Electroweak processes in few-body systems

Alessandro Baroni

INT Fundamental physics with electroweak probes July 10, 2018

Lattice QCD		
R. A. Briceño	(ODU/JLab, USA)	
M. T. Hansen	(CERN, SUI)	
F. Ortega	(College of William and Mary, USA)	
D. J. Wilson	(Trinity College Dublin, IRL)	
	R. A. Briceño M. T. Hansen F. Ortega D. J. Wilson	

CONTRACTOR OF THE OWNER

Nuclear weak processes

- β decays (single and double) important for
 - Precision tests of the Standard Model
 - g_A quenching (implications for $0\nu\beta\beta$)
 - Nuclear astrophysics (Sun chain reaction)

• ν – nucleus scattering important for

- Neutrino oscillations (SNO, …)
- Leptonic CP violation
- Nuclear astrophysics (Supernovae, ..)

Well - known experimentally excellent test for the theory

Less - known experimentally need of theoretical input

SNO

 $\Phi_{8B}^{\text{Expt.}} \sim \Phi_{8B}^{\text{SSM}}$

• Solar neutrino problem

Heavy-water Cherenkov counter built to study neutrinos coming from ^{8}B β - decay (5-15 MeV)

Nuclear electroweak interactions?

Atomic nuclei are a complex quantum-many body systems of strongly interacting nucleons

$\chi\,{\rm EFT}$

Build the most general Lagrangian with hadronic d.o.f. with the same exact symmetries and approximate symmetries of the underlying theory

• S. Weinberg (1968-1979)

Nuclear $\chi\,{\rm EFT}\,{\rm I}$

Nuclear bound states cannot be obtained from perturbation theory alone

Nuclear $\chi {\rm EFT~II}$

• Define a weak transition potential $v_5 = A_a^0 \rho_{5,a} - \mathbf{A} \cdot j_{5,a}$ (similar to EM)

Procedure

• We require the weak interaction potential to match the on shell scattering amplitude

$$T_5 = v_5 + v_5 \frac{1}{E_i - H_0 + i\epsilon} T_5$$

• Perturbative expansion in powers of the nucleon momenta

$$T_5 = T_5^{\text{LO}} + T_5^{\text{NLO}} + T_5^{\text{N2LO}} + \cdots$$
$$v_5 = v_5^{\text{LO}} + v_5^{\text{NLO}} + v_5^{\text{N2LO}} + \cdots$$

• Matching order by order

$$v_{5,a}^{\text{LO}} = T_5^{\text{LO}}$$

$$v_{5,a}^{\text{NLO}} = T_5^{\text{NLO}} - \left(v_{5,a}^{\text{LO}} \frac{1}{E_i - E_I + i\epsilon} v^{\text{LO}} + \text{permutations}\right) \qquad \rho_{5,a} = \rho_{5,a}^{\text{LO}} + \rho_{5,a}^{\text{NLO}} + \rho_{5,a}^{\text{N2LO}} + \cdots$$

$$\mathbf{j}_{5,a} = \mathbf{j}_{5,a}^{\text{LO}} + \mathbf{j}_{5,a}^{\text{NLO}} + \mathbf{j}_{5,a}^{\text{N2LO}} + \cdots$$

$$\dots$$

- S. Weinberg (1990) TOPT; C. Ordonez and U. Van Kolck (1994-1996)
- N. Kaiser et al. for nuclear potentials Feynman diagrams (1998)
- S. Pastore et al. (2008-2011) for em currents, M. Piarulli et al. (2013) for em currents, TOPT AB et al. (2016) for axial currents, TOPT
- Alternative approach using unitary transformations:

Epelbaum, Krebs, Meissner, et al. (1998-2017), for nuclear potentials, em and axial currents

Summary

Axial currents

Strong and EM LECs partially known

1+4 "Weak" LECs ??

How do we fix them before ?

Actually...

Fix the LEC in axial current I

• We look at tritium beta decay rate (simplest beta decay), transition rate well known experimentally

• Since the 3N potential depends on 2 unknown LECs we fix c_E to three-nucleon binding energies and we get a family of wave functions

Marcucci, Kievsky, Viviani, Rosati (1990-2018)

Fix the LEC in the axial current II

• Fitting of the triton GT matrix element using AV18+UIX and N4LO currents

AB, Schiavilla, Marcucci et al. (2016)

Fix the LEC in the axial current III

AB, R. Schiavilla, L.E. Marcucci et al. (2017) L. Marcucci et al. (2018)

CONTRIBUTIONS

Adding Δ 's ? Why?

