

Elementary target experiments and DUNE

Alan Bross

INT Workshop INT-18-2a, From nucleons to nuclei: enabling discovery for neutrinos, dark matter

28 June, 2018

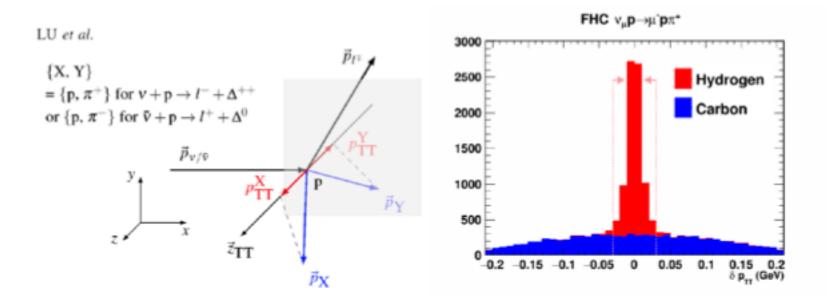
Introduction

- The theoretical challenges to understanding v nucleus interactions are daunting (as you have been discussing).
 - Limited progress has been made over the last decade (v)
 - Although Nuclear Physics has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of light nuclei and their interactions with electroweak probes (e γ)
- The DUNE science program will likely have to address this issue at some point, if not initially

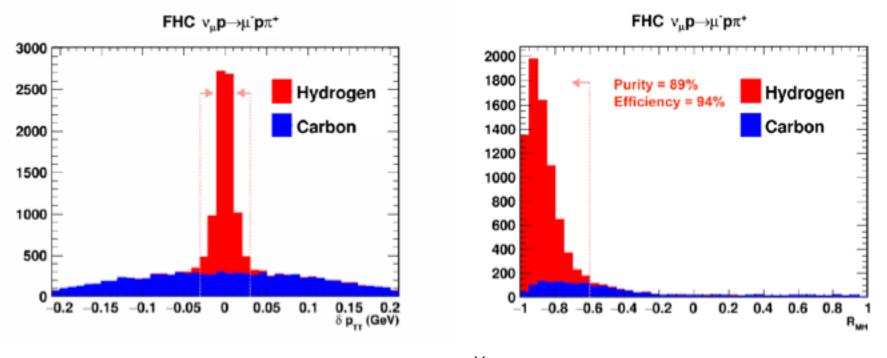
Introduction II

- However, currently there is not a consensus within the DUNE collaboration as to the usefulness of taking data on targets other than Ar for the core DUNE oscillation physics program
- On one side:
 - Powerful Ar near detector: Pixelated LAr + HP gas Ar TPCs (Integrated Ar detector)
 - >50M $\nu_{\mu}\text{CC}$ evts/yr. in the liquid
 - Flux normalization from v + electron elastic scattering in the liquid
 - Very-high resolution sample (1.6M ν_μCC evts/yr.) in HPgTPC
 Utilizing the TPC + powerful ECAL (electromagnetic + neutrons)
 - Extrapolations from v+p to Ar problematic at best
 - Currently. The subject of this meeting
- On the other side:
 - Data on Ar alone not sufficient
 multiple targets needed
 - Data on protons (composite of H & C) essential

Assuming data on Ar alone is not sufficient

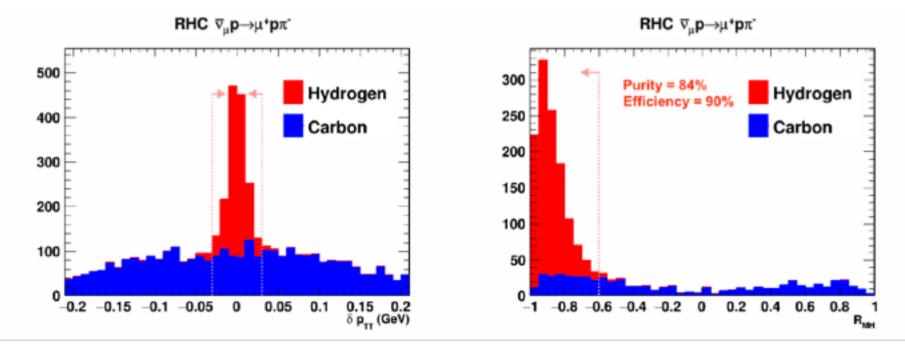

- Can the necessary high-quality data come from v interactions on composites?
 - СзН6
 - CH
 - CH4 & CD4
- If Yes, then that is certainly the way to go. This has been discussed in detail within the DUNE near detector WG.
 - STT (~ 1t H)
 - 3DST (≥ 1t H)
 - CH4 and CD4 in Ar (HPgTPC) (.2t with almost 100 % CH4)

