Lattice for Quarkonium in Medium Péter Petreczky

Introduction: temporal correlators and spectral functions, EFT and potential models

Spatial meson correlation functions: From light mesons to quarkonia Bazavov, Karsch, Maezawa, Mukherjee, PP, PRD91 (2015) 054503 PP, Sharma, work in progress

Quarkonium correlators and spectral functions from NRQCD S. Kim, PP, A. Rothkopf, PRD91 (2015) 054511 S. Kim, PP, A. Rothkopf, work in progress

Summary: a consistent big picture

INT Program INT-18-1b, INT, Seattle, May 22, 2018

Meson correlators and spectral functions

$$\rho(\omega, p, T) = \frac{1}{2\pi} \operatorname{Im} \int_{-\infty}^{\infty} dt e^{i\omega t} \int d^3 x e^{ipx} \langle [J(x, t), J(0, 0)] \rangle_T$$

Melting is see as progressive broadening and disappearance of the bound state peaks

Due to analytic continuation spectral functions are related to Euclidean time quarkonium correlators that can be calculated on the lattice

$$D(\tau, p, T) = \int d^3x e^{ipx} \langle J(x, -i\tau)J(0, 0) \rangle_T$$

$$D(\tau, p, T) = \int_0^\infty d\omega \rho(\omega, p, T) \frac{\cosh(\omega \cdot (\tau - 1/(2T)))}{\sinh(\omega/(2T))} \xrightarrow{\text{MEM}} \begin{array}{c} \sigma(\omega, p, T) \\ \longrightarrow \end{array} \begin{array}{c} 1S \text{ charmonium survives to} \\ 1.6T_c ?? \end{array}$$

Umeda et al, EPJ C39S1 (05) 9, Asakawa, Hatsuda, PRL 92 (2004) 01200, Datta, et al, PRD 69 (04) 094507, ...

Temperature dependence of temporal charmonium correlators

temperature dependene of $D(\tau, T)$

$$D(\tau,T) = \int_0^\infty d\omega \rho(\omega,T) \frac{\cosh(\omega \cdot (\tau - 1/(2T)))}{\sinh(\omega/(2T))}$$

If there is no *T*-dependence in the spectral function, $D(\tau, T)/D_{rec}(\tau, T)=1$

$$D_{rec}(\tau,T) = \int_0^\infty d\omega \rho(\omega,T=0) \frac{\cosh(\omega \cdot (\tau - 1/(2T)))}{\sinh(\omega/(2T))}$$

Scalar $\Leftrightarrow 1P$

Datta, Karsch, P.P., Wetzorke, PRD 69 (2004) 094507

Effective field theory approach for heavy quark bound states and potential models

The heavy quark mass provides a hierarchy of different energy scales

Brambilla, Ghiglieri, PP, Vairo, PRD 78 (08) 014017

The scale separation allows to construct sequence of effective field theories: NRQCD, pNRQCD

Potential model appears as the tree level approximation of pNRQCD and can be systematically improved in principle Potential has an imaginary part at T>0

Lattice QCD based potential model

If the octet-singlet interactions due to ultra-soft gluons are neglected :

$$\left[i\partial_0 - \frac{-\nabla^2}{m} - V_s(r,T)\right]S(r,t) = 0 \quad \Longrightarrow \quad \sigma(\omega,T) \quad \text{(justified if e.g. } mv^2 \ll T, gT, \Lambda_{QCD})$$

potential model is not a model but the tree level approximation of corresponding EFT that can be systematically improved

Test the approach vs. LQCD : quenched approximation, $F_1(r,T) < \text{ReV}_s(r,T) < U_1(r,T)$, ImV(r,T)≈0 Mócsy, P.P., PRL 99 (07) 211602, PRD77 (08) 014501, EPJC ST 155 (08) 101

The role of the imaginary part for charmonium

Take the upper limit for the real part of the potential allowed by lattice calculations

