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@ Chiral effective field theory with external currents
@ The proton-proton fusion reaction

@ ‘Liischer's Formula” for capture matrix elements
0 P-wave contribution to the pp fusion reaction

@ Muon capture by deuteron

@ Electromagnetic response functions of the deuteron at large
four-momentum transfer

@ Outlook and summary



XEFT with external currents
o degrees of freedom: pions and nucleons (and, sometimes, also the

delta) plus external (electroweak, dark ...) probes.
o NN forces given by pion exchanges and contact interactions.
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o mN processes and nuclear currents that couple to external probes
derived from same theory — many LECs are common!
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The NNLOSim Interactions [Carlsson et al. (2016)]
o Weinberg counting, Gaussian regulators with cutoff Agpp ~ 500 MeV.

o nonperturbative resummation of all NN interactions up to (Q/A)3 in
the Schrodinger equation.

o simultaneous fitting of LECs to mN and NN scattering data, Eg and
(rc2) of 23H and 3He, Q(?H), as well as E{*(3H), with both
experimental and theoretical uncertainties.

o 42 interactions — 7 values for Agpr in the range (450, 600) MeV and
6 different truncations of the NN scattering energy in input data —

have same long-distance properties.

o covariance matrix of the LECs known for each of the 42 interactions
— correlations between all LECs taken into account.

o errors in LECs propagate to calculated observables.
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o Cross section parametrized as S-factor, S(E) = o(E) E e™V™/E o

o “"Gamow window” at E < 10 keV. Maclaurin’s series useful,

S(E) = S(0) + E S'(0) + . ..

o lab experiments practically impossible — rigorous analysis of
theoretical uncertainty important.



Semi-leptonic weak cross sections and decay rates
o0, ~ Z/ (I Hw )2
spins phase space

o Below GeV scale, weak interaction Hamiltonian can be considered a
zero-range coupling between leptonic and nucleonic currents,

G o
Hyy = \/E/d3x [ (5)J%(x) + hic]

o Need matrix elements of nucleonic current operator J“ between
nucleonic initial and final states.



Other calculations

o ‘“realistic” approaches: educated guesses for potentials and currents
[Bethe and Critchfield (1938), Bahcall and May (1969),
Kamionkowsky and Bahcall (1994), Schiavilla et al. (1998)]

o hybrid approach: current operator derived in EFT sandwiched
between phenomenological wave
functions. [Park et al. (1998), Park et al. (2003)]

o Effective Field Theories
o EFT(#) [Kong and Ravndal (2001), Butler and Chen (2001),
Ando et al. (2008), Chen et al. (2013)]
o xEFT [Marcucci et al. (2013)]

o Lattice
o EFT [Rupak and Ravi (2015)]
o QCD [Savage et al. (2017)]



Our error budget

Theory uncertainty ~ 0.7% from:

¢ Numerical solution of Schrodinger equation ~ 0.05%
4 Polynomial fit to S(E) ~ 0.005%
¢ Statistical uncertainties in LECs ~ 0.4%
4 Energy range of the input NN scattering data <0.2%

¢ Cutoff dependence [O(a?) corrections not shown here]:
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o The recommended value [Adelberger et al. (2011)] was obtained from
“range of values of published calculations”.

o The error in the Pisa-JLab calculation [Marcucci et al. (2013)] was
estimated by using two different values for Agpr, 500 and 600 MeV.

o Pisa-JLab calculation is the only one that includes p-wave pp state.
They find a ~ 0.5% contribution at threshold that grows with E.



Pisa-JLab calculation used a basis of Laguerre polynomials to represent
their wave functions,

bm(Bir) o e 30L2(Br), (1)
which makes extension to A > 2 systems more convenient.
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Truncating m at some integer n effectively imposes an UV and an IR
cutoff. Dirichlet boundary at r = L, which scales as

L= (4n+2a+6)57". (2)



For the leading (Gamow-Teller) matrix element at £ = 50 keV :
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Finite basis is widely used to solve nuclear many-body problems.

UV truncation error easy to avoid for nuclear interactions but hard to
model [Konig et al. (2014)].

For IR corrections, equivalent of Liischer’'s formula already exists for
bound state properties [More et al. (2012)].

We derive similar analytic formula for finite-volume correction in
capture/fusion reactions.
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“Luscher's Formula” for capture matrix elements

L
Ix(p: ; L)=/O drut(r) r up(r)

©
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Asge " [1 _ e—Z%O(L—r)} +(1 - 510)(9(%10r) + 0(6_700[21-"”])

o up(r) = sin [pr —nplog(2pr) + oy + 6 — ] + O(%)
o for weak capture, the LO matrix element has A =0

o more generally, A =0,1,..., and is related to the multipolarity of the
transition

At Yoo L > 1, A\, 7,
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“Luscher's Formula” for capture matrix elements
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Figure: The IR correction to the radial matrix element of the LO (Gamow-Teller)
operator for pp fusion at E = 50 keV (left) and 1 MeV (right). The numerical results
were calculated using Harmonic oscillator bases of varying dimensionality.