Note: ~ 1.5M ν_{μ} CC evts/t-yr. on H


How does one go from data on composites to data on protons? Double transverse variable (δp_{TT}) analysis

• $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ analysis in straw-tube tracker (STT) (from University of South Carolina group)

Event selection - $\nu_{\mu}p \longrightarrow \mu^{-}p\pi^{+}$


Where:
$$R_{MH} = \frac{p_T^{M} - p_T^{H}}{p_T^{M} + p_T^{H}}$$

 $p_{T^{M}}$ is the total missing p_{T} and $p_{T^{H}}$ is the hadron p_{T}

🛟 Fermilab

And for anti-neutrinos

 $\overline{V}_{\mu}p \rightarrow \mu^{+}p\pi^{-}$

Detailed analyses with all detector effects still need to be done. And obtaining information beyond the total rate seems difficult.

Nucleonic targets: H and D

- If there is strong motivation to obtain data on H and D
 - -Life gets harder
- Let's assume that obtaining data on H/D is crucial

What's the problem? Not to worry?

No, worry - It's the beam stupid

- It is underground
- That means (in the US) we have to abide by the NFPA 520 Standard on Subterranean Spaces
 - Similar restrictions exist in Europe and Japan
- And here is the problem:

You can only have ~ 60L

Table 4.1.3.1(b)	Maximum Quantity of High-Hazard Material in Use ^a in Closed Systems	per
Control Area ^b		

	Class	Solid		Liquid		Gas	
Material		lb	kg	gal	L	ft ³	m ³
Combustible liquid ^{c,d}	II III-A III-B			120 330 13,200 ^f	454 1,249 49,963		
Combustible fiber Loose Baled Explosives Flammable solid Flammable gas Gaseous		100 ft ³ 1,000 ft ³ 0.25	$2.8 m^3$ $28 m^3$ 0.114	0.25 lb	0.114 kg	750 ^{d.e}	21.2
Liquefied Flammable liquid ^{c,d}	I-A I-B I-C			15 ^{d,e} 30 60 90	56.7 113.5 227 340.7	750	21.2
Combination I-A, I-B, I-C				120	454		

However, with sprinklers and fire wall get X4: 240L = 17kg (71g/L) With fiducial volume cuts -> <10kg of target mass? ~ 16k ν_μCC evts/yr.

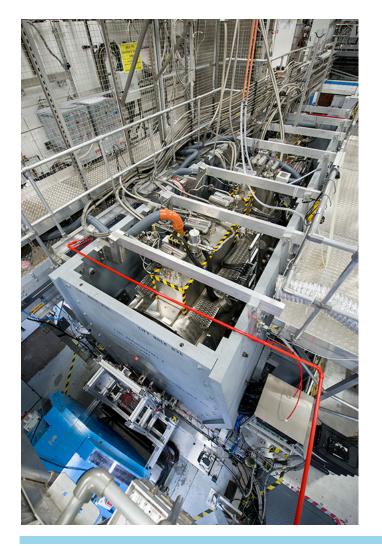
🔁 Fermilab

Options

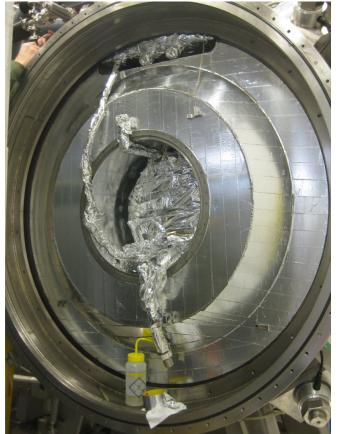
- I met with a Fermilab engineer recently to discuss possibilities
 - No difference w/r to operational restrictions gas vs. liquid
 - Not concerned with having electronics in hydrogen volume
 - Believes a valid technical case can be made that safe operation underground with quantities >> than the NFPA 520 limits is possible. Ask for exception
 - This was done for Minerva (2250L)
 - Not approved to move forward with external safety analysis
 - The difficulty will be getting the Fire safety professionals at the lab to consider exceptions to NFPA 520.
- Another subtlety:
 - Must assure that the "Hydrogen Area" is limited to just a region surrounding the detector!

Comments on "Hydrogen Area": My experience I

- LH2 absorber R&D for NF & MC within the MuCool program in the MTA (MuCool Test Area)
 - ~32L of LH₂ in AI body with thin AI windows
 - Dedicated cryostat



Entire MTA Was H₂ area > If absorber filled!!