Mócsy, P.P., PRL 99 (07) 211602,

Take the perturbative imaginary part Burnier, Laine, Vepsalainen JHEP 0801 (08) 043

no charmonium state could survive for *T*> 245 MeV this is consistent with our earlier analysis of Mócsy, PP, PRL 99 (07) 211602, Riek and Rapp, arXiv:1012.0019 [nucl-th]

The role of the imaginary part for bottomonium

Take the upper limit for the real part of the potential allowed by lattice calculationsMócsy, PP, PRL 99 (07) 211602,Take the perturbative imaginary part

Im $V_s(r) = 0$: 2S state survives for T > 245 MeV 1S state could survive for T > 450 MeV Take the perturbative imaginary part Burnier, Laine, Vepsalainen JHEP 0801 (08) 043

with imaginary part: 2S state dissolves for T>245 MeV 1S states dissolves for T>450 MeV

Excited bottomonium states melt for T > 245 MeV ; 1S state melts for T > 450 MeV

Use more realistic T > 0 potential calculated on the lattice, Burnier, Kaczmarek, Rothkopf, PRL 114 (2015) 082001, JHEP12 (2015) 101

Temporal vs spatial meson correlators

Spatial correlation functions can be calculated for arbitrarily large separations $z \to \infty$ $G(z,T) = \int_0^{1/T} d\tau \int dx dy \langle J(\mathbf{x}, -i\tau) J(\mathbf{0}, 0) \rangle_T, \quad G(z \to \infty, T) = Ae^{-m_{scr}(T)z}$ but related to the same spectral functions $G(z,T) = 2 \int_{-\infty}^{\infty} dp e^{ipz} \int_{0}^{\infty} d\omega \frac{\rho(\omega, p, T)}{\omega}$

Low T limit :

 $\sigma(\omega, p, T) \simeq A_{mes} \delta(\omega^2 - p^2 - M_{mes}^2)$ $A_{mes} \sim |\psi(0)|^2 \rightarrow m_{scr}(T) = M_{mes}$

$$G(z,T) \simeq |\psi(0)|^2 e^{-M_{mes}(T)z}$$

High T limit :

$$m_{scr}(T) \simeq 2\sqrt{m_c^2 + (\pi T)^2}$$

Temporal meson correlator only avalaible for $\tau T < \frac{1}{2}$ and thus may not be very sensitive to In-medium modifications of the spectral functions; also require large N_{τ} (difficult in full QCD)

Spatial correlators can be studied for arbitrarily large separations and thus are more sensitive to the changes in the meson spectral functions; do not require large N_{τ} (easy in full QCD).

Lattice calculations: spatial meson correlators in 2+1 flavor QCD for ssbar, scbar and ccbar sectors using $48^3 \times 12$ lattices and highly improved staggered quark (HISQ) action (HotQCD), physical m_s and $m_{\pi}=161$ MeV.

Temperature dependence of spatial meson correlators

Medium modifications of meson correlators increase with T, but decrease with heavy quark content; larger for IP charmonium state than for IS charmonium state

Temperature dependence of meson screening masses

Qualitatively similar behavior of the screening masses for ssbar, scbar and ccbar sectors

Screening Masses of opposite parity mesons become degenerate at high T (restoration of chiral and axial symmetry)

Screening masses are close to the free limit $2 (m_q^2 + (\pi T)^2)^{\frac{1}{2}}$ at T > 200 MeV, T > 250 MeV, T > 300 MeV for ssbar, scbar and ccbar sectors, respectively.

