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What is ”stuff”?

The matter around us is described by non-perturbative
quantum chromodynamics. npQCD is hard.
Simplest QCD system to study: Protons

100 years of protons!
Proton is a composite system. It must have a size!

How big is it?
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Motivation: ”Normal” Hydrogen Spectroscopy
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Two transitions for two unknowns:

Rydberg constant R∞
1S Lamb shift =⇒ radius

Direct Lamb shift 2S → 2P
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”Normal” Hydrogen Spectroscopy Results
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Elastic lepton-proton scattering

Method of choice: Lepton-proton scattering
Point-like probe
No strong force
Lepton interaction ”straight-forward”

Measure cross sections and reconstruct form factors.
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Cross section for elastic scattering
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Q2

4m2
p
, ε =

(
1 + 2 (1 + τ) tan2 θe

2

)−1

Rosenbluth formula
Electric and magnetic form factor encode the shape
of the proton
Fourier transform (almost) gives the spatial distribution,
in the Breit frame
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How to measure the proton radius
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History of unpolarized electron-proton scattering
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High-precision p(e,e’)p measurement at MAMI

Mainz Microtron
cw electron beam
10 µA polarized,
100 µA unpolarized
MAMI A+B: 180-855 MeV
MAMI C: 1.6 GeV

A1 3-spectrometer facility
28 msr acceptance
angle resolution: 3 mrad
momentum res.: 10−4
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Measured settings
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Cross sections
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Muonic Hydrogen Spectroscopy

Replace electron with muon
200 times heavier =⇒ 200 times smaller orbit
Probability to be ”inside” 2003 higher!
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The proton radius puzzle

 [fm]
ch

Proton charge radius R
0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

H spectroscopy

scatt. Mainz

scatt. JLab

p 2010µ

p 2013µ electron avg.

σ7.9 

From the 2017 Review of Particle Physics

Until the difference between the e p and µp values is
understood, it does not make sense to average the values
together. For the present, we give both values. It is up to
the workers in this field to solve this puzzle.
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Solutions?

µp experiment wrong?

seems solid
ep experiments wrong?

both scattering and H-spectroscopy wrong?
Theory wrong?

checked thoroughly
...but maybe framework is wrong?

Everybody is right? New physics!
”Naive” dark matter models essentially excluded
But can play cancelation games
E.g.: Electrophobic force (Liu, Cloët, Miller
arXiv:1805.01028)

WE NEED MORE DATA
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Deuteron (arxiv:1607.03165)

In CODATA, rd is correlated strongly to rp because it
uses ”isotope shift” from 1s-2s in both systems.
But: Can built independent value from deuteron 1s-2s
and 2s-8s/8d/12d.
This gives a difference to muonic deuterium! →
another puzzle.
Rydberg from electric Hydrogen and Deuterium in
perfect agreement.
The muonic deuterium R∞ is in slight disagreement
with the muonic hydrogen R∞ (<3 sigma)
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New hydrogen results: MPQ (A. Beyer et al.,
Science 358, 79 (2017))
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New results: Paris (Fleurbaey et al., Phys. Rev. Lett.
120, 183001 (2018))
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Timeline of proton radius results
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Comments on some newer scattering results
2010: >0.870 Hill, Paz: old data, z expansion with disp. bounds

Bounds on infinite exp. → bounds for truncated exp.?
2012: 0.840(10) Lorenz, Hammer, Meissner: Disp. relation fit.

Same value but a lot more data. Probably model dominated.
2014: 0.84 Lorenz, Meissner: z expansion without bounds

Fit did not converge. In real minimum, large radius is found.
2014: 0.8989(1) Gracyk/Juszczak: Bayesian estimation

Interesting technique, unbelievable? small errors
2016: 0.84? Higinbotham: F-Test to select max. order

Misunderstood F-test. Absence of proof 6= proof of absence.
2016: 0.84? Horbatsch/Hessels/Griffioen/Carlson/Maddox... Low-Q

Low-Q fits with low order don’t work.
2018: XXX Yan/Higinbotham/...

Small radius fraction finally does bias testing
30



Volume of Mainz data set
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validate!
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Extrapolation to Q2 = 0

Have to extrapolate form factor to Q2 = 0.
Mainz lowest Q2 = 0.0033 (GeV/c)2.
We use a 10th order polynomial to fit data up to
1 (GeV/c)2. This gets people scared.

