Overview	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	Summa
00000	000000	OO		O
	Quarkoniu and ir	n Free Energy 1 effective field	on the lattice theories	

J. H. Weber^{1,2} in collaboration with A. Bazavov², N. Brambilla¹, P. Petreczky³ and A. Vairo¹ (**TUMQCD** collaboration)

¹Technische Universität München ²Michigan State University ³Brookhaven National Lab

Multi-Scale Problems Using Effective Field Theories, INT-18-1b, Seattle, 05/21/2018

PRD 93 114502 (2016); arXiv:1804.10600

Overview	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	Summary
00000	000000	00	0000000000	
Introduction				

In-medium quarkonia from heavy-ion collisions

- Quarkonium as thermometer of QGP T. Matsui, M. Satz, PL B178 416 (1986)
- Oversimplified picture real-time processes are important.
- First-principle calculation are feasible in an EFT framework

Overview	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	
00000	000000	00	0000000000	
Introduction				

Hierarchies of scales for in-medium quarkonia

• Non-relativistic EFTs with non-relativistic hierarchy of scales

$$M \gg Mv \sim p \sim \frac{1}{r} \gg Mv^2 \sim E$$

- Integrate out heavy scales \Rightarrow NRQCD and pNRQCD
- The thermal medium introduces the thermal scales

$$T \gg gT \gg g^2T$$

- Suitable for dimensionally reduced thermal EFTs
- $\rightarrow\,$ 4-dimensional with one compact direction \Rightarrow effectively 3-dimensional
 - Many different hierarchies between NR and thermal scales are possible

$$p \sim T$$
 , $p \sim gT$, ...

Overview	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	
00000	000000	00	0000000000	
Introduction				

EFTs for in-medium quarkonia

• Thermal hierarchies are manifest for asymptotically high temperatures

$$T
ightarrow \infty \Rightarrow g(T)
ightarrow 0$$
 where $g = \sqrt{4\pi lpha_s}$

- Phenomenologically interesting (HIC): $T < 1 \,\text{GeV}$: $\alpha_s \approx 0.4, g \sim 2$
 - Is the weak-coupling approach appropriate for phenomenology?
 - Are the postulated hierarchies actually realized and distinguishable?
 - We test the different hierarchies and regimes using realistic lattice QCD simulations. We consider heavy quarks in the static limit.
 - We aim at establishing whether the EFT descriptions for quarkonium are suitable for (experimentally) relevant temperatures.

Overview	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	Summary
00000	000000	00	0000000000	
Overview				

Quarkonium Free Energy on the lattice and in effective field theories

- Overview & Introduction
- Correlators of Polyakov loops and $Q\bar{Q}$ free energy $F_{Q\bar{Q}}$ on the lattice
- Deconfinement and onset of color screening: entropy S_Q
- Comparison to weak-coupling EFTs
- Summary

What is new about the lattices of the TUMQCD study?

 6 6.4 6.8 7.2 7.6 8 8.4 8.8 9.2 9.6 TUMQCD collaboration, arXiv:1604.10600

- $N_{\tau} = 4 16$: 12 30 + ens. each, $5.9 \le \beta \le 9.67$, a = 0.0085 0.25 fm.
- HISQ action, errors: $\mathcal{O}(\alpha_s a^2, a^4)$; lattice artefacts are reduced.
- Ensembles: $m_{\pi} \approx 160 \text{ MeV}$; $a \ge 0.04 \text{ fm } \& m_{\pi} \approx 320 \text{ MeV}$; $a \ge 0.025 \text{ fm}$
- All $N_{\tau} < 16$, $m_l = \frac{m_s}{5}$: 3 5 ensembles each, 3 10 × 10⁴ TU each, 7.03 $\leq \beta \leq 8.4$, a = 0.025 - 0.083 fm; T = 0 lattices available. A. Bazavov et al., PRD 85 054503 (2012), PRD 90 094503 (2014) [HotQCD]

A. Bazavov et al., PRD 93 114502 (2016), PRD 97 014510 (2018), arXiv:1804.10600 [TUMQCD]

• r_1 scale for $\beta > 8.4$ from non-perturbative β function PRD 90 094503 (2014)

	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	
00000	• 00 000	00	0000000000	
Free energies of stat	ic quark states			

Polyakov loops and free energies of static quark states

• The Polyakov loop L is the gauge-invariant expectation value of the traced propagator of a static quark (P) and related to its **free energy**: $L(T) = \langle P \rangle_T = \langle \operatorname{Tr} S_Q(x, x) \rangle_T = e^{-F_Q/T}$. L needs renormalization.