Temperature dependence of meson screening masses (cont'd)

- At low *T* changes in the meson screening Masses $\Delta M = M_{scr}(T) - M_{T=0}$ are indicative of the changes in meson binding energies
- ΔM is significant already below T_c
- Above the transition temperature the changes in ΔM are comparable to the meson binding energy except for 1S charmonium (sequential melting)
 - For charmonium qualitative agreement with potential models

Bottomonium screening masses

S. Sharma, PP, work in progress

1S bottomonia screening masses agree with the T=0 result for T<400 MeV All bottomonia screening masses are similar to the free theory expectations for T>400 MeV \Rightarrow Qualitatively consistent picture with potential model expectations

Quarkonia to a fairly good approximation are non-relativistic bound state $p_Q \sim M_Q v \ll M_Q$

EFT approach: integrate the physics at scale of the heavy quark mass

```
NRQCD is the EFT at scale \langle M_Q
```

Heavy quark fields are non-relativistic Pauli spinors:

$$L_{NRQCD} = \psi^{\dagger} \left(D_{\tau} - \frac{D_i^2}{2M_Q} \right) \psi + \chi^{\dagger} \left(D_{\tau} + \frac{D_i^2}{2M_Q} \right) \chi + \ldots + \frac{1}{4} F_{\mu\nu}^2 + \bar{q} \gamma_{\mu} D_{\mu} q$$

Advantages:

- the large quark is not a problem for lattice calculations, lattice study of bottomonium is feasible (usually a M_Q << 1, which is challenging)
- The structure of the spectral function is simpler => more sensitivity to the bound state properties
- Quarkonium correlators are not periodic and can be studied at larger time extent (=1/T) => more sensitivity to bound state properties

NRQCD on the Lattice

Inverse lattice spacing provides a natural UV cutoff for NRQCD provided $a^{-1} \leq 2M_Q$ (lattices cannot be too fine)

Quark propagators are obtained as initial value problem:

 $S_Q(x,\tau+a) = U_4^{\dagger}(1 - \frac{p^2}{2M_Q}\Delta\tau)S_Q(x,\tau), \ \Delta\tau = a/n \qquad \text{well behaved if } naM_Q < 3$ Davies, Thacker, PRD 45 (1992) 915

$$D(\tau) = \sum_{x} \langle O(x,\tau) S_Q(x,\tau) O^{\dagger}(0,0) S_Q^{\dagger}(x,\tau) \rangle_T, \quad O(^3S_1;x,\tau) = \sigma_i, \quad O(^3P_1;x,\tau) = \Delta_i \sigma_j - \Delta_j \sigma_i$$

Thacker, Lepage, PRD43 (1991) 196

The energy levels in NRQCD are related to meson masses by a constant lattice spacing dependent shift, e.g. $M_{\Upsilon(1S)} = E_{\Upsilon(1S)} + C_{\text{shift}}(a)$

Light d.o.f (gluons, u,d,s quarks) are represented by gauge configurations from HotQCD, $m_s = m_s^{phys}$, $m_{u,d} = m_s/20 \leftrightarrow m_{\pi} = 161 \text{ MeV}$ T > 0: $48^3 \times 12$ lattices, $T_c = 159 \text{ MeV}$, the temperature is varied by varying $a \leftrightarrow \beta = 10/g^2$ Bazavov et al, PRD85 (2012) 054503

 $\Rightarrow 140 \text{MeV} \le T \le 407 \text{MeV} \qquad 2.759 \ge aM_b \ge 0.954 \text{ (ok if } n = 2, 4) \\ 0.757 \ge aM_c \ge 0.427 \text{ (ok if } n \ge 8) \end{cases}$

Bayesian Reconstruction of spectral functions

$$D(\tau) = D(\mathbf{p} = 0, \tau) = \sum_{\mathbf{x}} D(\mathbf{x}, \tau) = \int_{-2M_q}^{\infty} d\omega \ e^{-\omega\tau} \ \rho(\omega)$$

N

Discretize the integral

$$D_i^{
ho} = \sum_{l=1}^{N_{\omega}} \exp[-\omega_l \tau_i] \rho_l \Delta \omega_l$$
 and find ρ_l

using Bayesian approach, i.e. maximizing

Likelihood:

$$P[D|\rho I] = \exp(-L)$$

 $P[\rho|D,I] \propto P[D|\rho,I]P[\rho|I]$

$$L[\rho] = \frac{1}{2} \sum_{ij} (D_i - D_i^{\rho}) C_{ij} (D_j - D_j^{\rho})$$

Prior probability:

$$P[\rho|I] = \exp[S]$$

$$S[\rho] = \alpha \sum_{l} \left(1 - \frac{\rho_l}{m_l} + \log\left[\frac{\rho_l}{m_l}\right] \right) \Delta \omega_l.$$

no restriction on the search space no flat directions

Different from MEM !