Can we fit just a linear term?
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Can a linear fit work?

dσ
dΩ
∝ 1− A︸︷︷︸

O(6)

·Q2 + B︸︷︷︸
O(30)

·Q4 + ...

(Q in units of GeV/c)
We want to measure the radius (~

√
A) to within 0.5%,

without knowing B. So:

B/A ·Q2 � 0.01 −→ Q2 � 0.002 (GeV/c)2

But: Need to measure A to 1%, so measure dσ
dΩ to

6 · 0.002 · 0.01 = 0.012%. Good luck.
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Why do low Q2 then?

Test / fix normalization
Similar arguments apply, but helpful when dataset
contains also higher Q2.
Test for new physics / ultra long range structure
Signal can easily, but doesn’t have to be
undetectable small and still change the radius!
Measure rM
Low Q2 at ε = 1 means lowish Q2 at ε = 0
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Three ways to get to lower Q2

Q2 = 4EE ′sin2 θ

2
Smaller scattering angle −→ PRad
Lower beam energy −→ MESA
Initial State Radiation

36



JLAB: PRoton RADius

High resolution, large acceptance hybrid calorimeter
Windowless target
Simultaneous measure ep→ ep and Møller scattering
Q2 range: 2× 10−4 to 6× 10−2 (GeV/c)2

Status
Data taken successfully
Analysis ongoing
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Slide stolen from Weizhi Xiong’s talk at CIPANP

18

Form Factor GE (Preliminary)

• Proton electric form factor 
GE v.s. Q2, with 2.2 and 1.1
GeV data (preliminary)

• Systematic uncertainties 
shown as colored error 
bars

• Preliminary GE slope 
seems to favor smaller 
radius
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ISR method

Q2
Vertex

Q2
Reconstruct

Use initial state radiation to reduce effective beam
energy
Have to subtract FSR
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ISR at MAMI

ISR −→ small E −→
small Q2

Extract F.F. from
radiative tail
Or: test radiative tail
description
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Systematic uncertainty

See: arXiv:1612.06707

Status
Published: PLB 771:194-198
Radiative correction correct on the 1% level deep in
the tail!
Radius extraction not competitive in precision
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Target dominant source of uncertainty

For Mainz data, systematic errors
dominate

Background from target walls
Acceptance correction for
extended target

Eliminate with jet target

point-like
no walls
but less density

Rinse, repeat with D,3He,4He, ...

Scattering chamber

"Basel-Loop"

Heat
exchangerVentilator

Target cell

49.5 mm

11.5 mm

Electron-
beam

liquid
hydrogen

10 µm Havar

⇓
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Mainz future plans

Repeat ISR with new target
Use new target also for classic approach
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Took first data in April! Full MAMI experiment next year,
MESA 2021.
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The missing piece

rE [fm] ep µp
Spectroscopy 0.8758± 0.077 0.84087± 0.00039

Scattering 0.8770± 0.060 ????

Measure radius with muon-proton scattering!
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MUSE - Muon Scattering Experiment at PSI

World’s most powerful low-energy e/π/µ-beam:

Direct comparison of ep and µp!

Beam of e+/π+/µ+ or e−/π−/µ− on liquid H2 target
Species separated by ToF, charge by magnet

Absolute cross sections for ep and µp
Ratio to cancel systematics
Charge reversal: test TPE
Momenta 115-210 MeV/c⇒ Rosenbluth GE ,GM
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Experiment layout

~ 100 cm

Scattered Particle 
Scintillator (SPS)

Beam-Line
Monitor

Straw-Tube 
Tracker (STT)

Veto 
Scintillator

Beam 
Hodoscope

3 GEM 
Detectors

Target 
Chamber

pM1 
Beam-Line

Secondary beam =⇒ track
beam particles
Low flux (5 MHz)=⇒ large
acceptance
Mixed beam =⇒ PID in
trigger

R. Gilman et al., arXiv:1303.2160 [nucl-ex]
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Predicted performance

Absolute radius extraction
uncertainties similar to
current exp’s.

