Hydrodynamics as optimized/renormalized perturbation theory

Masaru Hongo RIKEN iTHEMS Program "Multi-Scale Problems Using Effective Field Theories", INT , 2018/5/11 Based on Hayata-Hidaka-MH-Noumi PRD (2015), MH Ann.Phys (2017)

Today's main Question Q. Why $T^{\mu\nu} = (e+p)u^{\mu}u^{\nu} + pg^{\mu\nu} + \cdots$?

Copyrighted Material

Fluid Mechanics

2nd edition

Landau and Lifshitz Course of Theoretical Physics Volume 6

L.D. Landau and E.M. Lifshitz Institute of Physical Problems, USSR Academy of Sciences, Moscow

Answer2. My talk

Outline

MOTIVATION;

Relativistic hydrodynamics from quantum field theory?

QFT for initial local Gibbs distribution

Derivation of Navier-Stokes eq. & anomaly-induced transports

Hydrodynamics is

- Effective theory for macroscopic dynamics
- Universal description, not depending on details
- Only conserved quantity

http://www.bnl.gov/rhic/news2/news.asp?a=1403&t=pr

Motivation

Neutron Star (Magnetar)

Microscopic

$\mathcal{L}_{\mathrm{QCD}}$

QFT

d.o.f. Quark, Gluon

http://www.bnl.gov/rhic/news2/news.asp?a=1403&t=pr

-Question. How to bridge the gap between micro and macro?

Macroscopic

Hydrodynamics

 $T(x), \ \vec{v}(x), \ \mu(x)$

d.o.f.

How to construct hydrodynamics

How to construct hydrodynamics

Another motivation

Hydrodynamics is

- Effective theory for macroscopic dynamics
- Universal description, not depending on details
- Only conserved quantity

http://www.bnl.gov/rhic/news2/news.asp?a=1403&t=pr

Hydrodynamics is

- Effective theory for macroscopic dynamics
- Universal description, not depending on details
- Only conserved quantity ~ symmetry of system

Symmetry breaking & Hydro

Spontaneous symmetry breaking

Micro: Selecting vacuum

Macro: Superfluid

Symmetry breaking by quantum anomaly

Micro : π^{o} decay

Macro: Anomalous transport

Anomaly-induced transport

Motivation: How to construct hydro?

Motivation: How to construct hydro?

Nakajima (1957), Mori (1958), McLennan (1960) Zubarev et al. (1979), Becattini et al. (2015) Hayata-Hidaka-MH-Noumi (2015)

> Local Thermal equil. + Small deviation

Also applicable to strong coupling

<u>Physical Properties</u> EOS, Kubo formula, ...

 μ_R

Origin of Chiral transport?

S

Micro

(QCD/QED/...)

More on "What is hydro?"

Hydrodynamic equation?

Hydrodynamic equation?

Conservation laws -

$$\nabla_{\mu} \langle \hat{T}^{\mu\nu}(x) \rangle = 0, \quad \nabla_{\mu} \langle \hat{J}^{\mu}(x) \rangle = 0$$

Simple case: Diffusion equation

- Conservation law

$$\frac{\partial n}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0$$

Physical properties -

Value of diffusion constant D

$$\frac{\partial n}{\partial t} - D\nabla^2 n = 0$$

Hydrodynamic equation?

Conservation laws

$$\nabla_{\mu}\langle \hat{T}^{\mu\nu}(x)\rangle = 0, \quad \nabla_{\mu}\langle \hat{J}^{\mu}(x)\rangle = 0$$

V Constitutive relations Avg. of current op. is determined by charge density! $\langle \hat{T}^{\mu\nu}(x) \rangle = T^{\mu\nu}[T^{0\nu}, J^0] = T^{\mu\nu}[\beta^{\nu}, \nu]$ $\langle \hat{J}^{\mu}(x) \rangle = J^{\mu}[T^{0\nu}, J^0] = J^{\mu}[\beta^{\nu}, \nu]$

- V Physical properties Equation of State (static): $p = p[T^{0\nu}, J^0] = p[\beta^{\nu}, \nu]$ Trasport coeff. (dynamic): $L_i = L_i[T^{0\nu}, J^0] = L_i[\beta^{\nu}, \nu]$

Outline

MOTIVATION;

Relativistic hydrodynamics from quantum field theory?

APPROACH;

QFT for initial local Gibbs distribution

Derivation of Navier-Stokes eq. & anomaly-induced transports

Non-equilibrium S tatistical Mechanics in a Nutshell (4 pages)

How to treat dissipation?

Friction-like phenomena between velocity gradient From the 2nd law **Entropy** Ĵ How the 2nd law is derived for equilibrium?

2nd law: Kelvin's principle

$$\begin{split} \nu(t) \\ \hline & \swarrow (t) \\ \hline & \checkmark (t) \\ \hline & = \sum_{i} \frac{\vec{p}_{i}^{2}}{2m} + V(\vec{r}_{1}, \cdots, \vec{r}_{N}; \nu) \\ \hline & \text{Consider a operation s.t.} \\ \nu(t) : \quad \underbrace{\nu(0)}_{\nu_{0}} = \underbrace{\nu(\tau)}_{\nu_{1}} \\ \hline & \text{When the system evolves as} \quad \Gamma \to \Gamma_{t} \quad \text{with the Hamilton EoM,} \\ \text{work defined by} \quad W(\Gamma) \equiv H_{\nu_{1}}(\Gamma_{t}) - H_{\nu_{0}}(\Gamma) \\ \text{satisfies} \quad \langle W(\Gamma) \rangle \geq 0 \quad \text{for equilibrium state } \Gamma \end{split}$$

Derivation of Kelvin's principle

For equilibrium state $\Gamma \quad \langle W(\Gamma) \rangle \ge 0$ is satisfied For canonical ensamble $\ni \Gamma$ $\int d\Gamma \frac{1}{Z} e^{-\beta \mathcal{H}_{\nu_0}(\Gamma)} W(\Gamma) \ge 0$

Proof.

$$\frac{1}{Z_{\beta,\nu_0}} \int d\Gamma e^{-\beta W(\Gamma)} e^{-\beta \mathcal{H}_{\nu_0}(\Gamma)} = \frac{1}{Z_{\beta,\nu_0}} \int d\Gamma e^{-\beta (H_{\nu_1}(\Gamma_t) - H_{\nu_0}(\Gamma))} e^{-\beta \mathcal{H}_{\nu_0}(\Gamma)}$$
$$= \frac{1}{Z_{\beta,\nu_0}} \int d\Gamma_t \left| \frac{d\Gamma_t}{d\Gamma} \right| e^{-\beta H_{\nu_1}(\Gamma_t)} = \frac{Z_{\beta,\nu_1}}{Z_{\beta,\nu_0}} = 1$$

 $\langle e^{-\beta W(\Gamma)} \rangle = 1 \ge 1 - \beta \langle W(\Gamma) \rangle \qquad \qquad \langle W(\Gamma) \rangle \ge 0$

Supplement: Jarzynski equality

Recalling $Z_{\beta,\nu} = e^{-\beta F(\beta,\nu)}$ leads to

[Jarzynski, 1997]

$$\langle e^{-\beta W(\Gamma)} \rangle = e^{-\beta (F(\beta,\nu_1) - F(\beta,\nu_0))}$$

Proof.

$$\frac{1}{Z_{\beta,\nu_0}} \int d\Gamma e^{-\beta W(\Gamma)} e^{-\beta \mathcal{H}_{\nu_0}(\Gamma)} = \frac{1}{Z_{\beta,\nu_0}} \int d\Gamma e^{-\beta (H_{\nu_1}(\Gamma_t) - H_{\nu_0}(\Gamma))} e^{-\beta \mathcal{H}_{\nu_0}(\Gamma)} \\ = \frac{1}{Z_{\beta,\nu_0}} \int d\Gamma_t \left| \frac{d\Gamma_t}{d\Gamma} \right| e^{-\beta H_{\nu_1}(\Gamma_t)} = \frac{Z_{\beta,\nu_1}}{Z_{\beta,\nu_0}}$$

Lesson from simple exercise

Prepare an appropriate initial ensamble which describes local thermodynamics

Local thermal equilibrium

Determined only by local temperature, local velocity... at that time

How to describe local thermal equil.

What is Local Gibbs distribution?

Gibbs distribution-

What is the state with maximizing information entropy: $S(\hat{\rho}) = -\text{Tr}\hat{\rho}\log\hat{\rho}$ under constraints: $\langle \hat{H} \rangle = E = \text{const.}, \ \langle \hat{N} \rangle = N = \text{const.}$

Answer:

 $\hat{\rho}_{\rm G} = e^{-\beta \hat{H} - \nu \hat{N} - \Psi[\beta, \nu]}$ Lagrange multipliers: $\Lambda^a = \{\beta, \nu = \beta \mu\}$

-Local Gibbs distribution –

What is the state with maximizing information entropy: $S(\hat{\rho}) = -\text{Tr}\hat{\rho}\log\hat{\rho}$ under constraints: $\langle \hat{T}^{0}_{\ \mu}(x) \rangle = p_{\mu}(x), \ \langle \hat{J}^{0}(x) \rangle = n(x)$ Answer: $\hat{\rho}_{\text{LG}} = e^{-\int d^{d-1}x(\beta^{\mu}\hat{T}^{0}_{\ \mu} + \nu\hat{J}^{0}) - \Psi[\beta^{\mu},\nu]}$

Lagrange multipliers: $\lambda^{a}(x) = \{\beta^{\mu}(x), \nu(x)\}$

Introducing background metric

 $= \begin{cases} (1) \text{ Formulation becomes manifestly covariant} \\ (2) \text{ Background metric plays a role as external field coupled to } T^{\mu\nu} \end{cases}$

Dissipative part

Difficulty of problem

[Sasa PRL (2014), Hayata, Hidaka, MH, Noumi PRD (2015)]

Initial density operator:
$$\hat{\rho}(\bar{t}_0) = \hat{\rho}_{LG}[\bar{t}_0; \lambda] \equiv \exp\left[-\hat{S}[\bar{t}_0; \lambda]\right]$$

Taking Heisenberg picture:

$$\langle \hat{\mathcal{O}}(x) \rangle = \mathrm{Tr}\hat{\rho}(\bar{t}_0)\hat{\mathcal{O}}(x)$$

LG dist. with $\beta^{\mu}(x)$

• Naive perturbation breaks down due to time evolution!!

Renormalized/optimized perturbation When we cannot solve problem exactly & naive perturbation breaks down Choosing an appropriate "Ground State" & reorganizing perturbation often works!!

= Renormalized/optimized perturbation

In the case of hydrodynamics, an appropriate **"Ground State"** is Local thermal equilibrium!!

RPT/OPT for Time evolution

$$\langle \hat{\mathcal{O}}(x) \rangle = \langle \hat{U} \hat{\mathcal{O}}(x) \rangle_{\overline{t}}^{\mathrm{LG}}$$

Condition to determine parameters

$$\langle \hat{\mathcal{O}}(x) \rangle = \langle \hat{U} \hat{\mathcal{O}}(x) \rangle \frac{\mathrm{LG}}{\overline{t}} \leftarrow \text{Parameter ?}$$

Fastest Apparent Convergence (FAC)Corrections for conserved charges should be minimized! $\langle \hat{U}\delta\hat{\mathcal{J}}_{a}^{\bar{0}}(x)\rangle_{\bar{t}}^{\mathrm{LG}} = 0 \iff \langle \hat{\mathcal{J}}_{a}^{\bar{0}}(x)\rangle = \langle \hat{\mathcal{J}}_{a}^{\bar{0}}(x)\rangle_{\bar{t}}^{\mathrm{LG}}$

Determine new parameters $\beta^{\mu}(x)$, $\nu(x)$ on $\Sigma_{\overline{t}}$ Avg. of current is calculable !! (in principle)
Entropy production and 2nd law

$$\begin{split} \hat{\Sigma}[\bar{t},\bar{t}_{0}] &\equiv \hat{S}[\bar{t};\lambda] - \hat{S}[\bar{t}_{0};\lambda] & (\delta\hat{\mathcal{O}} \equiv \hat{\mathcal{O}} - \langle\hat{\mathcal{O}}\rangle_{\bar{t}}^{\mathrm{LG}}) \\ &= -\int_{\bar{t}_{0}}^{\bar{t}} d^{4}x \left[(\nabla_{\mu}\beta^{\nu})\delta\hat{T}^{\mu}_{\ \nu} + (\nabla_{\mu}\nu)\delta\hat{J}^{\mu} \right] \end{split}$$

- Quantum fluctuation theorem & 2nd law of thermodynamics

$$\langle \hat{\Sigma}[\bar{t},\bar{t}_0] \rangle \ge 0 \iff \langle \hat{S}[\bar{t},\lambda] \rangle - \langle \hat{S}[\bar{t}_0,\lambda] \rangle \ge 0$$

- $\hat{\Sigma}$ is proportional to derivatives: $\langle \hat{O}(x) \rangle = \langle \hat{U} \hat{O}(x) \rangle_{\overline{t}}^{\mathrm{LG}}$

"Expansion of $\hat{U} = T_{\tau} e^{\int_0^1 d\tau \hat{\Sigma}_{\tau}[\bar{t},\bar{t}_0]}$ " = Derivative expansion

Dissipative derivative expansion

$$\begin{split} \langle \hat{T}^{\mu\nu}(x) \rangle &= \langle \hat{U}\hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} \\ &= \langle \hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} + \int_{0}^{1} d\tau \langle T_{\tau}\hat{\Sigma}_{\tau}[\bar{t},\bar{t}_{0}]\hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} + \cdots \\ &\equiv \langle \delta\hat{T}^{\mu\nu}(x) \rangle_{(0,1)} \\ \langle \hat{J}^{\mu}(x) \rangle &= \langle \hat{U}\hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} \\ &= \langle \hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} + \int_{0}^{1} d\tau \langle T_{\tau}\hat{\Sigma}_{\tau}[\bar{t},\bar{t}_{0}]\hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} + \cdots \end{split}$$

 $\equiv \langle \delta J^{\mu}(x) \rangle_{(0,1)}$

Constitutive relation & Kubo formula

Constitutive relations -

$$\begin{split} \langle \delta \hat{T}^{\mu\nu}(x) \rangle_{(0,1)} &= -\frac{\zeta}{\beta} h^{\mu\nu} h^{\rho\sigma} \nabla_{\rho} \beta_{\sigma} - 2\frac{\eta}{\beta} h^{\mu\rho} h^{\nu\sigma} \nabla_{\langle \rho} \beta_{\sigma \rangle} \\ \langle \delta \hat{J}^{\mu}(x) \rangle_{(0,1)} &= -\frac{\kappa}{\beta} h^{\mu\nu} \nabla_{\nu} \nu \qquad \qquad (h^{\mu\nu} n_{\nu} = 0) \end{split}$$

Kubo formulae -

$$\begin{aligned} \zeta &= \beta(x) \int_{-\infty}^{\bar{t}} d^4 x' \int_0^1 d\tau \langle e^{\hat{K}\tau} \tilde{\delta} \hat{p}(x') e^{-\hat{K}\tau} \tilde{\delta} \hat{p}(x) \rangle_{\bar{t}}^{\mathrm{LG}} \\ \eta &= \frac{\beta(x)}{(d+1)(d-2)} \int_{-\infty}^{\bar{t}} d^4 x' \int_0^1 d\tau \langle e^{\hat{K}\tau} \tilde{\delta} \hat{\pi}^{\mu\nu}(x') e^{-\hat{K}\tau} \tilde{\delta} \hat{\pi}^{\rho\sigma}(x) \rangle_{\bar{t}}^{\mathrm{LG}} h_{\mu\rho}(x) h_{\nu\sigma}(x) \\ \kappa &= \frac{\beta(x)}{d-1} \int_{-\infty}^{\bar{t}} d^4 x' \int_0^1 d\tau \langle e^{\hat{K}\tau} \tilde{\delta} \hat{J}^{\mu}(x') e^{-\hat{K}\tau} \tilde{\delta} \hat{J}^{\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} h_{\mu\nu}(x) \end{aligned}$$

Outline

Relativistic hydrodynamics from quantum field theory?

APPROACH;

QFT for initial local Gibbs distribution

(1) Renormalized/optimized perturbation for dissipative part

(2)

Derivation of Navier-Stokes eq. & anomaly-induced transports

Non-dissipative part

Non-dissipative part

$$\langle \hat{T}^{\mu\nu}(x) \rangle = \langle \hat{U}\hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}}$$

$$= \left\langle \hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} + \int_{0}^{1} d\tau \langle T_{\tau}\hat{\Sigma}_{\tau}[\bar{t},\bar{t}_{0}]\hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} + \cdots \right\}$$

$$= \langle \delta\hat{T}^{\mu\nu}_{(1)}(x) \rangle$$

$$\langle \hat{J}^{\mu}(x) \rangle = \langle \hat{U} \hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}}$$
$$= \left\langle \hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} + \int_{0}^{1} d\tau \langle T_{\tau} \hat{\Sigma}_{\tau}[\bar{t}, \bar{t}_{0}] \hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} + \cdots \right.$$
$$= \left\langle \delta \hat{J}^{\mu}_{(1)}(x) \rangle$$

.

(Local) Thermodynamic Potential

$$\begin{split} & - \text{Masseiu-Planck functional} \\ & \Psi[\bar{t};\lambda] \equiv \log \operatorname{Tr} \exp\left[\int d\Sigma_{\bar{t}\nu} \left(\beta^{\mu}(x)\hat{T}^{\nu}_{\ \mu}(x) + \nu(x)\hat{J}^{\nu}(x)\right)\right] \\ & = \log \operatorname{Tr} \exp\left[-\int d^{3}\bar{x}\sqrt{-g} \left(\beta^{\bar{\mu}}(\bar{x})\hat{T}^{\bar{0}}_{\ \bar{\mu}}(\bar{x}) + \nu(\bar{x})\hat{J}^{\bar{0}}(\bar{x})\right)\right] \end{split}$$

Variation formula for local equil.

[Banerjee et al. (2012), Jensen et al. (2012), Haehl et al. (2015), MH (2017)]

Variation formula in "hydrostatic gauge"

$\langle \hat{T}^{\mu\nu}(x) \rangle_{\overline{t}}^{\mathrm{LG}} =$	2	δ	$ar{)}\Psi[ar{t};\lambda],$	$\langle \hat{J}^{\mu}(x) \rangle_{\overline{t}}^{\mathrm{LG}} =$	_ 1	δ	$ar{ar{b}}\Psi[ar{t};\lambda]$
	$\overline{\sqrt{-g}}$	$\overline{\delta g_{\mu u}(x)}$			$=\overline{\sqrt{-g}}$	$\overline{\delta A_{\mu}(x)} \stackrel{\text{\tiny Q}}{=} $	

(Local) Thermodynamic Potential

$$\begin{split} & - \text{Masseiu-Planck functional} \\ & \Psi[\bar{t};\lambda] \equiv \log \operatorname{Tr} \exp\left[\int d\Sigma_{\bar{t}\nu} \left(\beta^{\mu}(x)\hat{T}^{\nu}_{\ \mu}(x) + \nu(x)\hat{J}^{\nu}(x)\right)\right] \\ & = \log \operatorname{Tr} \exp\left[-\int d^3\bar{x}\sqrt{-g} \left(\beta^{\bar{\mu}}(\bar{x})\hat{T}^{\bar{0}}_{\ \bar{\mu}}(\bar{x}) + \nu(\bar{x})\hat{J}^{\bar{0}}(\bar{x})\right)\right] \end{split}$$

Hydrostatic gauge fixing

We can choose the time direction vector $t^{\mu}(x) \equiv \partial_{\bar{t}} x^{\mu}$ -Hydrostatic gauge fixing Let us choose $t^{\mu}(x) = \beta^{\mu}(x)/\beta_0, \ A_{\bar{0}}(x) = \nu(x)$

Variation formula for local equil.

[Banerjee et al. (2012), Jensen et al. (2012), Haehl et al. (2015), MH (2017)]

Variation formula in "hydrostatic gauge"

 $^{\prime}9\mu\nu$

 $\langle \hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta g_{\mu\nu}(x)} \Psi[\bar{t};\lambda], \ \langle \hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{1}{\sqrt{-g}} \frac{\delta}{\delta A_{\mu}(x)} \Psi[\bar{t};\lambda]$

- **Proof.** Consider time derivative of
$$\Psi[\lambda]$$

 $\partial_{\bar{t}}\Psi[\bar{t};\lambda] = \int d^{d-1}\bar{x}\sqrt{-g} \left(\nabla_{\mu}\beta_{\nu}\langle\hat{T}^{\mu\nu}\rangle^{\mathrm{LG}}_{\bar{t}} + (\nabla_{\mu}\nu + F_{\nu\mu}\beta^{\nu})\langle\hat{J}^{\mu}\rangle_{\bar{t}} \right)$
 $= \int d^{d-1}\bar{x}\sqrt{-g} \left(\frac{1}{2} (\nabla_{\mu}\beta_{\nu} + \nabla_{\nu}\beta_{\mu})\langle\hat{T}^{\mu\nu}\rangle^{\mathrm{LG}}_{\bar{t}} + (\beta^{\nu}\nabla_{\nu}A_{\mu} + A_{\nu}\nabla_{\mu}\beta^{\nu})\langle\hat{J}^{\mu}\rangle_{\bar{t}} \right)$
 $= \int d^{d-1}\bar{x}\sqrt{-g} \left(\frac{1}{2} \pounds_{\beta}g_{\mu\nu}\langle\hat{T}^{\mu\nu}\rangle^{\mathrm{LG}}_{\bar{t}} + \pounds_{\beta}A_{\mu}\langle\hat{J}^{\mu}\rangle_{\bar{t}} \right)$
On the other hand, since $t^{\mu} = \beta^{\mu}$, we can express the LHS as
 $\partial_{\bar{t}}\Psi[\bar{t};\lambda] = \int d^{d-1}\bar{x} \left(\pounds_{\beta}g_{\mu\nu}\frac{\delta\Psi}{\delta a} + \pounds_{\beta}A_{\mu}\frac{\delta\Psi}{\delta A} \right)$

Matching them gives the above variation formula!

Q. How can we calculate $\Psi \equiv \log Z$?

Thermal QFT in a Nutshell

Gibbs dist.:
$$\hat{\rho}_G = \frac{e^{-\beta(\hat{H}-\mu\hat{N})}}{Z} = e^{-\beta(\hat{H}-\mu\hat{N})-\Psi[\beta,\nu]}$$

$$\begin{split} &- \text{Thermodynamic potential with Euclidean action}} \\ &\Psi[\beta,\nu] = \log \operatorname{Tr} e^{-\beta(\hat{H}-\mu\hat{N})} = \log \int d\varphi \langle \pm \varphi | e^{-\beta(\hat{H}-\mu\hat{N})} | \varphi \rangle \\ &= \log \int_{\varphi(\beta)=\pm\varphi(0)} \mathcal{D}\varphi \, e^{+S_E[\varphi]}, \quad S_E[\varphi] = \int_0^\beta d\tau \int d^3x \, \mathcal{L}_E(\varphi,\partial_\mu\varphi) \end{split}$$

QFT for local thermal equilibrium?

Local thermal QFT can describe anomaly-induced transport

s
$$\mu_R \neq \mu_L$$

$$\vec{j} \propto \vec{B}$$
 N

Chiral Magnetic Effect

Chiral Vortical Effect

Case study I: Scalar field

 $\mathcal{L} = -\frac{g^{\mu\nu}}{2} \partial_{\bar{\mu}} \phi \partial_{\bar{\nu}} \phi - V(\phi)$ $\hat{T}^{\mu\nu} \equiv \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta q_{\mu\nu}} = \partial^{\mu} \hat{\phi} \partial^{\nu} \hat{\phi} + g^{\mu\nu} \mathcal{L}(\hat{\phi}, \partial_{\rho} \hat{\phi})$ $\Psi[\bar{t};\lambda] = \log \operatorname{Tr} \exp \left[-\int d^{d-1}\bar{x}\sqrt{-g}\beta^{\mu}(x)\hat{T}^{\bar{0}}_{\ \mu}(x)\right]$ $= \log \int \mathcal{D}\phi \exp\left(S_E[\phi, \beta^{\mu}]\right) = \log \int \mathcal{D}\phi \exp\left(S_E[\phi, \tilde{g}]\right)$

$$\begin{split} S[\phi,\beta^{\mu}] &= \int_{0}^{\beta_{0}} d\tau \int d^{3}\bar{x}\sqrt{-g}e^{\sigma}u^{\bar{0}} \left[-\frac{e^{-2\sigma}}{2u^{\bar{0}}u_{\bar{0}}}(i\dot{\phi})^{2} - \frac{-e^{-\sigma}u^{\bar{i}}}{u^{\bar{0}}u_{\bar{0}}}(i\dot{\phi})\partial_{\bar{i}}\phi - \frac{1}{2}\left(\gamma^{\bar{i}\bar{j}} + \frac{u^{\bar{i}}u^{\bar{j}}}{u^{\bar{0}}u_{\bar{0}}}\right)\partial_{\bar{i}}\phi\partial_{\bar{j}}\phi - V(\phi) \right] \\ &= \int_{0}^{\beta_{0}} d\tau \int d^{3}\bar{x}\sqrt{-\tilde{g}} \left[-\frac{\tilde{g}^{\bar{\mu}\bar{\nu}}}{2}\partial_{\bar{\mu}}\phi\partial_{\bar{\nu}}\phi - V(\phi) \right] \qquad \left(e^{\sigma(\bar{x})} \equiv \beta(\bar{x})/\beta_{0}\right) \end{split}$$

ψ in terms of thermal metric

$$\Psi[\bar{t};\lambda] = \log \int \mathcal{D}\phi \exp\left(S_E[\phi,;\tilde{g}]\right)$$

 $\begin{array}{c|c} \hline & \text{Thermal metric} \\ \tilde{g}_{\bar{\mu}\bar{\nu}} = \begin{pmatrix} -e^{2\sigma} & e^{\sigma}u_{\bar{j}} \\ e^{\sigma}u_{\bar{i}} & \gamma_{\bar{i}\bar{j}} \end{pmatrix} \\ (e^{\sigma(\bar{x})} \equiv \beta(\bar{x})/\beta_0) \\ \end{array} \begin{array}{c} \tilde{g}^{\bar{\mu}\bar{\nu}} = \begin{pmatrix} \frac{e^{-2\sigma}}{u^{\bar{0}}u_{\bar{0}}} & -\frac{e^{-\sigma}u^{\bar{j}}}{u^{\bar{0}}u_{\bar{0}}} \\ -\frac{e^{-\sigma}u^{\bar{i}}}{u^{\bar{0}}u_{\bar{0}}} & \gamma^{\bar{i}\bar{j}} + \frac{u^{\bar{i}}u^{\bar{j}}}{u^{\bar{0}}u_{\bar{0}}} \end{pmatrix} \end{array}$

• Interpretation of above result $\Psi[\bar{t};\lambda] \text{ is described by QFT in "curved spacetime" s. t.}$ $d\tilde{s}^{2} = -e^{2\sigma}(d\tilde{t} + a_{\bar{i}}dx^{\bar{i}})^{2} + \gamma'_{\bar{i}\bar{j}}dx^{\bar{i}}dx^{\bar{j}}$ $(a_{\bar{i}} \equiv e^{-\sigma}u_{\bar{i}}, \quad \gamma'_{\bar{i}\bar{j}} \equiv \gamma_{\bar{i}\bar{j}} + u_{\bar{i}}u_{\bar{j}}, \quad d\tilde{t} = -id\tau)$

Case study 2: Dirac field

$$\mathcal{L} = -\frac{1}{2}\bar{\psi}\left(\gamma^{a}e_{a}^{\ \bar{\mu}}\overline{D}_{\bar{\mu}} - \overleftarrow{D}_{\bar{\mu}}\gamma^{a}e_{a}^{\ \bar{\mu}}\right)\psi - m\bar{\psi}\psi$$

Symmetric energy-momentum tensor

$$T^{\bar{\mu}}_{\ \bar{\nu}} = -\delta^{\bar{\mu}}_{\bar{\nu}}\mathcal{L} - \frac{1}{4}\bar{\psi}(\gamma^{\bar{\mu}}\overrightarrow{D}_{\bar{\nu}} + \gamma_{\bar{\nu}}\overrightarrow{D}^{\bar{\mu}} - \overleftarrow{D}_{\bar{\nu}}\gamma^{\bar{\mu}} - \overleftarrow{D}^{\bar{\mu}}\gamma_{\bar{\nu}})\psi$$

• Result of path integral $\Psi[\bar{t};\lambda] \equiv \log \operatorname{Tr} \exp\left[\int d\Sigma_{\bar{t}\nu} \left(\beta^{\mu}(x)\hat{T}^{\nu}_{\ \mu}(x) + \nu(x)\hat{J}^{\nu}(x)\right)\right]$ $= \log \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(S_{E}[\psi,\bar{\psi};\hat{e}]\right)$

$$\psi \text{ in terms of thermal vielbein}$$

$$\Psi[\bar{t};\lambda] = \log \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(S_E[\psi,\bar{\psi};\tilde{e}]\right)$$
• Euclidean action with thermal vielbein
$$S_E[\psi,\bar{\psi};\tilde{e}] = \int_0^{\beta_0} d\tau \int d^3\bar{x}\tilde{e} \left[-\frac{1}{2}\bar{\psi}\left(\gamma^a \tilde{e}_a^{\ \bar{\mu}} \overrightarrow{D}_{\bar{\mu}} - \overleftarrow{D}_{\bar{\mu}}\gamma^a \tilde{e}_a^{\ \bar{\mu}}\right)\psi - m\bar{\psi}\psi\right]$$
Thermal vielbein : $\tilde{e}_{\bar{0}}^{\ a} = e^{\sigma}u^a, \ \tilde{e}_{\bar{i}}^{\ a} = e_{\bar{i}}^{\ a} \quad (e^{\sigma} \equiv \beta(x)/\beta_0)$

• Interpretation of above result $\Psi[\bar{t};\lambda] \text{ is described by QFT in "curved spacetime" s. t.}$ $d\tilde{s}^{2} = \tilde{e}_{\bar{\mu}}^{\ a} \tilde{e}_{\bar{\nu}}^{\ b} \eta_{ab} dx^{\bar{\mu}} dx^{\bar{\nu}} = -e^{2\sigma} (d\tilde{t} + a_{\bar{i}} dx^{\bar{i}})^{2} + \gamma'_{i\bar{j}} dx^{\bar{i}} dx^{\bar{j}}$ $(a_{\bar{i}} \equiv e^{-\sigma} u_{\bar{i}}, \quad \gamma'_{i\bar{j}} \equiv \gamma_{\bar{i}\bar{j}} + u_{\bar{i}} u_{\bar{j}}, \quad d\tilde{t} = -id\tau)$

Local Thermal QFT

Two ways to construct $\Psi \equiv \log Z$ -<u>**i**. Use diffeo & gauge invariance!</u> $\left\{ \begin{array}{c} \cdot \Psi \text{ is expressed by } \{\tilde{g}_{\mu\nu}, \tilde{A}_{\mu}\} \\ \cdot \Psi \text{ is diffeo & gauge invariant!} \end{array} \right.$ $\Psi \text{ is expressed in terms of } \beta = \oint d\tilde{s}, \ \beta\mu = \oint \tilde{A}, \ \tilde{R}, \ \tilde{F}_{\mu\nu}$

<u>–2. Use symmetry from imaginary-time nature!</u>–

- Ψ is spatial diffeomorphism invariant
 - Ψ is Kaluza-Klein gauge invariant!

 $\Psi \equiv \log Z$ should respect these two symmetries!!

[cf. Hydrostatic partition function method Banerjee et al.(2012), Jensen et al.(2012)]

-2. Use symmetry from imaginary-time nature!

- Ψ is spatial diffeomorphism invariant
 - Ψ is Kaluza-Klein gauge invariant!

 $\Psi \equiv \log Z$ should respect these two symmetries!!

[cf. Hydrostatic partition function method Banerjee et al.(2012), Jensen et al.(2012)]

Kaluza-Klein gauge symmetry $d\tilde{s}^2 = -e^{2\sigma}(d\tilde{t} + a_{\bar{i}}dx^{\bar{i}})^2 + \gamma'_{\bar{i}\bar{i}}dx^{\bar{i}}dx^{\bar{j}} \ (d\tilde{t} = -id\tau)$ Parameters λ don't depend on $\tilde{e}_{\bar{\mu}}^{\ \mu}(\beta^{\mu})$ imaginary time T. d au eta(x)"Kaluza-Klein" gauge tr. $\begin{cases} \tilde{t} \to \tilde{t} + \chi(\bar{\boldsymbol{x}}) \\ \bar{\boldsymbol{x}} \to \bar{\boldsymbol{x}} \\ a_{\overline{i}}(\bar{\boldsymbol{x}}) \to a_{\overline{i}}(\bar{\boldsymbol{x}}) - \partial_{\overline{i}}\chi(\bar{\boldsymbol{x}}) \end{cases}$

 \mathcal{X}

 $\Psi[\lambda] = \log \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{S[\psi,\bar{\psi},\tilde{e}]} \ni$ $(f_{\overline{i}\overline{j}} \equiv \partial_{\overline{i}}a_{\overline{j}} - \partial_{\overline{j}}a_{\overline{i}})$

$$f^{\overline{i}\overline{j}}f_{\overline{i}\overline{j}},\cdots$$

$$a_{\overline{i}}, a_{\overline{i}}a^{\overline{i}},\cdots$$

Short Summary: Local Thermal QFT

$$\Psi[\bar{t};\lambda] \equiv \log \operatorname{Tr} \exp\left[\int d\Sigma_{\bar{t}\nu} \left(\beta^{\mu}(x)\hat{T}^{\nu}_{\ \mu}(x) + \nu(x)\hat{J}^{\nu}(x)\right)\right]$$

(1) $\Psi[\lambda]$ plays a role as the generating functional: $\langle \hat{T}^{\mu\nu}(x) \rangle^{\text{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta g_{\mu\nu}(x)} \Psi[$ (2) $\Psi[\lambda]$ is written in terms of QFT in curved spacetime $d\tilde{s}^2 = -e^{2\sigma} (d\tilde{t} + a_{\bar{i}} dx^{\bar{i}})^2 + \gamma'_{\bar{i}\bar{j}} dx^{\bar{i}} dx^{\bar{j}}$ Symmetry = Spatial diffeomorphism + Kaluza-Klein gauge

Outline

Relativistic hydrodynamics from quantum field theory?

APPROACH;

QFT for initial local Gibbs distribution

(1) Renormalized/optimized perturbation for dissipative part

2) Path-integral formula for non-dissipative part

 $\Psi[\lambda] \leftarrow \text{QFT in } d\tilde{s}^2 = -e^{2\sigma} (d\tilde{t} + a_{\bar{i}} dx^{\bar{i}})^2 + \gamma'_{\bar{i}\bar{j}} dx^{\bar{i}} dx^{\bar{j}}$

Symmetry = Spatial diffeomorphism + Kaluza-Klein gauge

RESULTS:

Derivation of Navier-Stokes eq. & anomaly-induced transports

Double derivative expansion

— (I) Dissipative derivative expansion

$$\hat{\rho}_{\mathrm{LG}}(\bar{t}_0) = \hat{\rho}_{\mathrm{LG}}(\bar{t}) \left(1 + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \cdots \right)$$

Dissipative correction (viscosity etc.)

(2) Non-dissipative derivative expansion

 $\Psi[\beta^{\mu},\nu] = \Psi^{(0)}[\beta^{\mu},\nu] + \Psi^{(1)}[\beta^{\mu},\nu,\partial] + \mathcal{O}(\partial^{2}) + \cdots$

Derivative expansion of ψ

(2) Derivative expansion of ψ

$$\Psi[\beta^{\mu},\nu] = \Psi^{(0)}[\beta^{\mu},\nu] + \Psi^{(1)}[\beta^{\mu},\nu,\partial] + \mathcal{O}(\partial^{2}) + \cdots$$

 $\simeq \beta p = 0$ Parity-even system

Symmetry property

Non-dissipative constitutive relation

$$\langle \hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta g_{\mu\nu}(x)} \Psi[\bar{t};\lambda] = T^{\mu\nu}_{(0)}[\lambda(x)] + T^{\mu\nu}_{(1)}[\lambda(x),\nabla\lambda(x)] + \cdots$$

$$\langle \hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta A_{\mu}(x)} \Psi[\bar{t};\lambda] = J^{\mu}_{(0)}[\lambda(x)] + J^{\mu}_{(1)}[\lambda(x),\nabla\lambda(x)] + \cdots$$

$$= 0$$

Parity-even case

Recipe for Masseiu-Planck fcn.

[Banerjee et al.(2012), Jensen et al.(2012)]

Masseiu-Planck functional

$$\Psi[\lambda] = \log \int \mathcal{D}\phi e^{S[\phi, \tilde{g}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda, \partial] + \mathcal{O}(\partial^2)$$
$$\mathcal{O}(p^0) \qquad \mathcal{O}(p^1)$$

- Building blocks : $\lambda = \{e^{\sigma}, a_{\overline{i}}, \mu, A_{\overline{i}}\}$
- Symmetry : Spatial diffeo, Kaluza-Klein, Gauge
 - $A_{\overline{i}}$: not Kaluza-Klein inv. $\overline{A}_{\overline{i}} \equiv A_{\overline{i}} \mu a_{\overline{i}}$
- Power counting scheme : $\lambda = \mathcal{O}(p^0)$

 $\psi^{(o)}$: Order $\mathcal{O}(p^{U})$

Masseiu-Planck functional

$$\Psi[\lambda] = \log \int \mathcal{D}\phi e^{S[\phi, \tilde{g}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda, \partial] + \mathcal{O}(\partial^2)$$
$$\mathcal{O}(p^0) \qquad \mathcal{O}(p^1)$$

- Building blocks : $\lambda = \{e^{\sigma}, \alpha_{\overline{i}}, \mu, \overline{A_{\overline{i}}}\}$ $\Psi^{(0)}[\lambda] = \int_{0}^{\beta_{0}} d\tau \int d^{3}\overline{x}\sqrt{\gamma'}e^{\sigma}p(\beta,\mu)$ Perfect fluid $\langle \hat{T}^{\mu\nu}(x)\rangle_{\overline{t}}^{\mathrm{LG}} = (e+p)u^{\mu}u^{\nu} + p\eta^{\mu\nu}$ $\langle \hat{J}^{\mu}(x)\rangle_{\overline{t}}^{\mathrm{LG}} = nu^{\mu}$

Derivation of Navier-Stokes eq.