 $\Delta 's$ important role in the reproduction of light nuclear spectra might also be important for electroweak processes in light nuclei

Piarulli et al. (2016,2017, 2018)

- Derivation is straightforward (only tree level)
- Real challenge adopt consistent regularization with Piarulli et al. potentials
 - Perform Fourier transform and then regularize in r-space
 - Mathematical trickery in AB, R. Schiavilla, L.E. Marcucci, et al. (2018) (General approach could be applied to other available potentials and currents)
- Only one new LEC h_A (analog of g_A)
- LECs consistent with the potential (only central values, for now..)
- Inclusion of some three-body currents (only irreducible ones)

AB, R. Schiavilla, L.E. Marcucci, et al. (2018)

$B(^{3}\mathrm{H}) = -8.475\mathrm{MeV}$ $B(^{3}\mathrm{He}) = -7.725\mathrm{MeV}$				
$\begin{array}{c c} & \text{Ia}^* \\ \hline c_D^* & (-0.89, -0.38) \\ \hline c_E^* & (-0.01, -0.17) \end{array}$	$Ib^* (-4.99, -4.42) (+0.70, +0.40)$	$IIa^* \\ (-0.89, -0.33) \\ (-0.25, -0.45)$	$\frac{\text{IIb}^*}{(-5.56, -4.94)}$ $(+0.23, -0.13)$	

Take home message

- LEC in the axial current determined using tritium beta decay
- Loop give important contribution
- Axial current acquires predictive power
- For axial charge <u>as a first step</u> we will assume LECs ~ 1
- Second not trivial application is low energy neutrino deuteron scattering

Neutrino deuterium

Results I: Differential cross sections

Results II: Total cross sections (CC)

Results II: Total cross sections (NC)

 β -decays

Wave functions from AV18+IL7; χ currents TOPT (N4LO), UT (N4LO*)

	⁶ He β -decay	⁷ Be ϵ -capture (gs)	⁷ Be ϵ -capture (ex)	$^{10}C \beta$ -decay
LO	2.168(2.174)	2.294(2.334)	2.083(2.150)	2.032(2.062)
N4LO	$3.73(3.03) \times 10^{-2}$	$6.07(4.98) \times 10^{-2}$	$4.63(4.63) \times 10^{-2}$	$1.61(1.55) \times 10^{-2}$
$\rm N4LO^{\star}$	$3.62(3.43) \times 10^{-2}$	$6.62(5.43) \times 10^{-2}$	$5.31(5.38) \times 10^{-2}$	$1.80(1.00) \times 10^{-2}$
MEC	$6.90(4.57) \times 10^{-2}$	$10.5(10.3) \times 10^{-2}$	$8.88(8.99) \times 10^{-2}$	$5.31(4.28) \times 10^{-2}$
EXP	2.1609(40)	2.3556(47)	2.1116(57)	1.8331(34)

- Small but not negligible contribution from two-body currents
- Small difference between TOPT and UT axial currents to GT
- Phenomenological currents give bigger contribution (delicate cancellations missing?)
- What will change with fully chiral approach?

Pastore et al. (2018)

 β -decays

Pastore et al. (2018)

LECs from QCD

LQCD

Finite volume effects

• Finite volume effects are complicated for matrix elements with multi-hadron states

• On-shell intermediate states give singularities

• Formalism needed to deal with these effects:

- Briceño and Hansen (2016) general, inelastic, relativistic
- Rusetsky et al. (2012) EFT dependent, NR
- Briceño and Davoudi (2012) EFT dependent, NR
 - Many works.. not cited here
- Luscher formalism (1986, 1991)

Scattering amplitude 101

2→2

FV spectra to infinite volume purely hadronic amplitudes
Holds for a generic QFT with hadronic d.o.f, up to multi-particle thresholds

- Lüscher (1986, 1991) [elastic scalar bosons]
- Rummukainen & Gottlieb (1995) [moving elastic scalar bosons]
- Kim, Sachrajda, & Sharpe/Christ, Kim & Yamazaki (2005) [QFT derivation]
- Feng, Li, & Liu (2004) [inelastic scalar bosons]
- Hansen & Sharpe / Briceño & Davoudi (2012) [moving inelastic scalar bosons]
- Briceño (2014) [general 2-body result]

 $2 \rightarrow 2$ (pion sector)

Wilson, Briceño, Dudek, Edwards, and Thomas (2015)

 $2 + \mathcal{J} \rightarrow 2$

• FV matrix elements to infinite volume electroweak amplitudes

Briceño & Hansen (2016)

Briceño & Davoudi (2013)

Detmold & Savage (2004)

G function evaluation I

$$G(P_i, P_f, L) = \left(\frac{1}{L^3}\sum_{\mathbf{k}} - \int_{\mathbf{k}}\right) f(P_i, P_f, \mathbf{k})$$

