Should neutrino-nucleon cross sections be (re)measured?

Luis Alvarez Ruso A. H. Blin, K. Graczyk, E. Hernandez, J. Nieves, E. Saúl Sala, M. J. Vicente Vacas, D. Yao

Do we want new more precise ν -nucleon cross section measuremens?

- Relevant input for ν MC and theoretical models
- New info about the axial structure of nucleons and other baryons
- Radiative corrections
- ChPT LECs, non-pole corrections to Goldberger-Treiman relations
- New physics (perhaps combining c.s. & lepton/baryon polarization)

...

Do we want new more precise ν -nucleon cross section measuremens?

- Relevant input for ν MC and theoretical models
- New info about the axial structure of nucleons and other baryons
- Radiative corrections
- ChPT LECs, non-pole corrections to Goldberger-Treiman relations
- New physics (perhaps combining c.s. & lepton/baryon polarization)
- ... but who pays for it?

Do we want new more precise ν -nucleon cross section measuremens?

- Relevant input for ν MC and theoretical models in general
- New info about the axial structure of nucleons and other baryons
- Radiative corrections
- ChPT LECs, non-pole corrections to Goldberger-Treiman relations
- New physics (perhaps combining c.s. & lepton/baryon polarization)

Do we NEED new more precise ν -nucleon cross section measuremens?

Our letter to Santa should be compelling

Do we want new more precise ν-nucleon cross section measuremens?

- Relevant input for ν MC and theoretical models in general
- New info about the axial structure of nucleons and other baryons
- Radiative corrections
- ChPT LECs, non-pole corrections to Goldberger-Treiman relations
- New physics (perhaps combining c.s. & lepton/baryon polarization)

— ...

Do we NEED new more precise ν -nucleon cross section measuremens?

- Our letter to Santa should be compelling:
- ν -nucleon cross section should be crucial for future oscillation measurements
- Experimental projections: c.s. uncertainties \Rightarrow oscillation errors

Possible alternatives:

- LQCD
- (Polarized) electron scattering
- H₂ enriched targets

. . .

Do we want new more precise ν-nucleon cross section measuremens?

- Relevant input for ν MC and theoretical models in general
- New info about the axial structure of nucleons and other baryons
- Radiative corrections
- ChPT LECs, non-pole corrections to Goldberger-Treiman relations
- New physics (perhaps combining c.s. & lepton/baryon polarization)
- **—** ...

Do we NEED new more precise ν -nucleon cross section measuremens?

- Our letter to Santa should be compelling:
- ν -nucleon cross section should be crucial for future oscillation measurements
- Experimental projections: c.s. uncertainties \Rightarrow oscillation errors
- It is not just the nucleon F_A (Q²)
- Our ignorance regarding the transition axial N-X (X=N π , N $\pi\pi$, N K,...) at $Q^2 \neq 0$ is almost total
- These processes will be (among) the largest at DUNE

Outline

- Introduction
- Extraction of F_A from LOCD results using BChPT
- Extraction of F_A from ν -nucleon data using neural networks
- Pion production and resonance excitation

F_A from LQCD

 g_A : lower than exp. values have been recurrently obtained

Constantinou, PoS CD15 (2015) 009

F_A from LQCD

A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics

Chang et al., Nature 558 (2018)

unconventional method inspired by the Feynman–Hellmann theorem

F_A from LQCD

- Recent determinatons of F_A (Q², M_{π}):
 - improved algorithms for a careful treatement of excited states
 - Iow pion masses

Alexandrou et al., Phys. Rev. D 96 (2017) Capitani et al., arXiv:1705.06186 Gupta, Phys.Rev. D96 (2017)

$$A^{a}_{\alpha} = \bar{u}(p') \left[\gamma_{\alpha} \gamma_{5} F_{A} + \frac{q_{\alpha}}{m_{N}} \gamma_{5} F_{P} \right] \frac{\tau^{a}}{2} u(p)$$

F_A(Q², M_π) calculated using covariant ChPT Yao, LAR, Vicente Vacas, PRD 96 (2017)

- up to leading one-loop O(p³)
 - standard power counting
- with explicit △(1232)
 - $\delta = m_{\Delta} m_N \sim O(p)$
- Power-counting breaking (PCB) terms:
 - Example 2 because of N, Δ with masses that do not vanish in the χ limit
 - EOMS (Extended on mass shell) scheme Gegelia & Scherer
 - PCB terms absorbed by low-energy constants (LEC)
 - Covariance and analytic properties of loops preserved.