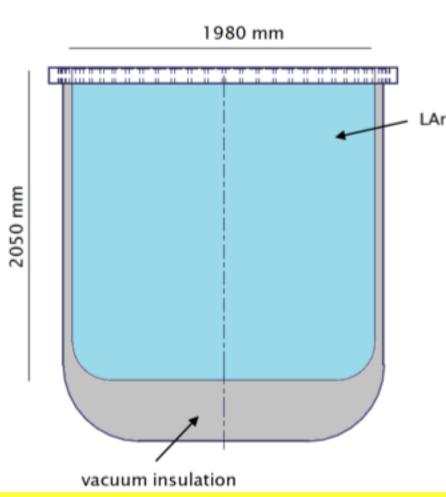


My experience II: MICE

MICE cooling channel

Same absorber in MICE magnet

The MICE Hall was not deemed a H₂ area when the absorber was full



So let's assume we can get past NFPA 520

- There is a rather large body of data on Hydrogen gas TPCs
 Numerous applications in nuclear physics
- Also, has been done at Fermilab:
- In the 1980's a 15 bar H₂ TPC was built for diffraction dissociation of photons on hydrogen, γp → Xp
 - Active target + tracking
 - 1.5kg of H2
 - Note: If we fill the HPgTPC with 10 bar of H2, we will have ~
 45kg fiducial target mass. 90kg total
 - ~68k ν_{μ} CC events/yr.
- So using the HPgTPC with H₂ fill is an option, but since the volume is so large, inerting or purging the volume would be complicated.
- A denser detector is an advantage in this regard.

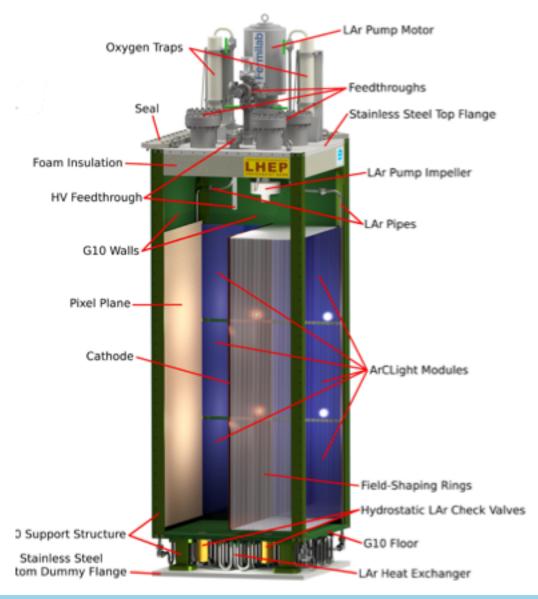
ArgonCube 2X2 demonstrator (Pixalated LAr)

- 4 modules
- Can reasonably achieve a fiducial target volume of ~ 1m³
 - 71kg (~107k ν_μCC events/yr.)
 - Potentially obtain somewhat larger fiducial target mass
 - Total volume ~ 6000L
- To my knowledge, this would be the first application of a liquid H2 TPC.
- Quite a few cryogenic issues to work out also
 - 20K operating temperature vs. 80K

Electronic Bubble Chamber

Note: Because of all the seals and the compression and expansion cycles – Making the case for a LH₂ BC in the DUNE ND Hall would be **Most challenging!**

LH₂ active target



Likely will need a dome over the top plate to facilitate inerting with N₂ and then provide proper (sealed) feedthroughs for all cable/hose penetrations.

- Then put the 2 X 2 in a 2hr firerated enclosure and again inert with N₂
 - It is an ODH area obviously
 - Can be thin in Xo : Drywall
- ArgonCube just downstream and acts as the catcher

ArgonCube LAr Module

LH₂ TPC

- To my knowledge, this has never been attempted
- Some data on electron transport in H₂ at 77K

ELECTRON TRANSPORT COEFFICIENTS IN HYDROGEN AND DEUTERIUM

By R. W. CROMPTON,* M. T. ELFORD,* and A. I. McIntosh*†

[Manuscript received August 31, 1967]

- I have not done an exhaustive search, but this is all that I found. These data indicate that the drift velocity and diffusion under these conditions are acceptable.
- R&D on electron transport in LH₂ would need to be done.

In Conclusion: In order to enable a vH/D experimental program in the DUNE near detector hall

- Need very strong statement from neutrino interaction community.
 - One from this WS?
- Discussions with LBNF need to start soon regarding special needs for ND hall
 - Dedicated vent lines to surface and supply lines to hall at the very least
- Engaging Fermilab fire safety personnel is also crucial.
- If it looks like the safety issues might be approachable, then R&D on electron transport in LH2 would need to begin, if that route is preferred.

