Bubble Chambers for WIMP and CEvNS detection

Eric Dahl Northwestern University

INT-18-2a Workshop, 2018

Roadmap

- Motivation
 - WIMP hunting with elements besides xenon
- Bubble Chamber Basics
 - Background discrimination in superheated fluids
- PICO Progress
 - Backgrounds discovered, backgrounds eliminated
- New Developments in Bubble Chambers
 - Future PICO detectors
 - Liquid-noble bubble chambers

State-of-the-art WIMP Hunting

- Signal: WIMP-nucleus elastic scattering
- Irreducible Background: v-nucleus elastic scattering, a.k.a. "neutrino floor"

State-of-the-art WIMP Hunting

- Signal: WIMP-nucleus elastic scattering
- Irreducible Background: v-nucleus elastic scattering, a.k.a. "neutrino floor"

Where LXe TPC's can't go... Spin-Independent: $\sigma \propto A^2$ Spin-Dependent: $\sigma \propto \langle S angle^2$ 10⁻³⁴ 10⁻³⁸ arXiv:1707.0459 10⁻³⁶∟ Dark Matter-nucleon cross section [cm²] Dark Matter-nucleon cross section [cm²] 10⁻⁴⁰ 10⁻³⁸ NH (0 10⁻⁴² 10⁻⁴⁰ et al. 10⁻⁴⁴ Battaglieri, 10-42 10⁻⁴⁶ 10-44 10⁻⁴⁸ H₂ p: ~10⁻⁵ 10⁻⁵⁰ 10⁻⁴⁶ 10⁻⁵ 5 10 50 500 1000 0.001 0.100 1000 100 10 Dark Matter Mass [GeV/c²] Dark Matter Mass [GeV/c²] INT-18-2a Workshop 5 Dahl, 6/27/2018

What LXe TPC's can't tell you...

- Even in xenon (A=128– 136) detection may come via SD channel
- Xenon is sensitive to both SI and SD couplings...
- But other target nuclei needed to determine which coupling matters

Differente Elements! t tell you...

A. Liam Fitzpatrick, INT-14-57w Workshop

Even in xenon (A=128– 136) detection may come via SD channel Xenon is sensitive to *both* SI and SD couplings...

But other target nuclei needed to determine which coupling matters

INT-18-2a Workshop Dahl, 6/27/2018

XENON10 (2008)

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

INT-18-2a Workshop Dahl, 6/27/2018

Bubble Chambers

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

- Superheated Target

 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

- Superheated Target

 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

• What is a metastable state?

• What does it take to nucleate a bubble?

What does it take to nucleate a bubble?

• What does it take to nucleate a bubble?

$$E_{T} = 4\pi r_{c}^{2} \left(\sigma - T \left(\frac{\partial \sigma}{\partial T} \right)_{\mu} \right)$$
 1.53 keV

$$+ \frac{4\pi}{3} r_{c}^{3} \rho_{b} (h_{b} - h_{l})$$
 1.81 keV

$$- \frac{4\pi}{3} r_{c}^{3} (P_{b} - P_{l})$$
 -0.15 keV

$$= 3.19 \text{ keV "Thermodynamic Threshold"}$$
 r_{c}^{2} 23.7nm $C_{3}F_{8}$ "Critical Radius" 12

Electron Recoil Discrimination

- Extreme discrimination against β, γ backgrounds
- β, γ sensitivity
 sets threshold
 for WIMP
 searches

13

Electron Recoil Discrimination

- Extreme discrimination against β, γ backgrounds
- β, γ sensitivity
 sets threshold
 for WIMP
 searches

INT-18-2a Workshop

Dahl, 6/27/2018

Nuclear Recoil Response

Multiple neutron sources used to constrain recoil detection efficiency

Dahl, 6/27/2018

Alpha-Decay Discrimination

- All bubbles look the same!
 - 1-mm diameter bubble has drawn
 10 PeV from superheated fluid
 - Nuclear recoil visually indistinguishable from alpha-decay

10 keV

VS

Alpha-Decay Discrimination

- 1-mm diameter bubble has drawn
 10 PeV from superheated fluid
- Nuclear recoil visually indistinguishable from alpha-decay

~1-MeV energy resolution in acoustic channel

6 MeV

VS

INT-18-2a Workshop Dahl, 6/27/2018

10 keV

PICO-60, CF_3I

- SNOLAB Run 1 completed (June 2013 May 2014)
- 35-kg CF₃I, upgradable to 80-kg
- >80% livetime (>90% by end of run)
- 3,415 kg-days exposure at 7—20 keV thresholds
- One multi-bubble event (consistent with expected neutron rate)

