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Open Quantum Systems



Density matrix

An arbitrary statistical ensemble of quantum states can be represented

by a density matrix ρ, which is

• Hermitian: ρ† = ρ;

• positive: 〈ψ|ρ|ψ〉 ≥ 0 for all nonzero states |ψ〉;
• and can be normalized to have unit trace: Tr{ρ} = 1.

The time evolution of the density matrix is described by the von Neumann equation:

i
dρ

dt
= [H, ρ]

which follows from the Schrödinger equation for |ψ〉. The evolution equation

• is linear in ρ;

• preserves the trace of ρ;

• is Markovian.



Open quantum system

In quantum information theory, one separates the full system into a subsystem of interest

and its environment. A density matrix ρ for the subsystem can be obtained from the

density matrix ρfull for the full system by the partial trace over the environment states:

ρ = Trenvironment {ρfull}

In general the evolution of ρ is non-Markovian.

The evolution is Markovian if the time during which the subsystem is observed is much

larger than the time scale for correlations between the subsystem and the environment.

We must also restrict to the low-frequency behavior of the subsystem, which can be

accomplished by smoothing out over times larger than the correlation time scale.



Lindblad equation

The density matrix ρ for the subsystem necessarily satisfies the three basic properties:

it is Hermitian, positive, and it can be normalized.

If further the time evolution is linear in ρ, preserves the trace of ρ, is Markovian and the

linear operator that determines the time evolution of ρ is completely positive

⇒ then this require the time evolution equation to have the Lindblad form

dρ

dt
= −i[H, ρ] +

∑

i

(CiρC
†
i − 1

2
{C†

i Ci, ρ})

where H is a Hermitian operator and the Cn’s are an additional set of operators called

collapse operators.

◦ Lindblad CMP 48 (1976) 119

Gorini Kossakowski Sudarshan JMP 17 (1976) 821



Numerical solutions: QuTiP

There exist numerical toolboxes for open quantum systems. An example is QuTiP.

◦ Johansson, Nation, Nori, CPC 183 (2012) 1760, 184 (2013) 1234



Quarkonium in medium

as an open quantum system



Quarkonium as a multiscale system

Quarkonium being a composite system it is characterized by several energy scales:

• the scales of a non-relativistic bound state

(v is the relative heavy-quark velocity; v ∼ αs for a Coulombic bound state):

M (mass),

Mv (momentum transfer, inverse distance),

Mv2 (kinetic energy, binding energy, potential V ), ...

• the thermodynamical scales:

T (temperature), ...

T may stand for the inverse correlation length between system and environment.

For definiteness we will assume that the system is locally in thermal equilibrium so

that a slowly varying time-dependent temperature can be defined.

The non-relativistic scales are hierarchically ordered: M ≫Mv ≫Mv2



Non-relativistic EFTs of QCD

The existence of a hierarchy of energy scales calls for a description of the system in

terms of a hierarchy of EFTs.

thermodynamical
scales

T

NRQCD

EFTs

pNRQCD

M

M v

non−relativistic
scales

M v
2

◦ Brambilla Pineda Soto Vairo RMP 77 (2005) 1423

Brambilla Ghiglieri Petreczky Vairo PRD 78 (2008) 014017



pNRQCD

L = −1

4
Fa
µνF

µν a +

nf
∑

i=1

q̄i iD/ qi +

∫

d3rTr
{

S† (i∂0 − hs) S + O† (iD0 − ho)O
}

• LO in r

θ(T ) e−iThs θ(T ) e−iTho

(

e−i
∫
dtAadj

)

+VATr
{

O†r · gE S + S†r · gEO
}

+
VB

2
Tr

{

O†r · gEO+O†Or · gE
}

• NLO in r

O†r · gE S O†{r · gE, O}

+ · · ·



Quarkonium in a fireball

• After the heavy-ion collisions, heavy quark-antiquarks propagate freely up to 0.6 fm.

• From 0.6 fm to the freeze-out time tF they propagate in the medium.

• We assume the medium infinite, homogeneous and isotropic.

• We assume the heavy quarks comoving with the medium.