- The sum is "easy"
- The integral is highly not trivial (spectator particle goes on-shell)
 - integrand singularities are two surfaces in three-dimension
 - standard principal value techniques in one dimension fail
 - techniques from other fields are not suitable
 - using mathematical trickery we can isolate the singularities, treat them with standard field theory techniques, and be left with a 3D smooth integral

AB, R. A. Briceño, M. T. Hansen, F. Ortega, D.J. Wilson (2018) *To appear (soon)*

G function evaluation II (Sketch)

Kinematic functions

Take home message

General, relativistic, EFT independent, finite volume formalism to treat processes relevant for many electroweak processes (nuclear and not only) derived

A crucial ingredient the new kinematic function is closed to the general complete numerical implementation

Test this framework with a simple example (pions are "easier")

Use this FV formalism in an actual LQCD calculation

THANK YOU!

BACKUP SLIDES

FIG. 2. Upper panel: The calculated ratio GT_{th}/GT_{exp} as function of c_D (solid line; each point on this line reproduces the trinucleon binding energies). Lower panel: The c_D - c_E trajectories obtained by fitting the experimental trinucleon binding energies (solid line) and *nd* doublet scattering length (dashed line) (the intercept of these two lines gives the c_D and c_E values that reproduce these two observables simultaneously). The NV2+3-Ia chiral interactions are used here for illustration. The values of 8.475 MeV and 7.725 MeV, and 0.645 \pm 0.010 fm [42] are used for the ³H and ³He binding energies, and *nd* scattering length, respectively. Note that these energies have been corrected for the small contributions (+7 keV in ³H and -7 keV in ³He) due to the *n-p* mass difference [43]. The band (left panel) results from experimental uncertainty GT_{EXP} , which has conservatively been doubled.

Outlook

Currents derived up to N4LO Solution the axial current fixed with experimental GT matrix element Ø Prediction for neutrino deuteron→confirm phenomenological approaches G Hybrid calculations in beta decays denote big effect of two-body currents Systematic study of theoretical uncertainty LQCD to determine the LEC in the axial current (validation) (Savage et al. 2017) Refine calculations for beta decays/include delta in the currents (?) (Goity et al. 2012)

An example (no currents)

FV effects for L>> r (no mirror images) Infrared artifact

Axial current

 $1 + \mathcal{J} \rightarrow 2$

• FV matrix elements to infinite volume electroweak amplitudes

- Lellouch & Lüscher (2000) [K-to-ππ at rest]
- Kim, Sachrajda, & Sharpe/Christ, Kim & Yamazaki (2005) [moving K-to- $\pi\pi$]
- Hansen & Sharpe (2012) [D-to-ππ/KK]
- Briceño, Hansen Walker-Loud / Briceño & Hansen(2014-2015)[general 1-to-2]

Convergence pattern

Axial charge

Comparison with others ?

\beta decays Saori

Results: Neutral currents

for $\Lambda = 600 \, {\rm MeV}$ variation $\leq 1\%$

Triton calculation

Pisa group citations

Λ	500 MeV	600 MeV
LO	0.9363 (0.9224)	0.9322 (0.9224)
N2LO	-0.569(-0.844)×10 ⁻²	-0.457(-0.844)×10 ⁻²
N3LO(OPE)	$0.825(1.304) \times 10^{-2}$	0.043(7.517)×10 ⁻²
N4LO(Loop)	-0.486(-0.650)×10 ⁻¹	-0.600(-0.852)×10 ⁻¹
N4LO(3Bd)	-0.143(-0.183)×10 ⁻²	-0.153(-0.205)×10 ⁻²

- N3LO/N2LO full chiral
- AV18/UIX hybrid

- Loop give not negligible contribution
- Preliminary three-body currents seem negligible

Axial currents: from amplitudes to nuclear operators II

• Matching holds for on shell scattering amplitude

● Matching is not unique →Nuclear operators are not unique

• iterations of LS depend on the off-the-energy-shell extension of lower order currents and potentials

• Not unique operators should be related by a unitary transformation (<u>no general proof at the moment</u>)

Outlook

Backup slides

χ Effective field theory

• Pion and nucleons degrees of freedom

• Exact

Q

• Lagrangian is an expansion in powers of $\,Q/\Lambda\chi$

 $\mathcal{L}_{\chi \rm EFT} = \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \cdots$

• Low energy constants (encode our ignorance)

Experiments (past and present)

Lattice QCD (near future)

Effective field theories

Low energy approximations of an underlying theory

- Exploit separation of scales
- Build the most general Lagrangian consistent with the symmetries of the underlying theory

Strategy

Pipeline