A. M. Polyakov, PL 72B (1978); L. McLerran, B. Svetitsky, PRD 24 (1981)

- The Polyakov loop correlator is related to singlet & octet free energies $C_P(r, T) = e^{-F_{Q\bar{Q}}(r, T)} = \frac{1}{9}e^{-F_S/T} + \frac{8}{9}e^{-F_A/T} = \frac{1}{9}C_S(r, T) + \frac{8}{9}C_A(r, T).$ S. Nadkarni, PRD 33, 34 (1986)
- Singlet & octet free energies are gauge dependent.
- C_P is related to the gauge-invariant free energies $f_{s,o}$ of pNRQCD $C_P(r, T) = e^{-F_Q\bar{Q}(r,T)} = \frac{1}{9}e^{-f_S/T} + \frac{8}{9}e^{-f_o/T} + \mathcal{O}(g^6)$ for $rT \ll 1$. N. Brambilla et al., PRD 82 (2010)

	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	
00000	00000	00	0000000000	
Free energies of stati	c quark states			

Renormalization of free energies

• Singlet free energy and potential appear to be related for $rm_D\sim 1$:

$$F_{S}(r,T) = -C_{F}\alpha_{s}\left[\frac{e^{-rm_{D}}}{r} + m_{D}\right] + \mathcal{O}(g^{4}) = V_{S}(r) + \mathcal{O}(g^{3}).$$
N. Brambilla et al., **PRD 82** (2010)

- $\label{eq:rescaled} \begin{array}{l} \rightarrow \ F_S \ {\rm and} \ V_S \ {\rm share \ the \ same \ renormalization \ } 2C_Q, \ {\rm which \ depends \ on \ } T \\ {\rm only \ through \ the \ lattice \ spacing:} \quad V_S = V_S^b + 2C_Q \Rightarrow F_S = F_S^b + 2C_Q. \end{array}$
- Use V_S at T = 0: fix r_1 scale & determine $2C_Q$ using static energy.

A. Bazavov et al., PRD 85 054503 (2012), PRD 90 094503 (2014) [HotQCD]

- Cluster decomposition theorem: $F_{Q\bar{Q}} = F_S = 2F_Q$ for $r \gg 1/T$.
- \rightarrow renormalize as $F_{Q\bar{Q}} = F^b_{Q\bar{Q}} + 2C_Q$ and $F_Q = F^b_Q + C_Q$. \rightarrow PRD 93 114502 (2016)

Beyond $C_Q(\beta)$ from T = 0 lattices – use **direct renormalization** of F_Q \Rightarrow Infer unknown $C_Q(\beta)$ from known $C_Q(\beta^{\text{ref}})$ using different $N_\tau, N_\tau^{\text{ref}}$ $C_Q(\beta) = \left\{ C_Q(\beta^{\text{ref}}) + F_Q^{\text{b}}(\beta^{\text{ref}}, N_\tau^{\text{ref}}) - F_Q^{\text{b}}(\beta, N_\tau) \right\} \rightarrow \frac{\text{S. Gupta et al.,}}{\text{PRD 17 034503 (2008)}}$

	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	
00000	00000	00	0000000000	
Free energies of stati	c quark states			

Renormalization of free energies

• Singlet free energy and potential appear to be related for $rm_D\sim 1$:

$$F_{S}(r,T) = -C_{F}\alpha_{s}\left[\frac{e^{-rm_{D}}}{r} + m_{D}\right] + \mathcal{O}(g^{4}) = V_{S}(r) + \mathcal{O}(g^{3}).$$
N. Brambilla et al., **PRD 82** (2010)

- $\label{eq:rescaled} \begin{array}{l} \rightarrow \ F_S \ {\rm and} \ V_S \ {\rm share \ the \ same \ renormalization} \ 2C_Q, \ {\rm which \ depends \ on} \ T \\ {\rm only \ through \ the \ lattice \ spacing:} \quad V_S = V_S^b + 2C_Q \Rightarrow \ F_S = F_S^b + 2C_Q. \end{array}$
- Use V_S at T = 0: fix r_1 scale & determine $2C_Q$ using static energy.