Burnier Rothkopf, PRL 111 (2013) 182003

Bottomonium spectral functions at T=0

But excited states, Υ' , Υ'' , χ'_b cannot be resolved well

Define the NRQCD energy shift $C_{\text{shift}}(a)$ by fixing the Υ peak to PDG $E_{\Upsilon} + C_{\text{shift}}(a) = 9.46030 \text{ GeV}$

 \Rightarrow prediction for mass of other states: η_b , χ_{b0} , χ_{b1} , h_b

Charmonium spectral functions at T=0

Well resolved J/ψ peak

Only the position of the χ_{c1} state can be reliably determined

Excited states cannot be determined, artifacts at $\Delta \omega > 3$ GeV Define the NRQCD energy shift $C_{\text{shift}}(a)$ by fixing the J/ψ peak to PDG $E_{J/\psi} + C_{\text{shift}}(a) = 3.097 \text{ GeV}$ \Rightarrow prediction for mass of other states: η_c , χ_{c0} , χ_{c1} , h_c

How Well NQRCD Works for Bottomonium ?

NRQCD can reproduce the hyperfine splitting in bottomonium with accuracy < 20-40 MeV depending on the lattice spacing

> NRQCD can reproduce the spin averaged *1P-1S* splitting in bottomonium

How Well NQRCD Works for Charmonium ?

Temperature dependence of the bottomonium correlators

change in Υ correlator < 2%

change in χ_{b1} correlator < 7%

 \Rightarrow hints for sequential melting pattern: stronger medium modification

of χ_{b1} spectral function than for Υ spectral function

Temperature dependence of the charmonium correlators

change in J/ψ correlator < 5%

change in χ_{c1} correlator < 12%

 \Rightarrow hints for sequential melting pattern: changes in the J/ψ correlator are about the same as in the χ_b correlator (same size); changes in the χ_c correlators are factor of two larger

Reconstructing Spectral Functions at T>0

Two main problems:

- 1) $\tau < 1/T \Rightarrow$ limited temporal extent at high T
- 2) relatively small number of time slices ($N_{\tau} = 12$ in our study)

Study these effects at T = 0 by using only the first 12 data points:

Decreasing $\tau_{max} = 1/T$ leads to broadening of the bound state peak

(to be taken into account in comparison T = 0 and T > 0 spectral functions)

Bottomonium Spectral Functions at T>0

Compare T = 0, T > 0 and free spectral functions reconstructed using the same systematics ($\tau_{max} = 1/T$ and $N_{data} = 12$)

Both Υ and χ_b survive up to temperature T > 249 MeV

Onia masses at T>0

Onia masses from the peak positions:

Shifts in the peak location is smaller at T>0 than in the vacuum for the same temporal extent \rightarrow the actual onia masses decrease with increasing temperature

Kim, PP, Rothkopf, arXiv:1704.05221

Onia masses at T>0

- Temporal meson correlators are not very sensitive to the changes in the spectral functions because of the limited time extent temporal extent at T>0
- Spatial meson correlators and NRQCD correlators are sensitive to the temperature to the changes in the spectral functions and are consistent with sequential melting picture: smaller onia dissolve at higher temperatures, e.g. and 1S onia survive till higher temperature than 1P onia

The behavior of the correlation functions is consistent with the potential model findings

To obtain information about the quarkonia properties from Bayesian analysis systematic effects have to be taken into account: so far only information that can be obtained is the decrease in the quarkonium masses

Back-up:

