by ±1.2[∘]

2D Transmission Matrix

RETRIUMF Fusion Evaporation with RIB

- Bombarded 890 μ g/cm² Cu target with ²⁴Na beam at 87 MeV
- Set spectrometer for fusion products with 17 MeV, $A = 82$, $q = 11$ ^{60</sub>}

Fusion M/Q Spectrum

Approved Experiments

pulsion of the nuclei. In many cases, this combination makes direct observation of the reactions

- Four approved experiments, three of which require TIGRESS to be installed around EMMA target position α array consists of (from the left) upstream consistence α , target holder operator operat
- **•** Transfer experiments: ⁶Li(¹⁷O,d)²¹Ne to infer ¹⁷O(α , γ)²¹Ne reaction cross section for the *s* process; requires SHARC; ²¹Na, Ne (d,p) and (d,n) for isospin symmetry tests
- Radiative capture experiment: direct measurement of $p(^{83}Rb, \gamma)^{84}Sr$ reaction cross section at p process energies $\frac{1}{\sqrt{1}}$
- $p(^{21}Na,\alpha)^{18}Ne$ to infer $^{18}Ne(\alpha,p)^{21}Na$ reaction cross section for Type I X-ray bursts $\text{nor } \text{type } I \text{ } \mathbf{A}$ -ray bursis. To address such questions, a variety of \mathbf{A}
- Approved Letters of Intent: direct measurement of $p(^{79}Br, \gamma)^{80}Kr$ reaction cross section and $^{34m}Cl(d,p)$ transfer for $p(^{34}mCl,\gamma)$ in novae ^{ou}nt reaction cross see

Future Plans

- $^{20}Ne(p,y)^{21}Na$ test June 25th
- Complete HV conditioning
- TIGRESS move to EMMA target position
- (d,p) test in September
- First experiments in fall 2018 with TIGRESS

Core Personnel

- •**Martin Alcorta, ISAC Target & Detector Physicist**
- •**Franco Cifarelli, Mechanical Designer**
- •**Nicholas Esker, Postdoctoral Researcher**
- •**Kevan Hudson, MSc Student**
- •**Naimat Khan, Project Engineer**
- •**Peter Machule, Expert Technician**
- •**Matt Williams, PhD Student**