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The magnetic field in heavy-ion collisions

In heavy-ion collisions, two magnetic fields from the
projectiles overlap along the same direction out of

reaction plane

eB ∼ (300 MeV)2 ∼ T 2,
but the life time may be short τ . 1 fm/c

Ho-Ung Yee Hydrodynamics and QCD Critical Point in Magnetic Field



Variables in hydrodynamics

Variables of hydrodynamics are local equilibrium
parameters related to conserved quantities

Eg: T (x), uµ(x), µ(x), etc, such that when they are
constant, the system doesn’t evolve

The system changes arbitrarily slowly when these
parameters vary arbitrary small in gradient expansion
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Hydrodynamics with External, Non-dynamic
Magnetic Field?

We will see that the transverse components of fluid
velocity perpendicular to the magnetic field is not a

hydrodynamic variable in a new emerging
hydrodynamics at sufficiently low energy regime

Remark: This is not the case when we have dynamical
electromagnetic fields in magneto-hydrodynamics
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Let us start from the conventional hydrodynamics
with a background magnetic field B

jµ = σEµ , Eµ = Fµνuν

In non-relativistic limit uµ = γ(1,v) ≈ (1,v) we have

j = σv⊥ × B

This can be understood from the fact that in the rest
frame of the fluid with velocity v⊥, there is an electric
field E = v⊥×B, so there is an Ohmic current j⊥ = σE .
Or simply, the microscopic origin is the Lorentz force.

J=σ(VxB)

V

B
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From the spatial component of the energy-momentum
conservation ∂µT µν = F ναjα with the constitutive

relation T 0⊥ = (ε + p)v⊥, we get

∂tv⊥ =
1

(ε + p)
j × B = − σ|B|2

(ε + p)
v⊥ ≡ −

1
τR

v⊥

This is also the Lorentz force

J=σ(VxB)

V

B

F=JxB
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We see that the transverse velocity v⊥ relaxes to zero
with a relaxation time τR = (ε+p)

σ|B|2

They are no longer the hydrodynamic variables below
this time scale, rather they are quasi-normal modes

The basic reason is the loss of conservation of
transverse momentum in a background magnetic field
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Absence of Transverse Conductivity

Suppose we apply a small transverse electric field E⊥.
From Jµ = σFµνuν , we have

j = σ(E⊥ + v⊥ × B)

and the energy-momentum conservation gives

∂tv⊥ =
1

(ε + p)
j × B =

σ

(ε + p)

(
E⊥ × B − B2v⊥

)
= − 1

τR
(veq − v⊥) , veq ≡

E⊥ × B
B2

that is, v⊥ relaxes to veq with the same relaxation time
τR. At equilibrium v⊥ = veq, the current vanishes

j = σ(E⊥ + veq × B) = 0
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E

V->Veq=ExB/B^2

B
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The charged particles get momentum kicks to the
Poynting vector direction E⊥ × B, and the fluid moves
along that direction until it reaches veq. In the frame

with veq, E ′ = γ(E⊥ + veq × B) vanishes.

This is impossible when |E⊥| > B. In this case the
fluid moves with veq = E⊥×B

E2
⊥

where the magnetic field
vanishes in the fluid rest frame, and the electric field

is E ′⊥ = E⊥(1− B2/E2
⊥). We have a current

j = σE ′⊥ = σE⊥
(

1− B2

E2
⊥

)
Θ(E⊥ − B)
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Dynamical Electromagnetism:
Magnetohydrodynamics

E=VxB
B

V

The situation is different in magnetohydrodynamics.
Since EM fields are dynamical, the E and v⊥ can

coordinate with each other to achieve an equilibrium

E + v⊥ × B = 0

v⊥ is now a dynamical variable, and E is slaved to v⊥.
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Given v⊥, from Maxwell eq,

∂tE = −j = −σ(E + v⊥ × B) = −σ(E − Eeq)

where Eeq = −v⊥ ×B. The E relaxes to the equilibrium
value with the relaxation time 1/σ.

From ∂tn = −∇ · j = −σ∇ · E = −σn, the charge
density n is also not a variable in

magnetohydrodynamics.