PICO-60, CF_3I

- SNOLAB Run 1 completed (June 2013 May 2014)
- 35-kg CF₃I, upgradable to 80-kg
- >80% livetime (>90% by end of run)
- 3,415 kg-days exposure

2,111 WIMP-like events

PICO-60, CF_3I

- SNOLAB Run 1 completed (June 2013 May 2014)
- 35-kg CF_3I , upgradable to 80-kg
- >80% livetime (>90% by end of run)
- 3,415 kg-days exposure

2,111 WIMP-like events NOT WIMPS

PICO-60 Anomalous Background

- Mostly at top, edges of detector
- Higher AP than nuclear recoils
- Not uniform in time

The Culprit: Particulate

Z (mm)

PICO-60 C₃F₈ (2017)

- Goal: Eliminate particulate backgrounds in 40-liters C₃F₈
 - Cleaning/assaying to MIL STD1246C Level 50
 - Softer metal-quartz seal design
 - In-situ buffer filtration

PICO-60 C₃F₈ (2017)

- 1167 kg-day exposure
- 3.3 keV threshold
- 106 bulk single bubbles
 (3 multi-bubble events)
- "Deaf" Analysis (acoustics blinded)

0 – 3 neutron single-bubble events expected, based on multi-bubble event rate (2017)

251301

118,

PRL

C. Amole *et al.*,

PICO-60 C₃F₈ (2017)

- 1167 kg-day exposure
- 3.3 keV threshold
- 106 bulk single bubbles
 (3 multi-bubble events)
- NO WIMP CANDIDATES to 20

PICO-60, Coming Results

- Since first result was already nearly neutronlimited, PICO-60 shifted to low-threshold (low-WIMPmass) search
- Analysis of low-threshold calibrations ongoing
- PICO-60 decommissioned in 2017

The Future of PICO

- We've shown we can mitigate our background and set new limits...
- But this is not *yet* a discovery machine
- We must either discriminate against this background, or prove that we have eliminated it entirely. (Or both...)

How to get Bubbles from Particulate

 Alpha decays from particulate, failed acoustics

• Merging buffer fluid droplets, cavitation

How to get Bubbles from Particulate

The no-buffer-fluid solution: PICO-40L

PICO-40L Mission:

- Demonstrate right-side-up geometry at large scale
- Address PICO-60 neutron background
 - 1-year physics exposure planned, beginning Fall 2018
- Dry-run for PICO-500*
 - *now funded by Canadian
 Foundation for Innovation

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses
 after each event

INT-18-2a Workshop Dahl, 6/27/2018

Bubble Chambers

Superheated Scintillator

- Xe, Ar, C₆F₆, ...
- Particle interactions nucleate bubbles and produce scintillation
- Cameras and acoustic sensors capture bubbles and photo-detectors collect scintillation light
- Chamber recompresses
 after each event

Superheated Scintillator

- Xe, Ar, C₆F₆, ...
- Particle interactions nucleate bubbles and produce scintillation
- Cameras and acoustic sensors capture bubbles and photo-detectors collect scintillation light
- Chamber recompresses
 after each event

Superheated Scintillator

- Xe, Ar, C₆F₆, ...
- Particle interactions nucleate bubbles and produce scintillation
- Cameras and acoustic sensors capture bubbles and photo-detectors collect scintillation light
- Chamber recompresses
 after each event

Superheated Scintillator

- Xe, Ar, C₆F₆, ...
- Particle interactions nucleate bubbles and produce scintillation
- Cameras and acoustic sensors capture bubbles and photo-detectors collect scintillation light
- Chamber recompresses
 after each event

Superheated Scintillator

- Xe, Ar, C₆F₆, ...
- Particle interactions nucleate bubbles and produce scintillation
- Cameras and acoustic sensors capture bubbles and photo-detectors collect scintillation light
- Chamber recompresses
 after each event

- ALL of these are trivially identified with scintillation signal
- More information *always* key to background discrimination

Why Ligid-noble Bubble Chambers

Scintillating Bubble Chamber History (Why they might not work...)

- Glaser built a xenon bubble chamber in 1956 and found:
 - No bubbles in pure xenon even at ~1 keV threshold (with gamma source)
 - Normal bubble nucleation in 98% xenon + 2% ethylene (scintillation completely quenched)

Phys.Rev. 102, 586 (1956)

Scintillating Bubble Chamber History (...or why they might work *really* well)

- Scintillation suppresses bubble nucleation?
 - Electrons should be even less likely to make bubbles than in freon chambers
 - Greater superheat (lower thresholds) possible
 - Nuclear Recoils should be largely unaffected, thanks to Lindhard Effect

Phys.Rev. 102, 586 (1956)

NU Xenon Bubble Chamber

- 30-gram xenon target
- 25-psia, -38°C E_{τ} = 0.5 keV
- Single fluid (no buffer)
- IR illumination for cameras
- IR-blind PMT (R6834) for 175nm scintillation

Nuclear Recoil Event

Acoustic – Scintillation Coincidence

 < 1% accidental coincidence rate in calibration data

 Slope = speed of sound in xenon (to 20%)

Scintillation Spectra

• Scintillation unaffected by superheated state

Electron Recoil Discrimination

- No observation of bubbles nucleated by gamma-rays at any threshold!
- Rebuilding chamber to explore lower thresholds

13

Electron Recoil Discrimination

- No observation of bubbles nucleated by gamma-rays at thresholds down to 900 eV!
- Rebuilding chamber to explore lower thresholds (higher superheat)

13

(Dan Baxter, Conference on Science at SURF, May 14, 2017)

Be(γ,n) Calibrations (ongoing)

- ⁸⁸Y-Be(γ,n): 152 keV neutrons
 - Max 4.7 keV xenon recoil
 - Bubble nucleation by $E_T = 2 \text{ keV}$
- ²⁰⁷Bi-Be(γ,n): 94 keV neutrons
 - Max 2.9 keV xenon recoil
 - Bubble nucleation by $E_T = 1 \text{ keV}$

INT-18-2a Workshop Dahl, 6/27/2018

How low can we go?

- Why aren't ER's making bubbles?
 - Local heat in a mono-atomic liquid means center-of-mass motion of atoms – No molecular bonds!
 - Very hard for electrons to shove atoms around
- If ER's don't make bubbles at all, what sets ultimate threshold?
 - Thermal fluctuations: 1 bubble / ton-year at $E_T = 75 \text{ eV} (\text{xenon})$ $E_T = 40 \text{ eV} (\text{argon})$
 - Nuclear recoil threshold is still $2x-3x E_{T}$
- Precision calibrations and higher superheat on the way...

Physics with an Argon Bubble Chamber

Neutrino floor (1 – 7 GeV)

- O(10⁶) CEvNS events / ton-year @ reactor

Scintillating Bubble Chamber (Fermilab LDRD Project) 10-kg Argon bubble chamber - Technical design underway

- Commissioning at Fermilab in FY19, FY20
- Exploring potential physics sites at SNOLAB and ORNL (SNS, HFIR)

Université m de Montréal

S. Chen. M. Laurin. J.-P. Martin, A. Plante, A.E. Robinson, N. Starinski, F. Tardif, D. Tiwari, V. Zacek, C. Wen Chao.

INDIANA UNIVERSITY SOUTH BEND E. Behnke, I. Levine, T. Nania

Kavli Institute for Cosmological Physics at The University of Chicago

J.I. Collar

M. Das, S. Dutta, S. Sahoo, S. Seth

E. Vázquez-Jáuregui

M. Ardid, M. Bou-Cabo, I. Felis

R. Neilson

‡ Fermilab

P.S. Cooper, M. Crisler, W.H. Lippincott, A. Sonnenschein

K. Clark, G. Giroux. A. Noble

IVERSITY OF BERTA

C. Coutu, S. Fallows, C. Krauss, C. Ng, M.-C. Piro

> Pacific Northwest NATIONAL LABORATORY

C. Cowles, C.M. Jackson, B. Loer, K. Wierman

J. Farine, A. Le Blanc, C. Licciardi, O. Scallon, U. Wichoski

NORTHWESTERN

UNIVERSITY

D. Baxter, C.E. Dahl, M. Jin,

J. Zhang

Northeastern O. Harris

ČESKÉ

UČENÍ TECHNICKÉ

VYSOKĖ

V PRAZE

Filgas, I. Stekl

Virginia

D. Maurya, S. Priya

Tech

PICO: Dan Baxter (GS), Miaotianzi Jin (GS)

LZ: Dylan Temples (GS)

Scintillating Bubble Chamber: Jianjie Zhang (PD), Jon Chen (UG), Trent Cwiok (UG), Jared Gupta (UG), Ricky Puig (UG), Allison Grimsted (HS), John Gresl (MS), Theo Baker (UG), Jason Phelan (UG)

Funding:

Department of Energy Award DE-SC0012161

Key Pubs:

- PRL 118, 251301 (2017), arXiv:1702.07666 (PICO-60)
- PRL 118, 231301 (2017), arXiv:1702.08861 (XeBC)

Summary

- Bubble chamber capability still growing!
 - Anomalous background mitigated in PICO-60, annihilated in future chambers
 - New PICO-40L, PICO-500 detectors extend WIMP-SD sensitivity
 - Scintillating bubble chambers demonstrated
 - New opportunities at low-threshold with liquid-noble bubble chambers