Difference: Common
uncertainties cancel!
−→ factor two more
sensitivity

MUSE can verify 7σ effect with similar significance!
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Summary

Proton radius puzzle persists since 2010
We need new data to resolve it
A lot of data incoming in the next years, but pretty
hard limit on achievable errors
MUSE, with electron and muon scattering, will test

existing radius value
lepton universality
two photon exchange / proton polarizability

The most exciting phrase to hear in science,
the one that heralds new discoveries, is not
“Eureka!” but “That’s funny . . . ”

— Isaac Asimov
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Taylor expansions and polynomial fits

It’s a common theme that a polynomial fit is related to a
Taylor expansion around 0, sharing important traits
mainly radius of convergence.

”We will fit ... a simple Taylor series expansion.” R.J. Hill
and G. Paz, Phys. Rev. D 82, 113005 (2010)
”correct inclusion of the lowest singularity” I. Lorenz
and U.G-Meißner, Phys. Lett. B 737, 57 (2014)
”Maclaurin fits”, D. W. Higinbotham et al., Phys.Rev.
C93, 055207 (2016)
”We do not advocate using polynomial fits.... since
convergence ... is not assured...” K. Griffioen et al.,
arxiv:1509.06676

This is wrong.
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Traits of Taylor, Weierstrass, Fits

Taylor expansion

Is correct in all order (to truncated order) at x0.
Converges on a radius up to the next pole.

Error is Rk = f (k+1)(ξc)
k! (x − ξc)k(x − x0)

Weierstrass theorem
Any function continuos over [a,b] can be
approximated with a polynomial in that range.
The convergence is uniform:
∀ε > 0, ∃ poly., so that ||f (x)− p(x)||∞ < ε, x ∈ [a,b]

Polynomial fit

Minimizes L2-norm over the points: ||f (x)− p(x)||2
Will converge to the function, NOT to the Taylor
expansion of the function
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We have no choice

Taylor expansion

Is correct in all order (to truncated order) at x0.
Converges on a radius unto the next pole.

Error is Rk = f (k+1)(ξc)
k! (x − ξc)k(x − a)

Weierstrass theorem
Any function continuous over [a,b] can be
approximated with a polynomial in that range.
The convergence is uniform:
∀ε > 0, ∃ poly. .so that ||f (x)− p(x)||∞ < ε, x ∈ [a,b]

Polynomial fit

Minimizes L2-norm over the points: ||f (x)− p(x)||2
Will converge to the function, NOT to the Taylor
expansion of the function
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What does that mean in reality?

Let’s fit perfect pseudo data
Compare with Taylor expansion
Input function: dipole, i.e. pole at
Q2 = −0.71 (GeV/c)2
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Fit results
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Polynomial fit (×107)

Fit within 40 ppm over data range, better than expansion
for Q2 > 0.15 (GeV/c)2

Conclusion:
Taylor convergence radius

has no consequence for polynomial fit.
is not a reason to use conformal mapping.
is not a reason to limit Q2 range.
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is not a reason to limit Q2 range.
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Problems of (unconstrained) conformal mapping

remaps flexibility:
a lot of flexibility to small Q2: Gap is 2.2% of data
range instead of 0.4%
not enough at high Q2

harder to fit: many local minima
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Failures to fit conformal mapping polynomials

I. Lorenz and U.G. Meißner, ”Reduction of the proton
radius discrepancy by 3 σ”, Phys. Lett. B 737, 57 (2014)
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Finding better minima via random search
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Low-Q polynomial fits

Griffioen et al. ”Are Electron Scattering Data Consistent
with a Small Proton Radius?”, arxiv:1509.06676 advocate a
fit up to 0.02 (GeV/c)2.
They find:

Linear fit: re = 0.835(3) fm.
Quadratic fit: re = 0.850(15) fm.

Questions
Why 0.02? What happens at 0.01? 0.03?
What is the bias of this method?
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Simulate experiment with pseudo data

Use two input parametrizations
Our 10th order polynomial fit
10th order polynomial fit with radius forced to
0.841 fm.