The variables in magnetohydrodynamics below the
scale of σ are T (x), v(x) (or uµ(x)) and B(x), whereas

the electric field is slaved to be

E = −v × B +
1
σ
∇× B + · · ·
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Alfven Waves

In the presence of background B0, consider a
transverse velocity fluctuation δv⊥, and the electric
field is δE⊥ = δv⊥ × B0. This implies a magnetic field

fluctuation by ∂tδB = ∇× δE⊥ and the current by
δj = ∇× δB. From the Lorentz force

∂tv⊥ =
1

ε + p
δj × B0

we have

∂2
t v⊥ =

1
ε + p

(∇×∇× δE⊥)× B0

=
1

ε + p
(∇×∇× (δv⊥ × B0))× B0

=
B2

0

ε + p
∇2
‖v⊥ , v2

Alfven =
B2

0

ε + p
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Back to non-dynamical B case: Reduction of
hydro variables in the new low energy

hydrodynamics below τR

We have T (x) and 1+1 dimensional longitudinal
velocity uµ‖ (x), but note that x contains all directions

The most general constitutive relation for the
energy-momentum tensor

T µν = (ε + p‖)u
µ
‖u

ν
‖ + p‖g

µν
‖ + p⊥gµν⊥

− η(∂µ⊥uν‖ + ∂ν⊥uµ‖ )− (ζ(uµ‖u
ν
‖ + gµν‖ ) + ζ ′gµν⊥ )(∂‖αuα‖ )

with one shear viscosity η and two bulk
viscosities (ζ, ζ ′)
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Computation of η in finite T perturbative
QCD in leading log

The QCD Boltzmann eq. in leading log is well known
(Monien-Pethick-Ravenhall-Baym,

Arnold-Moore-Yaffe, Hong-Teaney).

∂f
∂t

+ p̂ · ∂f
∂x

+ ṗ · ∂f
∂p

= C[f ]

ṗ = ±qF p̂ × (eB) , C[f ] ∼ g4T log(1/g)
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We assume eB ∼ g4 log(1/g)T 2 so that the cyclotron
orbit size is comparable to the mean-free path

lcyclo ∼ p/(eB) ∼ 1/(g4 log(1/g)T )

lmfp ∼ C−1 ∼ 1/(g4 log(1/g)T )

The collision time is shorter than this lcoll ∼ 1/(gT ), so
there is no effect from the magnetic field to the

collision term
The result depends on the dimensionless strength of

magnetic field B̄ = (eB)/(g4 log(1/g)T 2) ∼ lmfp/lcyclo
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The shear viscosity is obtained from

T⊥z = −η∂⊥vz

in the presence of slowly varying vz(x⊥). The
distribution functions are

f (x ,p) = feq(uµ‖ (x)) + δf

where C[feq] = 0 and we obtain the disturbance δf from
solving the Boltzmann equation that is linear in the

gradient of uµ‖ (x)

δf ∼ C−1 · (∂⊥vz)

Then

T⊥z =

∫
d3p

(2π)3

p⊥pz

Ep

(
νq

∑
F

(δfq + δfq̄) + νgδfg

)
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QCD Critical Point in Magnetic Field:
Dynamic Universality Class

The static universality class of QCD critical point is
the 3D Ising class (or "λφ4 theory", Wilson-Fisher)

This is only about the thermal equilibrium distribution
of order parameter fluctuations averaged in time.

How fast the system approaches to this equilibrium
distribution when it is perturbed, say relaxation rates,

or how in real-time this distribution is realized is a
completely independent "dynamics" questions.

In the critical regime k � ξ−1 (ξ: correlation length),
many systems show "dynamical critical behaviors"

with the scaling law for the relaxation frequency
ω ∼ k z , with z: dynamic critical exponent
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This dynamical evolution is heavily dependent of
conservation laws: for example, the order parameter
may or may not be conserved. In the former case, we
will have a diffusion-type relaxation with ω ∼ D(ξ)k2 in
the hydro-regime of k � ξ−1, while in the latter case,
ω ∼ f (ξ, k → 0) is a finite constant even in k → 0 limit.
The static universality class has no information about

this: it is an additional information on the system

Two systems with the same static universality class
can belong to the different dynamic universality

classes
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Eg. 1) The 3D Ising model:

The order parameter is the net spin density. Since the
spin density is conserved locally, spin fluctuations

can only diffuse.
However, there is no "fluid motion" since there is no

notion of conserved momentum. This gives the
Model C
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Eg. 2) Gas-Liquid Critical Point:

The order parameter is the relative portion of
gas-liquid, equivalently the mass density. Since the
mass is locally conserved, its fluctuations can only
diffuse. In addition, there are fluctuations of "fluid

motions" due to momentum conservation which also
can only diffuse. The fluid motions can deliver the
mass fluctuations from one place to another place,
enhancing the mass diffusion. This mode-coupling
dynamics becomes important in the critical regime,
mutually enhancing the mass and the momentum

diffusion constants. This gives the Model H
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The QCD critical point belongs to the
dynamic universality class of "model H"

(Son-Stephanov)
The model H :

1) the order parameter is conserved,
2) the total momentum of the fluid is conserved

From 1), the order parameter relaxes by a
diffusion-type ω ∼ λ

χ
k2 where λ is the conductivity and

χ is the susceptibility
From 2), the shear component of velocity fluctuations

relax with the shear diffusion-type ω ∼ ηk2

But, all these coefficients are "running" with the
scales k itself, due to non-linear couplings in the

dynamics
λ(k) , η(k)
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With λ(k) ∼ k z−4 and χ(k) ∼ k−2 in the scaling
regime k � ξ−1

ω ∼ λ(k)

χ(k)
k2 ∼ k z

The RG running of these transport coefficients are
obtained by doing Wilsonian momentum shell

integration between bΛ < k < Λ with b < 1. For z > 1,
the ω range is elongated quickly to [−∞,+∞]

Smaller scale fluctuations affect the larger scale
properties and renormalize the transport coefficients

at larger scales. The same physics as in the static
RG, but applied to dynamical equations
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The detailed model equations are diffusion-type with
Langevin thermal noise to satisfy

fluctuation-dissipation to reproduce the static
universality class thermal probability P = e−F

∂ψ

∂t
= λΛz−4∇2 δF

δψ
− gΛz−3+ε/2∇ψ · δF

δj
+ θ

∂j
∂t

= P
(
η̄Λz−2∇2j + gΛz−3+ε/2∇ψ

δF
δψ

+ ξ

)

F =

∫
d4−εx

(
1
2

(∂ψ)2 +
rΛ2

2
ψ2 +

uΛε

4!
ψ4 +

1
2

j‖ · j‖
)

We use the ε-expansion as in the static case, since it
turns out that the dynamic fixed point constant

f = 1
8π2

g2

λη̄
is order ε and we can do perturbation theory

on this small coupling
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It is easiest to do momentum-shell integration after
going to the path integral formulation in the

Schwinger-Keldysh

After all, we get z ≈ 4− Cε = 3.05 with C = 0.947
and ε = 1

The conductivity diverges as λ ∼ ξCε, the shear
viscosity η̄ ∼ ξ(1−C)ε
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Back to non-dynamical B

We observe that the transverse component of
velocity is not a critical variable any more due to a
finite relaxation time τR ∼ 1/(λ⊥B2

0) (λ⊥: transverse
conductivity)

This implies that there is no non-linear dynamics
between λ⊥ and v⊥ fluctuations to give rise to the

previous diverging λ, and λ⊥ is expected to remain
constant as in the model C. Since λ‖ is expected to
diverge, we can neglect λ⊥ in the scaling analysis.

We consider a modification of model H without any
diffusion along dT = 2 transverse dimensions: this
implies a reduction of phase space volume for the

critical non-linear dynamics
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∂ψ

∂t
= λ‖Λ

z−4∇2
‖
δF
δψ
− gΛz−3+ε/2∇‖ψ ·

δF
δj‖

+ θ

∂j‖
∂t

= P
(
η̄⊥Λz−2∇2

⊥j‖ + η̄‖Λ
z−2∇2

‖j‖ + gΛz−3+ε/2∇‖ψ
δF
δψ

+ ξ

)
This is also obvious since we loose the momentum

conservation in the transverse dimensions.

After all computations, we get z ≈ 4− Cε = 3.15 with
C = 0.847 and ε = 1

The C gets smaller than the original model H value of
0.947 due to the reduced phase space volume for the

critical non-linear coupling dynamics
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Thank you!
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