Example: nucleon mass in SU(2)

$$O(\mathbf{p}) \quad \mathcal{L}_{1} = -\bar{\psi}M_{0}\psi + \dots \qquad M = M_{0}$$

$$O(\mathbf{p}^{2}) \quad \mathcal{L}_{2} = 4c_{1}m_{\pi}^{2}\bar{\psi}\psi + \dots \qquad M = M_{0} - 4c_{1}m_{\pi}^{2}$$

$$O(\mathbf{p}^{3}) \quad \text{Loops} \quad M = M_{0} - 4c_{1}m_{\pi}^{2} + \frac{1}{16\pi^{2}}\left(\frac{g_{A}}{f_{\pi}}\right)^{2}m_{\pi}^{2}M_{0} + \dots$$

$$O(\mathbf{p}^{2}) \quad !$$

$$O(\mathbf{p}^{2}) \quad !$$

$$O(\mathbf{p}^{2}) \quad !$$

$$A^{a}_{\alpha} = \bar{u}(p') \left[\gamma_{\alpha} \gamma_{5} F_{A} + \frac{q_{\alpha}}{m_{N}} \gamma_{5} F_{P} \right] \frac{\tau^{a}}{2} u(p)$$

F_A(Q², M_π) calculated using covariant ChPT Yao, LAR, Vicente Vacas, PRD 96 (2017)

- up to leading one-loop O(p³)
 - standard power counting
- with explicit △(1232)
 - $\delta = m_{\Delta} m_N \sim O(p)$
- Power-counting breaking (PCB) terms:
 - Example 2 because of N, Δ with masses that do not vanish in the χ limit
 - EOMS (Extended on mass shell) scheme Gegelia & Scherer
 - PCB terms absorbed by low-energy constants (LEC)
 - Covariance and analytic properties of loops preserved.

$$A^{a}_{\alpha} = \bar{u}(p') \left[\gamma_{\alpha} \gamma_{5} F_{A} + \frac{q_{\alpha}}{m_{N}} \gamma_{5} F_{P} \right] \frac{\tau^{a}}{2} u(p)$$

■ $F_A(Q^2, M_\pi)$ calculated in covariant ChPT up to O(p³) with explicit Δ (1232) Yao, LAR, Vicente Vacas, PRD 96 (2017)

$$A^{a}_{\alpha} = \bar{u}(p') \left[\gamma_{\alpha} \gamma_{5} F_{A} + \frac{q_{\alpha}}{m_{N}} \gamma_{5} F_{P} \right] \frac{\tau^{a}}{2} u(p)$$

F_A(Q², M_{π}) calculated in covariant ChPT up to O(p³) with explicit Δ (1232) Yao, LAR, Vicente Vacas, PRD 96 (2017)

$$A^{a}_{\alpha} = \bar{u}(p') \left[\gamma_{\alpha} \gamma_{5} F_{A} + \frac{q_{\alpha}}{m_{N}} \gamma_{5} F_{P} \right] \frac{\tau^{a}}{2} u(p)$$

F_A(Q², M_{π}) calculated in covariant ChPT up to O(p³) with explicit Δ (1232) Yao, LAR, Vicente Vacas, PRD 96 (2017)

$$\mathcal{L}_{\pi N\Delta}^{(1)} = h_A \, \bar{\Psi}_{\mu}^i \xi_{ij}^{\frac{3}{2}} \omega^{\mu,j} \Psi + h.c.$$

$$\mathcal{L}_{\pi\Delta}^{(1)} \supset -\bar{\Psi}_{\mu}^i \xi_{ij}^{\frac{3}{2}} \left\{ \frac{g_1}{2} \psi^{jk} \gamma_5 g^{\mu\nu} \right\} \xi_{kl}^{\frac{3}{2}} \Psi_{\nu}^l$$

h_A, g_1 fixed in πN scattering Yao et al., JHEP 05 (2016)

F_A(Q², M_{π}) calculated in covariant ChPT up to O(p³) with explicit Δ (1232) Yao, LAR, Vicente Vacas, PRD 96 (2017)

 $F_A(Q^2, M_\pi^2) = g + 4d_{16}M_\pi^2 + d_{22}Q^2 + F_A^{(c)} + F_A^{(f)} + 2F_A^{(g)} + F_A^{(i)} + F_A^{(wf)}$

F_A(Q², M_{π}) calculated in covariant ChPT up to O(p³) with explicit Δ (1232) Yao, LAR, Vicente Vacas, PRD 96 (2017)

 $F_A(Q^2, M_\pi^2) = g + 4d_{16}M_\pi^2 + d_{22}Q^2 + F_A^{(c)} + F_A^{(f)} + 2F_A^{(g)} + F_A^{(i)} + F_A^{(wf)}$

- g, d₁₆, d₂₂ are determined from a fit to LQCD data in both Q² and M_π Alexandrou et al., Phys. Rev. D 96 (2017) Capitani et al., arXiv:1705.06186 Gupta, Phys.Rev. D96 (2017)
- Fit range:

 $\square Q^2 < ???$

• Explicit or implict $\Delta(1232)$?

F_A(Q², M_{π}) calculated in covariant ChPT up to O(p³) with explicit Δ (1232) Yao, LAR, Vicente Vacas, PRD 96 (2017)

 $F_A(Q^2, M_\pi^2) = g + 4d_{16}M_\pi^2 + d_{22}Q^2 + F_A^{(c)} + F_A^{(f)} + 2F_A^{(g)} + F_A^{(i)} + F_A^{(wf)}$

- g, d₁₆, d₂₂ are determined from a fit to LQCD data both in Q² and M_π Alexandrou et al., Phys. Rev. D 96 (2017) Capitani et al., arXiv:1705.06186 Gupta, Phys.Rev. D96 (2017)
- Fit range:

■ M_π < 400 MeV

reasonable

LQCD ensembles with $M_{\pi} > 400$ MeV increase χ^2

- $\blacksquare Q^2 < ???$
- Explicit or implict $\Delta(1232)$?

F_A(Q², M_{π}) calculated in covariant ChPT up to O(p³) with explicit Δ (1232) Yao, LAR, Vicente Vacas, PRD 96 (2017)

 $F_A(Q^2, M_\pi^2) = g + 4d_{16}M_\pi^2 + d_{22}Q^2 + F_A^{(c)} + F_A^{(f)} + 2F_A^{(g)} + F_A^{(i)} + F_A^{(wf)}$

• Explicit Δ (1232)

• better χ^2 /dof

F_A(Q², M_{π}) calculated in covariant ChPT up to O(p³) with explicit Δ (1232) Yao, LAR, Vicente Vacas, PRD 96 (2017)

Alexandrou et al., Phys. Rev. D 96 (2017) Gupta, Phys.Rev. D96 (2017)

better χ^2 /dof

F_A & LQCD

• $F_A(Q^2, M_{\pi})$ calculated in covariant ChPT up to O(p³) with explicit Δ (1232)

Yao, LAR, Vicente Vacas, PRD 96 (2017)

At the physical point: $g_A = 1.237(74)$, $\langle r_A^2 \rangle = 0.263(38)$ fm²

Mainz-TS points: z-expansion results from Capitani et al., arXiv:1705.06186, not used in the fit.

F_A & LQCD

F_A(Q², M_{π}) calculated in covariant ChPT up to O(p³) with explicit Δ (1232) Yao, LAR, Vicente Vacas, PRD 96 (2017)

At the physical point: $g_A = 1.237(74)$, $\langle r_A^2 \rangle = 0.263(38)$ fm²

- Loops with $\Delta(1232)$ significantly improve $< r_A^2 >$
- O(p⁵) might be needed to improve M_{π} dependence of $< r_A^2 >$

Neural Networks for F_A

Feed-forward NN in multilayer perceptron (MLP) configurations
 Nep-linear map (A) (Din) Dout

• except in bias units: f(x) = 1 and output: f(x) = x

Neural Networks for F_A

Feed-forward NN in multilayer perceptron (MLP) configurations
 Non-linear map $\mathcal{N}: \mathbb{R}^{in} \to \mathbb{R}^{out}$

 $F_A(Q^2) = F_A^{\text{dipole}}(Q^2) \times \mathcal{N}_M(Q^2; \{w_i\}) \leftarrow \text{function of W=3 M +1 weights and } Q^2$

Cybenko's theorem: for large enough M, can map arbitrarily well any continuous function and its derivative

Neural Networks for F_A

Feed-forward NN in multilayer perceptron (MLP) configurations
 Non-linear map 𝒩: Rⁱⁿ → R^{out}

 $F_A(Q^2) = F_A^{\text{dipole}}(Q^2) \times \mathcal{N}_M(Q^2; \{w_i\}) \leftarrow \text{function of W=3 M +1 weights and } Q^2$

Bayesian inference to train the network, avoiding overfitting

Bayesian inference for NN

 $\text{posterior} = \frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$

1. For a given
$$\mathcal{N}: \mathcal{P}(\{w_j\} \mid \mathcal{D}, \mathcal{N}) = \frac{\mathcal{P}(\mathcal{D} \mid \{w_j\}, \mathcal{N})\mathcal{P}(\{w_j\} \mid \mathcal{N})}{\mathcal{P}(\mathcal{D} \mid \mathcal{N})},$$

Likelihood in terms of χ^2 :

$$\mathcal{P}(\mathcal{D} \mid \{w_j\}, \mathcal{N}) = \frac{1}{N_L} \exp(-\chi^2)$$

Prior: weights w_i are Gaussian distributed

$$\mathcal{P}(\{w_j\}, \mathcal{N}) = \frac{1}{N_w} \exp\left(-\alpha \frac{1}{2} \sum_{i=1}^W w_i^2\right) \qquad \alpha \leftarrow \text{regularizer}$$

Algorithm to find the optimal: $(\{w_j\}_{MP}, \alpha_{MP})$

Bayesian inference for NN

$$posterior = \frac{likelihood \times prior}{evidence}$$

1. For a given
$$\mathcal{N} \colon \mathcal{P}(\{w_j\} \mid \mathcal{D}, \mathcal{N}) = \frac{\mathcal{P}(\mathcal{D} \mid \{w_j\}, \mathcal{N})\mathcal{P}(\{w_j\} \mid \mathcal{N})}{\mathcal{P}(\mathcal{D} \mid \mathcal{N})}$$
,
2. For $\mathcal{N}_{1-M} \colon \mathcal{P}(\mathcal{N} \mid \mathcal{D}) = \frac{\mathcal{P}(\mathcal{D} \mid \mathcal{N})\mathcal{P}(\mathcal{N})}{\mathcal{P}(\mathcal{D})}$

- Assuming all NN configurations are equally suited to describe data: $\mathcal{P}(\mathcal{N}_1) = \mathcal{P}(\mathcal{N}_2) = \ldots = \mathcal{P}(\mathcal{N}_M)$ then $\mathcal{P}(\mathcal{N} \mid \mathcal{D}) \propto \mathcal{P}(\mathcal{D} \mid \mathcal{N})$
- In the Hessian approximation:

$$\mathcal{P}(\mathcal{D} \mid \mathcal{N}) = \int dw_1 \cdots dw_W \mathcal{P}(\mathcal{D} \mid \{w_j\}, \mathcal{N}) \mathcal{P}(\{w_j\} \mid \mathcal{N})$$
$$\ln \mathcal{P}(\mathcal{D} \mid \mathcal{N}) \approx -\chi^2 - \alpha_{MP} \frac{1}{2} \sum_{i=1}^W \{w_i\}_{MP}^2 - (\text{Occam's factor})$$
$$\text{large for models with many parameters}$$

Bayesian inference in hadronic and nuclear physics

- Resonance content of $\gamma \ p \rightarrow K^+ \Lambda$ De Cruz et al., PRL 108 (2012)
- Uncertainty Quantification in Nuclear Density Functional Theory McDonnell et al., PRL 114 (2015)
- Halo effective field theories Zhang et al., PLB 751 (2015)
- Bayesian neural-network analysis
 - Parametrization of EM nucleon form factors Graczyk et al., JHEP 1009 (2010)
 - Proton radius

Graczyk & Juszczak, PRC 90 (2014)

Nucleon axial form factor from new ν -nucleon data

LAR, Graczyk, Saúl-Sala, arXiv:1805.00905

Bayesian inference in hadronic and nuclear physics

ional Theory

Nucleon axial form factor from new v-nucleon data ANL data LAR, Graczyk, Saúl-Sala, arXiv:1805.00905

L. Alvarez-Ruso, IFIC

LAR, Graczyk, Saúl-Sala, arXiv:1805.00905

$$\frac{d\sigma_{\nu n}}{dQ^2} = \frac{G_F^2 m_N^2}{8\pi E_\nu^2} \left[A(Q^2) + B(Q^2) \frac{(s-u)}{m_N^2} + C(Q^2) \frac{(s-u)^2}{m_N^4} \right]$$

A, B, C are functions of F^V_{1,2} and F_{A,P}
 F^V_{1,2} assumed exact; F_P given in terms of F_A

Singh, Arenhövel, Z. Phys. A 324 (1986)

LAR, Graczyk, Saúl-Sala, arXiv:1805.00905

$$\frac{d\sigma_{\nu n}}{dQ^2} = \frac{G_F^2 m_N^2}{8\pi E_\nu^2} \left[A(Q^2) + B(Q^2) \frac{(s-u)}{m_N^2} + C(Q^2) \frac{(s-u)^2}{m_N^4} \right]$$

A, B, C are functions of F^V_{1,2} and F_{A,P}
 F^V_{1,2} assumed exact; F_P given in terms of F_A

• Events:
$$N^{th}(Q^2) = \int_0^\infty dE_{\nu} \frac{d\sigma}{dQ^2}(E_{\nu}, F_A, Q^2)\phi(E_{\nu})$$

• Neutrino flux: $\phi(E_{\nu}) = p \frac{1}{\sigma(E_{\nu}, F_A)} \frac{dN}{dE_{\nu}}$

 $\frac{dN}{dE_{\nu}} \leftarrow \text{experimental } \mathsf{E}_{\nu} \text{ distribution of observed events}$ Barish et al., PRD19 (1979)

$$\chi^{2} = \left(\frac{F_{A}(0) - g_{A}}{\Delta g_{A}}\right)^{2} + \sum_{i=k}^{n_{\text{ANL}}} \frac{\left(N_{i} - N_{i}^{th}\right)^{2}}{N_{i}} + \left(\frac{1 - p}{\Delta p}\right)^{2} \qquad \Delta p = 20\%$$

Results:

BINO results inconsistent with z-exp ones:

■ $r_A^2 = -1.61 \pm 0.24 \text{ fm}^2 \text{ vs } 0.46(22) \text{ fm}^2 [\nu d] \& 0.43(24) \text{ fm}^2 [\mu \text{-capt.}]$

Meyer et al., PRD93 (2016) Hill et al., arXiv:1708.08462

Results:

BINO results inconsistent with z-exp ones:

■ $r_A^2 = -1.61 \pm 0.24 \text{ fm}^2 \text{ vs } 0.46(22) \text{ fm}^2 [\nu d] \& 0.43(24) \text{ fm}^2 [\mu \text{-capt.}]$

In a similar study of the proton EM radii:

 $r_{E}^{p} = 0.899 \pm 0.003 \text{ fm vs } 0.870 \pm 0.023 \pm 0.012 \text{ fm}$

Graczyk, Juszczak, PRC 90 (2014) Hill, Paz, PRD 82 (2010)

Results:

BINO results inconsistent with z-exp ones:

- $r_A^2 = -1.61 \pm 0.24 \text{ fm}^2 \text{ vs } 0.46(22) \text{ fm}^2 [\nu d] \& 0.43(24) \text{ fm}^2 [\mu \text{-capt.}]$
- Deuteron corrections (important in the 1st,2nd bins)
- Experimental efficiency issues at low Q²

Meyer et al., PRD93 (2016)

Results:

BIN1 results consistent with z-exp (and dipole) ones:

■ $r_A^2 = 0.471 \pm 0.015 \text{ fm}^2 \text{ vs } 0.46(22) \text{ fm}^2 [\nu d] \& 0.43(24) \text{ fm}^2 [\mu \text{-capt.}]$

Meyer et al., PRD93 (2016) Hill et al., arXiv:1708.08462

Dipole nucleon form factors?

- A priori not theoretically justified
 - z-expansion

$$F_A(q^2) = \sum_{k=0}^{\infty} a_k z(q^2)^k \qquad z(t, t_{\text{cut}}, t_0) = \frac{\sqrt{t_{\text{cut}} - t} - \sqrt{t_{\text{cut}} - t_0}}{\sqrt{t_{\text{cut}} - t} + \sqrt{t_{\text{cut}} - t_0}}$$

 $a_k \sim k^{\text{-4}}$ while for the dipole ansatz $a_k \sim k$ at large k Meyer et al., PRD93 (2016)

Dipole nucleon form factors?

EM form factors from (e,e') scattering

Dipole behavior for $Q^2 \lesssim 1 \text{ GeV}^2$

- Exponential charge distributions (in the static limit)
- In the VMD picture, a dipole might arise from two mesons with similar masses and opposite couplings

 \triangle (1232) J^P=3/2⁺ $J_{\alpha} = \bar{u}^{\mu}(p') \left| \left(\frac{C_{3}^{V}}{M_{N}} (g_{\alpha\mu} q - q_{\alpha} \gamma_{\mu}) + \frac{C_{4}^{V}}{M_{N}^{2}} (g_{\alpha\mu} q \cdot p' - q_{\alpha} p'_{\mu}) + \frac{C_{5}^{V}}{M_{N}^{2}} (g_{\alpha\mu} q \cdot p - q_{\alpha} p_{\mu}) \right) \gamma_{5} \right|$ $+\frac{C_{3}^{A}}{M_{N}}(g_{\alpha\mu}\not\!\!\!/ - q_{\alpha}\gamma_{\mu}) + \frac{C_{4}^{A}}{M_{N}^{2}}(g_{\alpha\mu}q \cdot p' - q_{\beta}p'_{\mu}) + C_{5}^{A}g_{\alpha\mu} + \frac{C_{6}^{A}}{M_{N}^{2}}q_{\alpha}q_{\mu} \left| u(p) \right|$ $C_5^A(0) = \sqrt{\frac{2}{3}g_{\Delta N\pi}} \leftarrow \text{off diagonal Goldberger-Treiman relation}$ $\mathcal{L}_{\Delta N\pi} = -rac{g_{\Delta N\pi}}{f_{\pi}} \bar{\Delta}_{\mu} (\partial^{\mu} \vec{\pi}) \vec{T}^{\dagger} N \qquad g_{\Delta N\pi} \Leftrightarrow \Gamma(\Delta o N\pi)$