A. Bazavov et al., PRD 85 054503 (2012), PRD 90 094503 (2014) [HotQCD]

- Cluster decomposition theorem: $F_{Q\bar{Q}}=F_S=2F_Q$ for $r\gg 1/T.$
- \rightarrow renormalize as $F_{Q\bar{Q}} = F^b_{Q\bar{Q}} + 2C_Q$ and $F_Q = F^b_Q + C_Q$. \rightarrow PRD 93 114502 (2016)

Beyond $C_Q(\beta)$ from T = 0 lattices – use **direct renormalization** of F_Q \Rightarrow Infer unknown $C_Q(\beta)$ from known $C_Q(\beta^{\text{ref}})$ using different $N_{\tau}, N_{\tau}^{\text{ref}}$ $C_Q(\beta) = \left\{ C_Q(\beta^{\text{ref}}) + F_Q^{\text{b}}(\beta^{\text{ref}}, N_{\tau}^{\text{ref}}) - F_Q^{\text{b}}(\beta, N_{\tau}) + \Delta_{N_{\tau}, N_{\tau}^{\text{ref}}} \right\} \rightarrow \text{PRD 93 114502 (2016)}$

On the lattice **static quarks** are temporal Wilson lines $W = \prod_{\tau/a=1}^{N_{\tau}} U_0(\tau, x)$.

• Free energy of a $Q\bar{Q}$ pair, $F_{Q\bar{Q}}$, is also called *color-averaged potential*:

$$C_{P}(r,T) = \langle P(0)P^{\dagger}(r) \rangle_{T}^{\text{ren}} = e^{-\frac{F_{Q\bar{Q}}(r,T)}{T}} = \frac{1}{9}e^{-\frac{F_{S}(r,T)}{T}} + \frac{8}{9}e^{-\frac{F_{A}(r,T)}{T}}$$

Static meson correlator and singlet free energy in Coulomb gauge

• The singlet free energy is related to the gauge-fixed static meson correlator at $\tau = 1/T$ in Coulomb gauge

$$C_{\mathcal{S}}^{\mathrm{ren}}(r,T) = \frac{1}{3} \left\langle \sum_{a=1}^{3} W_{a}(0) W_{a}^{\dagger}(r) \right\rangle_{T}^{\mathrm{ren}} = e^{-F_{\mathcal{S}}(r,T)/T}.$$

Effective coupling: vacuum-like and screening regimes

• The effective coupling $\alpha_{Q\bar{Q}}(r, T)$ is a suitable proxy for the force between the $Q\bar{Q}$ pair and for the QCD coupling α_s running with 1/r.

$$\alpha_{Q\bar{Q}}(r,T) = \frac{r^2}{C_F} \frac{\partial V_S(r)}{\partial r}$$

• We generalize $\alpha_{Q\bar{Q}}$ with the singlet free energy F_S instead of $V_S(r)$.

- r_{\max} defined through $\max(\alpha_{Q\bar{Q}})$, which is proxy for the **maximal force**.
- → Weak-coupling approaches may work for $T \gtrsim 300 \,\text{MeV} \ (\alpha_{Q\bar{Q}} \lesssim 0.5)$.

	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	
00000	00000	00	0000000000	
Polyakov loop correla	ators			

Effective coupling: vacuum-like and screening regimes

T_{χ} from chiral observables vs T_{S} from the peak of the entropy

- The entropy peaks at $T_S=153^{+6.5}_{-5}\,{\rm MeV}$ in the continuum limit.
- $T_S(N_\tau) \simeq T_{\chi}(N_\tau)$ for any N_τ bazavov et al., PRD 93 114502 (2016) [TUMQCD], suggests a tight link between chiral symmetry and deconfinement.

e.g. as in glueball-sigma mixing scenarios, Y. Hatta, K. Fukushima PRD 69 097502 (2004).