“Luscher's Formula” for capture matrix elements

o depends on the type of basis functions used only through L.
o contains no fit parameters at A = 2.

o should work for A > 2 nuclei. However, one might have to use our
formula as an extrapolant with v, Aso and §; fit to numerical data
at several L values.

o gets better at larger L and higher energies, i.e. smaller 7.

o needs improvement/extension for application to the rp-process regime.
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Proton-Proton Weak Capture in Chiral Effective Field Theory
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The astrophysical S factor for proton-proton weak capture is calculated in chiral effective field theory
over the center-of-mass relative-energy range 0-100 keV. The chiral two-nucleon potential derived up to

next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including,
beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants entering
the weak current operators are fixed so as to reproduce the A = 3 binding energies and magnetic moments
and the Gamow-Teller matrix element in tritium 8 decay. Contributions from S and P partial waves in the
incoming two-proton channel are retained. The § factor a zero energy is found to be S(0) = (4.030 =
0.006) X 10~ MeV fm?, with a P-wave contribution of 0.020 X 10-2 MeV fm?. The theoretical
uncertainty is due to the fitting procedure of the low-energy constants and to the cutoff dependence.

DOI: 10.1103/PhysRevLett.110.192503 PACS numbers: 25.10-+s, 2620.Cd, 21.30Fe
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P-wave contribution to pp fusion in pionless EFT
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Anticipated size of the p-wave contribution to S-factor ~ O(10%).



Results so far ...
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The MuSun experiment at PSI

The MuSun experiment aims at measuring p~ + d — v, + n+ n capture
rate with 1.5% precision.

o first precise measurement of weak reaction on NN system.
o simplest possible test of semileptonic nuclear calculations.

o input data to constrain pp fusion rate without contaminating it with
NNN physics.



YEFT calculation of muon capture by deuteron

Qo

Higher-energy process than pp fusion — pion-pole diagrams need to

be added: ‘ M* MA><

Combining with the recent Roy-Steiner extraction of ¢;’s
[Hoferichter et al. (2015, 2016), Siemens et al. (2017)], with remaining
relevant LECs fitted NN data, allows us to fix cp from 1Sy capture
rate.

Upto O(Q3), predicts NN electroweak currents and pion-range part of
NNN interaction, ¢p.

Important test of g-dependence of nuclear matrix elements and of the
single-nucleon axial form factor.



Muon capture: Results

NNLOgy @ FpU%) = 2524425 s-1,

NNLOgs 1:  Tp('S) —252.8+4.6 51 1

Additional uncertainty from nucleon axial radius ? : ATp0%) 39 571
Including higher partial waves : I'p = 397.8 s71.
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With NN contacts fitted to Tj., < 200 MeV phaseshifts from Granada PWA, and
2H binding and radius.
2From variation of r3 in the 1-o interval (0.24,0.68) fm?>.



The electromagetic response functions

The longitudinal response function
_ 2
Ri(g,w) = > [(wrlp(a)[)]? 6(w + mg — Ey) (4)
f

and the transverse response function

Z’ (WrliT(@)|wi)[? 6(w + mg — Er) (5)

are related to the cross section in the one-photon exchange limit by

dg((jiw = OMott <{q:§m} R — [q qqﬂ — tan2(9/2)] RT> . (6)
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Next up: vd and v-nucleus scattering
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Picture credit: Bacca and Pastore

o v experiments use event generators that need nuclear physics input

for v-nucleus cross section.

©

The ab initio approach, with chiral EFT interactions, can provide

important benchmark for models that go into these generators.
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Inclusive v-induced breakup of 2H.

Extend to v-induced one/two-nucleon knockout from 4He, 12C, 160,

..., ®Ar using nuclear many-body methods.



Summary

@ Calculated pp fusion cross section. Result agrees with another YEFT
calculation once their result is corrected for basis truncation error.

@ Derived analytic expressions for p-wave contributions to pp fusion
reaction in pionless EFT. Numbers due soon!

@ Performed uncertainty analysis of the 1Sy ud capture rate and
obtained correlation with the pp fusion S-factor.

@ Upcoming experimental u-d capture rate value, combined with
Roy-Steiner determination of ¢;’s, fixes electroweak currents and

pion-exchange part of NNN force completely from 7N and NN sectors.

® Better determination of nucleon axial form factor is required for more
precise calculations of finite-g# nuclear weak processes.

® Will calculate v-nucleus cross sections starting from v-d.
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