Generate 1000 pseudo data sets each
Fit
Look at extracted re as function of cut off.
Compare with known input radius
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Results on pseudo data
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Results on pseudo data
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Results on pseudo data

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0 0.02 0.04 0.06 0.08 0.1

r e
[fm

]

Q2 cut off [(GeV/c)2]

Linear fit

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0 0.02 0.04 0.06 0.08 0.1

r e
[fm

]

Q2 cut off [(GeV/c)2]

Quadratic fit

71



Results on data
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Dipole fits

Horbatsch and Hessels, ”Evaluation of the strength of
electron-proton scattering data for determining the
proton charge radius”, Phys. Rev. C 93 015204
compare conformal mapping fits (large radius) and
dipole fits (small radius) with varying cut-off.
We already know that dipole fit to the whole range
has a large bias.
But what about smaller range?
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Results dipole fit to (pseudo) data
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F-test to determine fit order

Nested models!
Compare two hypothesis:

H0: The true model has order j
H1: The true model has order j+k (or any order>j)

F =
χ2

H0 − χ2
H1

χ2
H1

N − j
k

Fisher-Snedecor
F follows a Fisher-Snedecor distribution if H0 is true
Otherwise: Non-central Fisher-Snedecor distribution
(best case)
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F-test

Can rule out H0 at a given CL if F > Fcrit

Type I error: If H0 is falsely rejected, H0 is true.
=⇒ F is Fisher-Snedecor distributed
=⇒ Can calculate how often F > Fcrit by random
chance

Can NOT rule out H1 at same CL if F < Fcrit

Type II error: Have to assume H1 is correct!
=⇒ F NOT Fisher-Snedecor distributed
=⇒ Small F can reject BOTH H0 and H1
This is what D. Higinbotham et al. do wrong
James does it (semi) correct in explanation, but
wrong in example
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Remarks

One can disprove H0 without assuming H1 to be right!
Science: We can disprove a theory (because a
prediction is off), we can not prove one.
Other tests: similar story

Akaike Information Criterion (AIC) tells you if data
can disprove that a certain model is ”enough”

This does not touch the problem of bias!

Here:
We know that the form factor→0 for Q2 →∞.
Any finite polynomial goes to ±∞
Neither H0 nor any H1 can be true

Everything Should Be Made as Simple as Possible, But
Not Simpler (Einstein, probably)
Let’s pretend we are John Snow and know nothing.
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F-test results for low-order polynomials
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F-test /AIC results for full data range
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This is 100% in accordance to our model selection
N.B: AIC disfavors any model with χ2 > 1620 even if no
parameter
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Conclusion

Fitting is hard
Taylor and polynomial fits are unrelated
Have to balance between bias and overfitting

Cutting data set to small Q2 makes balance
HARDER.

Statistical tests do not tell you about bias.
Statistical tests, done right, support our analysis.
Test your method on pseudo data!
=⇒ If you want to disprove large radius, show that you
can replicate the large radius!
The resolution of the puzzle can not be found in
refitting of the data

For more info: arXiv:1606.02159
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Poly/Taylor possible Q2
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PSI setup (CREMA)
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Muonic Hydrogen Spectroscopy Results

Result
Two semi-independent measurements
Consistent results
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8Be is special

Many images from arXiv:1707.09749
8Be is special: two narrow, highly energetic states which
can decay to ground state via E/M

89



Decay modes of 8Be(18.15)

Hadronic, electromagnetic and through internal pair
conversion
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The Atomkin experiment

ATOMKI PAIR
SPECTROMETER

θ 

1.04 MeV proton beam on 7Li to 8Be(18.15) + γ. Followed
by decay. Looked at e± pairs from internal conversion.
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The beryllium anomaly
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Why believe it?

This model has χ2/d.o.f . of 1.07, significance of 6.8σ
Bump, not last bin effect
Rises/falls when scanning through proton energies
around resonance
Excess only happens for symmetric-energy pairs
Preliminary reports of same excess in 8Be(17.6) (same
group)
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Why not believe it?

Group has a history of finding peaks
IIUC, the detector acceptance has a minimum at
140◦

DM boson interpretation is proto-phobic to evade
NA48/2 limits

Actually: εp
εn

coupling below ±8%. Z0 is ∼ 7%
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We can measure it!

In DarkLight, production is via Bremsstrahlung,
predominantly ISR off the electron.
We can look at e−Ta → e−TaX , followed by X → e−e+

Irreducible background: e−Ta → e−Taγ? → e−Tae+e−

Best kinematics:
highest production rate if X takes all electron energy.
CS rise beats all
with limited out-of-plane acceptance, symmetric
angle optimal
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Reach
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