N.b. T_{χ} defined via O(2) scaling of $\chi_{m,l} \quad (O(4):\,1{-}3.5\,{\rm MeV}$ lower T_{χ})

A. Bazavov et al., PRD 85 054503 (2012) [HotQCD]

T_{χ} from chiral observables vs T_{S} from the peak of the entropy

- Hadron resonance gas (HRG) is limited to only below $T \sim 125$ MeV. static HRG results from: A. Bazavov, P. Petreczky, PRD 87, 094505 (2013)
- $\frac{dS_Q}{dT} > 0$ for $T < T_c$: the number of bound states of bound states including a static quark increases faster than HRG predictions.
- Large number of extra states or strong thermal modification of (low-lying) states are needed already substantially below *T_c*.

T_{χ} from chiral observables vs T_{S} from the peak of the entropy

- $\frac{dS_Q}{dT} < 0$ for $T > T_c$: the static quark interacts with the medium only inside its Debye screening radius, $r \sim 1/m_D \xrightarrow{T \to \infty} 0$.
- Deconfinement and **onset of screening** are clearly defined via $S_Q(T_S) = 0$ in the QCD crossover scenario. MPL A31 no.35, 1630040 (2016)
- The peak is broader and lower for smaller m_{sea} or larger N_f .

Onset of weak coupling in the entropy

- Free energy at leading order $F_Q = -\frac{C_F \alpha_s m_D}{2} + \mathcal{O}(g^4) \stackrel{m_D \sim g^T}{\Rightarrow} S_Q \sim g^3.$ known to NNLO: M. Berwein, et al., **PRD 93** 034010 (2016)
- Poor convergence of expansion in g NLO still missing NLO in α_s .
- Continuum results and NNLO agree for $T\gtrsim 10~T_c.$
- Late onset of weak-coupling behavior: static Matsubara mode is dominant. A. Bazavov et al. [TUMQCD] PRD 93 114502 (2016)

	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	
00000	000000	00	• 00000 00000	
pNRQCD and the v	acuum-like regime			

The vacuum-like regime

- The vacuum-like regime is defined in terms of $rT\ll 1.$
- For $r \ll 1/T$ multipole expansion is appropriate
- \rightarrow the appropriate EFT is *pNRQCD*.
 - The vacuum-like regime has two sub-regimes:

$$\alpha_s/r \ll T$$
 and $\alpha_s/r \gg T$

- For $\alpha_s/r \ll T$ weak-coupling calculations are available up to $\mathcal{O}(g^7)$. M. Berwein, et al., **PRD 93** 034010 (2016), **PRD 96** 014025 (2017)
- For $\alpha_s/r \gg T$ weak-coupling calculations are not available. Medium effects are exponentially suppressed as $e^{-(V_o - V_s)/T} \sim e^{-\alpha_s/rT}$. Brambilla et al., **PRD 78** 014017 (2008)

	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	
00000	000000	00	0000000000	
pNRQCD and the va	cuum-like regime			

Static energy and singlet free energy on the lattice

- $V_{S}(T=0) F_{S}(T>0)$ up to $\mathcal{O}(\alpha_{s}^{3})$ M. Berwein et al., PRD 96 014025 (2017)
- Cancellations in $V_5 F_5$ smoother for r/a < 3, no renormalization.
- For $rT \lesssim 0.1$ & T > 300 MeV: $V_S F_S \sim 0.02 T$, mild N_τ dependence.
- Only mild T dependence up to $rT \lesssim 0.3.$
- For $rT \gtrsim 0.3$ strong medium effects set in rapidly.

Static energy and singlet free energy at weak coupling

- Weak-coupling result for hierarchy $\alpha_s/r \ll T$ vanishes for $r \to 0$ as $V_S(T = 0) - F_S(T > 0) \sim \alpha_s^2 r T$ M. Berwein et al., PRD 96 014025 (2017)
- Partial compensations of non-static gluons/quarks by static gluons.
- Constant term $\propto \alpha_s^3 T$ in F_s from matching of pNRQCD and NRQCD
- If $\alpha_s/r \gg T \rightarrow$ thermal effects exponentially suppressed.

Brambilla et al., PRD 78 014017 (2008)

	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	
00000	000000	00	000000000	
pNRQCD and the va	cuum-like regime			

Polyakov loop correlator in pNRQCD

• pNRQCD: C_P is given in terms of gauge-invariant color-singlet and color-octet free energies up to $\mathcal{O}(g^6(rT)^4)$ as N. Brambilla et al., PRD 82 (2010)

$$C_P(r, T) = e^{-F_{Q\bar{Q}}(r, T)} = \frac{1}{N_c^2} e^{-f_s/T} + \frac{N_c^2 - 1}{N_c^2} e^{-f_o/T}.$$

- The decomposition of C_P into gauge-invariant singlet and octet is defined assuming *weak coupling* realized for which temperatures?
- For $rT \rightarrow 0$ C_P is expressed in terms of **potentials** V_s and V_o at T=0 and of the *adjoint Polyakov loop* L_A at T > 0 N. Brambilla et al., **PRD 82** (2010)

$$C_P(r,T) = e^{-F_{Q\bar{Q}}(r,T)} = \frac{1}{N_c^2} e^{-V_s/T} + \frac{N_c^2 - 1}{N_c^2} L_A e^{-V_o/T} + \mathcal{O}(g^6(rT)^0).$$

 \rightarrow The non-trivial temperature dependence of C_P is mainly due to the interplay and cancellations between **color-singlet** and **color-octet**.

	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	
00000	000000	00	0000000000	
pNRQCD and the vacuum-like regime				

Color octet contribution in the Polyakov loop correlator

$$C_{P}(r,T) = e^{-F_{Q\bar{Q}}(r,T)} = \frac{1}{N_{c}^{2}}e^{-V_{s}/T} + \frac{N_{c}^{2}-1}{N_{c}^{2}}L_{A}e^{-V_{o}/T} + \mathcal{O}(g^{6}(rT)^{0}).$$

- Use lattice quantities as proxies (static energy V_S for singlet potential V_s) to define an **octet free energy** $e^{-F_O/T} = \frac{9}{8} \left(e^{-F_Q\bar{Q}(r,T)} \frac{1}{9}e^{-V_S/T} \right)$
- F_0 decreases rapidly for higher T: the color-octet contribution becomes large, the regime $\alpha_s/r \gg T$ is restricted to shorter distances.

	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	Summary
00000	000000	00	0000000000	
pNRQCD and the vacuum-like regime				

Test of pNRQCD for the Polyakov loop correlator

- Low T = 172 MeV: color-singlet, i.e. V_S , is enough for reconstructing C_P (no sensitivity to color-octet). Data are in the regime $\alpha_s/r \gg T$.
- High T = 666 MeV: cancellation between **color-singlet** and **-octet** leads to $1/r^2$ behavior in $F_{Q\bar{Q}}$. Data are in the regime $\alpha_s/r \ll T$.

• Casimir scaling violation $8V_o + V_s = 3\frac{\alpha_s^3}{r} \left[\frac{\pi^2}{4} - 3\right]$ B. Kniehl et al., PLB 607 (2005)

$$C_P(r,T) = e^{-F_{Q\bar{Q}}(r,T)} = \frac{1}{N_c^2} e^{-V_s/T} + \frac{N_c^2 - 1}{N_c^2} L_A e^{-V_o/T} + \mathcal{O}(g^6(rT)^0).$$

- A recent calculation of C_P at NNNLO using pNRQCD in the regime $\alpha_s/r \ll T$ up to order g^7 . M. Berwein et al., arXiv:1704.07266
- Both results agree, although the uncertainty of the weak-coupling result is large even at $T \gtrsim 10 T_c$.
- For $rT \ll 0.2$ the hierarchy $\alpha_s/r \ll T$ eventually breaks down.

	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	
00000	000000	00	000000000000	
EQCD and the electric screening regime				

The screening regime

- The screening regime is defined in terms of $r \gtrsim 1/m_D$.
- Hierarchy is automatically built into dimensionally-reduced EFT.
- \rightarrow The appropriate EFT is *EQCD*.
- The screening regime has two sub-regimes:

$$r \sim 1/m_D$$
 and $r \gg 1/m_D$

• In the electric screening regime, $r \ll 1/m_D$, chromo-electric fields are important. Weak-coupling calculations are available up to $\mathcal{O}(g^5)$.

S. Nadkarni, PRD 33 (1986)

M. Laine et al., $\mathsf{JHEP}\ 0703\ 054\ (2007)$

M. Berwein, et al., PRD 96 014025 (2017)

• In the asymptotic screening regime, $r \gg 1/m_D$, Chromo-magnetic fields are dominant. Non-perturbative methods are required.

M. Laine, M. Vepsalainen, JHEP 0909 023 (2009)

- NLO singlet free energy (two-gluon exchange is deferred to NNLO) $F_{S}^{\text{sub}}|_{\text{NLO}} = F_{S}^{\text{sub}}|_{\text{LO}} \left(1 + \alpha_{s} N_{c} r T [2 - \ln(2x) - \gamma_{E} + e^{2x} E_{1}(x)]\right), \ x = 2 r m_{D}$
- Correction due to field renormalization: $\delta F_{S}^{\text{sub}} = F_{S}^{\text{sub}}|_{\text{LO}} \left(1 - \frac{rm_{D}}{2} \delta Z_{1}\right) \qquad \text{M. Berwein, et al., PRD 96 014025 (2017)}$ • $\Gamma_{\text{in the electric enversions performs in controlled by the performance of the performance$

• F_5 in the electric screening regime is controlled by the parameter m_D .

- Strong signal-to-noise problem \rightarrow calculation requires larger volumes.
- Use data for $N_\tau=4$ with (estimated) correction for cutoff effects.
- We compare to the full $\mathcal{O}(g^5)$ result. M. Berwein, et al., PRD 96 014025 (2017)
- Previous EFT calculations had been missing important pieces.

- Severe signal-to-noise problem \rightarrow no continuum limit. Cutoff effects are mild for $N_{\tau} \geq 8$, but require estimates of asymptotic behavior.
- Asymptotic screening mass factor 1.6-2 larger than m_D for F_S
- Asymptotic screening mass only slightly larger than $2m_D$ for $F_{Q\bar{Q}}$
- Good agreement with results from direct EQCD simulations.

A. Hart, et al., NPB 586 443 (2000)

Overview	Quarkonium free energies	Entropy and color screening	Free energies and weak coupling	Summary
00000	000000	00	000000000	•
Summary				

Summary

- We study color screening and deconfinement using the renormalized Polyakov loop correlator and related observables.
- We extract the continuum limit of static quark correlators in $N_f=2+1$ QCD up to $T\sim 2\,{\rm GeV}$ and down to $r\sim 0.01\,{\rm fm}.$
- Static quark correlators are vacuum-like up to $rT \lesssim 0.3$ and are well-described by pNRQCD for T > 300 MeV.
- In C_P we find numerical evidence for the distinction between the regimes of singlet dominance, $\alpha_s/r \gg T$, and singlet-octet cancellaton, $\alpha_s/r \ll T$. For singlet dominance we can define an effective coupling.
- Static quark correlators have an electric screening regime up to $0.3 \lesssim rT \lesssim 0.6$ and are well-described by EQCD for T > 300 MeV. The perturbative Debye mass controls this regime.
- We identify in the entropy $S_Q = -\frac{dF_Q}{dT}$ crossover behavior at $T \sim T_c$ and extract $T_S = 153^{+6.5}_{-5}$ MeV from the entropy, in agreement with $T_{\chi} = 160(6)$ MeV (chiral susceptibilities, O(2) scaling fits, $\frac{m_l}{m_s} = \frac{1}{20}$).
- + S_Q becomes weakly coupled only at very high temperatures, $T\gtrsim 10\,T_c.$