• We assume the medium to be locally in thermal equilibrium,

i.e., the temperature T of the medium changes (slowly) with time:

T = T0

(

t0

t

)v2
s

, t0 = 0.6 fm, v2s =
1

3
(sound velocity)

◦ Bjorken PRD 27 (1983) 140



Fireball’s initial temperature

The initial temperature T0 may account for different centralities

centrality (%) 〈b〉 (fm) T0 (MeV)

0− 20 4.76 466

0− 10 3.4 471

10− 20 6.0 461

20− 90 11.6 360

20− 30 7.8 449

30− 40 9.35 433

40− 50 10.6 412

30− 50 9.9 425

50− 70 12.2 366

50− 100 13.6 304

◦ CMS PRC 84 (2011) 024906

Miller Reygers Sanders Steinberg ARNPS 57 (2007) 205



Quarkonium as a Coulombic bound state

The lowest quarkonium states (1S bottomonium and charmonium, 2S bottomonium) are

the most tightly bound. For these we assume the hierarchy of energy scales

M ≫ 1

r
∼Mαs ≫ T ∼ gT ≫ any other scale, v ∼ αs

This qualifies the bound state as Coulombic:

• quark-antiquark color singlet Hamiltonian = hs =
p2

M
− 4

3

αs

r

• quark-antiquark color octet Hamiltonian = ho =
p2

M
+
αs

6r

The octet potential describes an unbound quark-antiquark pair.



Density matrices

• Subsystem: heavy quarks/quarkonium

• Environment: quark gluon plasma

We may define a density matrix in pNRQCD for the heavy quark-antiquark pair in a

singlet and octet configuration:

〈r′,R′|ρs(t′; t)|r,R〉 ≡ Tr{ρfull(t0)S†(t, r,R)S(t′, r′,R′)}

〈r′,R′|ρo(t′; t)|r,R〉 δ
ab

8
≡ Tr{ρfull(t0)Oa†(t, r,R)Ob(t′, r′,R′)}

t0 ≈ 0.6 fm is the time formation of the plasma.

The system is in non-equilibrium because through interaction with the environment

(quark gluon plasma) singlet and octet quark-antiquark states continuously transform in

each other although the number of heavy quarks is conserved: Tr{ρs}+Tr{ρo} = 1.



Closed-time path formalism

In the closed-time path formalism we can represent the density matrices as 12

propagators on a closed time path:

〈r′,R′|ρs(t′; t)|r,R〉 = 〈S1(t
′, r′,R′)S†

2(t, r,R)〉

〈r′,R′|ρo(t′; t)|r,R〉 δ
ab

8
= 〈Ob

1(t
′, r′,R′)Oa†

2 (t, r,R)〉

“1”

“2”

Differently from the thermal equilibrium case 12 propagators are relevant

(in thermal equilibrium they are exponentially suppressed).

12 propagators are not time ordered, while 11 and 22 operators select the forward time

direction ∝ θ(t− t′), θ(t′ − t).



Expansions

• The density of heavy quarks is much smaller than the one of light quarks:

we expand at first order in the heavy quark-antiquark density.

• We consider T much smaller than the Bohr radius of the quarkonium:

we expand up to order r2 in the multipole expansion.

The evolution depends on the density at initial time: non Markovian evolution.



Resummation

Resumming (t− t0)× self-energy contributions à la Schwinger–Dyson ...

The resummation is accurate at order r2 and consistent with unitary evolution at leading order.



Evolution equations I

... and differentiating over time we obtain the coupled evolution equations:

dρs(t; t)

dt
= −i[hs, ρs(t; t)]− Σs(t)ρs(t; t)− ρs(t; t)Σ

†
s(t) + Ξso(ρo(t; t), t)

dρo(t; t)

dt
= −i[ho, ρo(t; t)]− Σo(t)ρo(t; t)− ρo(t; t)Σ

†
o(t) + Ξos(ρs(t; t), t)

+Ξoo(ρo(t; t), t)

• The evolution equations are now valid for large time.

• The evolution equations are Markovian.



Interpretation

• The self energies Σs and Σo provide the in-medium induced mass shifts, δms,o,

and widths, Γs,o, for the color-singlet and color-octet heavy quark-antiquark

systems respectively:

−iΣs,o(t) + iΣ†
s,o(t) = 2Re (−iΣs,o(t)) = 2δms,o(t)

Σs,o(t) + Σ†
s,o(t) = −2 Im (−iΣs,o(t)) = Γs,o(t)

• Ξso accounts for the production of singlets through the decay of octets, and Ξos

and Ξoo account for the production of octets through the decays of singlets and

octets respectively. There are two octet production mechanisms/octet

chromoelectric dipole vertices in the pNRQCD Lagrangian.

• The conservation of the trace of the sum of the densities, i.e., the conservation of

the number of heavy quarks, follows from

Tr
{

ρs(t; t)
(

Σs(t) + Σ†
s(t)

)}

= Tr {Ξos(ρs(t; t), t)}

Tr
{

ρo(t; t)
(

Σo(t) + Σ†
o(t)

)}

= Tr {Ξso(ρo(t; t), t) + Ξoo(ρo(t; t), t)}



Evolution equations II

An alternative way of writing the evolution equations is

dρ

dt
= −i[H, ρ] +

∑

nm

hnm

(

Ln
i ρL

m
i

† − 1

2
{Lm

i
†Ln

i , ρ}
)

ρ =





ρs 0

0 ρo



 H =





hs +
Σs−Σ†

s
2i

0

0 ho +
Σo−Σ†

o
2i





Σs(t) = ri Aso †
i (t) Σo(t) =

ri Aos †
i (t)

8
+

5

16
ri Aoo †

i (t)

L0
i =





0 0

0 1



 ri L1
i =





0 0

0 5
16
Aoo

i
†





L2
i =





0 1

1 0



 ri L3
i =





0 1
8
Aos

i
†

Aso
i

† 0





with Aso
i (t) =

g2

6

∫ t

t0

dt2 e
ihs(t2−t) rj eiho(t−t2) 〈Ea,j(t2,0)E

a,i(t,0)〉



Positivity

The matrix hnm is

h =















0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0















.

If h were a positive definite matrix then it would always be possible to redefine the

operators Ln
i in such a way that the evolution equation would be of the Lindblad form.

Since, however, h is not a positive definite matrix, the Lindblad theorem does not

guarantee that the equations may be brought into a Lindblad form.



From the evolution equations to the Lindblad equation

• We observe the evolution for large times (∝ freeze-out time).

Hence for t− t0 larger than any other time scale that appears in the problem

∫ t

t0

dt2 f(t2) ≈
∫ ∞

0
ds f(t− s)

• We assume the evolution to be quasistatic: 1/T × dT/dt ∼ 1/t≪ E.

The time dependence of the temperature can be neglected at leading order

〈Ea,i(t,0)Ea,j(t− s,0)〉 ≈ 〈Ea,i(s,0)Ea,j(0,0)〉 ≈ 〈Ea,i(0,0)Ea,j(−s,0)〉



An exact solution: the static limit case 1/r ≫ T ≫ E

We consider the evolution equations for static quarks under the condition

1

r
≫ T ≫ E ∼ αs

r

Since T ≫ E, energy-dependent exponentials can be set equal to one:

(Σs +Σ†
s)ρs = Ξos ≡ Γsρs

(Σo +Σ†
o)ρo − Ξoo = Ξso =

1

8
(Σs +Σ†

s)ρo ≡ Γs

8
ρo

The evolution equations read

dρs r(t; t)

dt
= Γs(t)

[

ρo r(t; t)

8
− ρs r(t; t)

]

dρo r(t; t)

dt
= −Γs(t)

[

ρo r(t; t)

8
− ρs r(t; t)

]



An exact solution: the static limit case 1/r ≫ T ≫ E

The initial condition describes quark-antiquark pair at distance r with arbitrary color:

ρs(t0; t0) = ρs r(t0; t0)|r〉〈r| ρo(t0; t0) = ρo r(t0; t0)|r〉〈r|

The solution is

ρs r(t; t) =
ρs r(t0; t0)

9

[

1 + 8e
−

∫
t
t0

dt′

u(t′)

]

+
ρo r(t0; t0)

9

[

1− e
−

∫
t
t0

dt′

u(t′)

]

ρo r(t; t)

8
=

ρs r(t0; t0)

9

[

1− e
−

∫
t
t0

dt′

u(t′)

]

+
ρo r(t0; t0)

9






1 +

e
−

∫
t
t0

dt′

u(t′)

8







with u(t) =
8

9

1

Γs(t)
.

• t− t0 ≪ u(t) the thermal medium has a small impact on the distribution of quarkonia.

• t− t0 ≫ u(t) the density approaches the large-time asymptotic value.



The static limit case without equilibration

We consider the general case

Γs(T ) = Γs(T0)

(

T

T0

)n

If nv2s > 1 the color-singlet density never reaches the thermal equilibrium value 1/9.

Instead it approaches the value

1

9
− 8

9

(

ρo r(t0; t0)

8
− ρs r(t0; t0)

)

e
9
8

Γs(T0)t0
1−nv2

s

The decrease with time of the decay width in the fireball is so fast that the static

quark-antiquark densities do not have time to equilibrate.



The static limit case with equilibration

If nv2s < 1, the color-singlet and color-octet densities reach their thermal equilibrium

values exponentially fast. This is the situation realized by static quarks and antiquarks in

the weakly-coupled plasma in the case αs/r ≫ mD , for which n = 1:

Γs(t) = Σs(t) + Σ†
s(t) = 4α3

s T
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The static limit case with power-like equilibration

If nv2s = 1 we have

ρs r(t; t) = 1− ρo r(t; t) =
1

9
− 8

9

(

ρo r(t0; t0)

8
− ρs r(t0; t0)

)(

t0

t

) 9
8
Γs(T0)t0

Color-singlet and color-octet densities reach their thermal equilibrium values with a

power-like falloff. This situation is realized by static quarks and antiquarks in the

strongly-coupled plasma, T ∼ mD , for which n = 3:

Γs(t) = Σs(t) + Σ†
s(t) = κ(t) r2 ∼ T 3r2

2 4 6 8 10

time(fm)

0.0

0.2

0.4

0.6

0.8

1.0

si
n
g
le
t 
p
ro
b
a
b
ili
ty

only singlet initially

only octet initially



Results:

The Out of Equilibrium Evolution



Heavy quark-antiquarks in a strongly coupled medium: T ≫ E

If E ≪ T ∼ mD the Lindblad equation for a strongly coupled plasma reads

dρ

dt
= −i[H, ρ] +

∑

i

(CiρC
†
i − 1

2
{C†

i Ci, ρ})

ρ =





ρs 0

0 ρo





H =





hs 0

0 ho



+
r2

2
γ(t)





1 0

0 7
16



 ,

C0
i =

√

κ(t)

8
ri





0 1
√
8 0



 , C1
i =

√

5κ(t)

16
ri





0 0

0 1







κ

Low energy parameters may be determined by numerical calculations in lattice QCD.

κ is the heavy-quark momentum diffusion coefficient:

κ =
g2

18
Re

∫ +∞

−∞

ds 〈TEa,i(s,0)φab(s, 0)Eb,i(0,0)〉 =

0 1 2 3 4 5

κ / T
3

1αa

1αb

1βa

1βb

2αa

2αb

2βa

2βb

3a   

BGM

m
o

d
el

strategy (i)

strategy (ii)

T ~ 1.5 T
c

◦ Francis Kaczmarek Laine Neuhaus Ohno PRD 92 (2015) 116003



γ

γ =
g2

18
Im

∫ +∞

−∞

ds 〈TEa,i(s,0)φab(s, 0)Eb,i(0,0)〉

γ is known only in perturbation theory:

γ = −4ζ(3)
αs

π
Tm2

D +
16

3
ζ(3)α2

sT
3

A value that at leading order is negative.

◦ Brambilla Ghiglieri Petreczky Vairo PRD 78 (2008) 014017



Initial conditions

• The production of singlets is αs suppressed compared to that of octets.

◦ Cho Leibovich PRD 53 (1996) 6203

• Our choice at t = 0 is

ρs = N |0〉〈0|, ρo =
δ

αs(M)
ρs

N is fixed by Tr{ρs}+Tr{ρo} = 1

δ fixes the octet fraction with respect to the singlet.



Nuclear modification factor

We compute the nuclear modification factor RAA:

RAA(nS) =
〈n,q|ρs(tF ; tF )|n,q〉
〈n,q|ρs(0; 0)|n,q〉



Time evolution of RAA for 1S and 2S bottomonium

1.0 1.5 2.0 2.5 3.0
time(fm)

0.0

0.2

0.4

0.6

0.8

1.0

R
A
A

1S
2S

0.6 0.7 0.8 0.9 1.0 1.1
time(fm)

0.0

0.2

0.4

0.6

0.8

1.0

R
A
A

1S
2S

30− 50% centrality (left) and 50− 100% centrality (right)

γ = 0 and δ = 1



Bottomonium nuclear modification factor vs CMS data
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◦: theory results; △: CMS data; red: Υ(1S); green: Υ(2S).

◦ data from CMS coll. PRL 109 (2012) 222301 and PLB 770 (2017) 357



Bottomonium nuclear modification factor vs CMS data
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Conclusions

We have shown how the heavy quark-antiquark pair out-of-equilibrium evolution can be

treated in the framework of pNRQCD. With respect to previous determinations:

• the medium may be a strongly-coupled plasma (not necessarily a quark-gluon

plasma) whose characteristics are determined by lattice calculations;

• the total number of heavy quarks, i.e., Tr{ρs}+Tr{ρo}, is preserved by the

evolution equations;

• the non-abelian nature of QCD is fully accounted for;

• the treatment does not rely on classical approximations.

The evolution equations follow from assuming the inverse size of the quark-antiquark

system to be larger than any other scale of the medium and from being accurate at first

non-trivial order in the multipole expansion and at first order in the heavy-quark density.

Under some conditions (large time, quasistatic evolution, temperature much larger than

the inverse evolution time of the quarkonium) the evolution equations are of the Lindblad

form. Their numerical solution provides RAA(nS) close to experimental data.



Outlook

Several improvements are possible starting from this first analysis, e.g.,

• use more refined models for the hydrodynamical evolution than the Bjorken one;

• use more refined initial conditions accounting for higher-order production

mechanisms, or for state of matters, like the color glass condensate;

• include the momentum dependence of the quark-antiquark pairs;

• determine κ and γ on unquenched lattices for wide ranges of temperature;

• relax the conditions leading to the Lindblad form and solve directly the

non-Lindblad evolution equations;

• ...
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