Deviations from GTR arise from chiral symmetry breaking
 expected only at the few % level

 \triangle (1232) J^P=3/2⁺ $J_{\alpha} = \bar{u}^{\mu}(p') \left| \left(\frac{C_{3}^{V}}{M_{N}} (g_{\alpha\mu} q - q_{\alpha} \gamma_{\mu}) + \frac{C_{4}^{V}}{M_{N}^{2}} (g_{\alpha\mu} q \cdot p' - q_{\alpha} p'_{\mu}) + \frac{C_{5}^{V}}{M_{N}^{2}} (g_{\alpha\mu} q \cdot p - q_{\alpha} p_{\mu}) \right) \gamma_{5} \right|$ $+\frac{C_{3}^{A}}{M_{N}}(g_{\alpha\mu}\not\!\!\!/ - q_{\alpha}\gamma_{\mu}) + \frac{C_{4}^{A}}{M_{N}^{2}}(g_{\alpha\mu}q \cdot p' - q_{\beta}p'_{\mu}) + C_{5}^{A}g_{\alpha\mu} + \frac{C_{6}^{A}}{M_{N}^{2}}q_{\alpha}q_{\mu} \bigg| u(p)$ $C_5^A(0) = \sqrt{\frac{2}{3}g_{\Delta N\pi}} \leftarrow \text{off diagonal Goldberger-Treiman relation}$ $C_5^A = C_5^A(0) \left(1 + \frac{Q^2}{M_{\perp,\perp}^2}\right)^{-2} \Leftrightarrow$ z-expansion for N-R transitions?

From ANL and BNL data on $u_\mu \, d o \mu^- \, \pi^+ \, p \, n$

■ $M_{A \Delta} = 0.96 \pm 0.07$ GeV LAR, Hernandez, Nieves, Vicente Vacas, PRD 93 (2016)

ANL and BNL data do not constrain C^A_{3,4}: consistent with zero Hernandez et al., PRD81(2010)

N- Δ axial form factors in LQCD

Alexandrou et al., PRD83 (2011)

- Heavier resonances:
 - Goldberger-Treiman relations can be derived for leading couplings
 - No information about Q² dependence
 - Calculations assume dipole shapes with $M_A = 1 \text{ GeV}$
 - No LQCD results

Weak pion production in BChPT

- Yao et al., arXiv:1806.09364
- First comprehensive study in ChPT
- EOMS
- Explicit *△*(1232)
- O(p³)
- $\delta = m_{\Delta} m_N \sim O(p^{1/2})$
- Valid only close to threshold
- Benchmark for phenomenological models

Weak pion production in BChPT

- Yao et al., arXiv:1806.09364
- First comprehensive study in ChPT
- EOMS
- Explicit <u>⊿(1232)</u>
- O(p³)
- $\delta = m_{\Delta} m_N \sim O(p^{1/2})$
- Valid only close to threshold
- Benchmark for phenomenological models
- LECs :
 - 22 in total
 - 7 unknown (but not very relevant)
 - 4 of them can be extracted from pion electroproduction
 - Information about remaining 3 LEC could be obtained from new closeto-threshold measurements of ν -induced π production on protons

Conclusions

Do we want new more precise ν-nucleon cross section measuremens?

- Relevant input for ν MC and theoretical models in general
- New info about the axial structure of nucleons and other baryons
- Radiative corrections
- ChPT LECs, non-pole corrections to Goldberger-Treiman relations
- New physics (perhaps combining c.s. & lepton/baryon polarization)

— ...

Do we NEED new more precise ν -nucleon cross section measuremens?

- Our letter to Santa should be compelling:
- ν -nucleon cross section should be crucial for future oscillation measurements
- Experimental projections: c.s. uncertainties \Rightarrow oscillation errors

Possible alternatives:

- LQCD
- (Polarized) electron scattering
- H₂ enriched targets

. . .