Given Conservation laws

$$\nabla_{\mu} \langle \hat{T}^{\mu\nu}(x) \rangle = 0, \quad \nabla_{\mu} \langle \hat{J}^{\mu}(x) \rangle = 0$$

$$\begin{array}{l} \checkmark \quad \text{Constitutive relations (Ist order)} \\ \langle \hat{T}^{\mu\nu}(x) \rangle &= (e+p)u^{\mu}u^{\nu} + pg^{\mu\nu} - \frac{\zeta}{\beta}h^{\mu\nu}h^{\rho\sigma}\nabla_{\rho}\beta_{\sigma} - 2\frac{\eta}{\beta}\nabla^{\langle\mu}\beta^{\nu\rangle} \\ \langle \hat{J}^{\mu}(x) \rangle &= nu^{\mu} - \frac{\kappa}{\beta}h^{\mu\nu}\nabla_{\nu}\nu \end{array}$$

Physical properties-

Static properties:
$$\Psi[\lambda] = \log \int \mathcal{D}\varphi_i e^{S_E[\varphi_i;\tilde{g}]} = \int d^3\bar{x}\sqrt{\gamma'}\beta p(\beta,\mu)$$

Dynamic properties: $\zeta = \beta(x) \int_{-\infty}^{\bar{t}} d^4x' \int_0^1 d\tau \langle e^{\hat{K}\tau} \tilde{\delta}\hat{p}(x')e^{-\hat{K}\tau} \tilde{\delta}\hat{p}(x) \rangle_{\bar{t}}^{\mathrm{LG}}$ etc.

Parity-odd case

Anomaly-induced transport

Double derivative expansion

— (I) Dissipative derivative expansion

$$\hat{\rho}_{\mathrm{LG}}(\bar{t}_0) = \hat{\rho}_{\mathrm{LG}}(\bar{t}) \left(1 + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \cdots \right)$$

Dissipative correction (viscosity etc.)

(2) Non-dissipative derivative expansion

 $\Psi[\beta^{\mu},\nu] = \Psi^{(0)}[\beta^{\mu},\nu] + \Psi^{(1)}[\beta^{\mu},\nu,\partial] + \mathcal{O}(\partial^{2}) + \cdots$

Derivative expansion of ψ

(2) Derivative expansion of ψ

$$\Psi[\beta^{\mu},\nu] = \Psi^{(0)}[\beta^{\mu},\nu] + \Psi^{(1)}[\beta^{\mu},\nu,\partial] + \mathcal{O}(\partial^{2}) + \cdots$$
$$\simeq \beta p \qquad = 0 \quad \text{Parity-even system}$$

Symmetry property $\neq 0$ Parity-odd system

Non-dissipative constitutive relation ·

$$\langle \hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta g_{\mu\nu}(x)} \Psi[\bar{t};\lambda] = T^{\mu\nu}_{(0)}[\lambda(x)] + T^{\mu\nu}_{(1)}[\lambda(x),\nabla\lambda(x)] + \cdots$$

$$\langle \hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta A_{\mu}(x)} \Psi[\bar{t};\lambda] = J^{\mu}_{(0)}[\lambda(x)] + J^{\mu}_{(1)}[\lambda(x),\nabla\lambda(x)] + \cdots$$

$$= 0 \quad \neq 0$$

 $\begin{array}{l} \textbf{Recipe for Massieu-Planck fcn.} \\ \hline \textbf{Weyl fermion} : \mathcal{L} = \frac{i}{2}\xi^{\dagger} \left(e_m^{\ \mu} \sigma^m \overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu} \sigma^m e_m^{\ \mu} \right) \xi \\ \hline \Psi[\lambda] = \log \int \mathcal{D}\xi^{\dagger} \mathcal{D}\xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \frac{\Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^2)}{\mathcal{O}(p^0)} \\ \hline \mathcal{O}(p^0) \\ \end{array}$

- Building blocks : $\lambda = \{e^{\sigma}, a_{\overline{i}}, \mu_R, \overline{A}_{\overline{i}}\}$
- Symmetry : Spatial diffeo, Kaluza-Klein, Gauge
 - $A_{\overline{i}}$: not Kaluza-Klein inv. $\overline{A}_{\overline{i}} \equiv A_{\overline{i}} \mu_R a_{\overline{i}}$
- **Power counting scheme** : $\lambda = \mathcal{O}(p^0)$

$$\begin{split} \mathbf{\psi}^{(\mathbf{o})} : \mathbf{Order} \ \mathcal{O}(p^{0}) \\ - \text{ Weyl fermion} : \mathcal{L} &= \frac{i}{2} \xi^{\dagger} \left(e_{m}^{\ \mu} \sigma^{m} \overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu} \sigma^{m} e_{m}^{\ \mu} \right) \xi \\ \Psi[\lambda] &= \log \int \mathcal{D}\xi^{\dagger} \mathcal{D}\xi e^{S[\xi,\xi^{\dagger},A,\widetilde{e}]} = \Psi^{(\mathbf{0})}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^{2}) \\ \mathcal{O}(p^{0}) \qquad \mathcal{O}(p^{1}) \end{split}$$

- Building blocks : $\lambda = \{e^{\sigma}, \alpha_{\bar{i}}, \mu_{R}, \bar{A}_{\bar{i}}\}$ $\Psi^{(0)}[\lambda] = \int_{0}^{\beta_{0}} d\tau \int d^{3}\bar{x}\sqrt{\gamma'}e^{\sigma}p(\beta,\mu_{R})$ Perfect fluid $\langle \hat{T}^{\mu\nu}(x)\rangle_{\bar{t}}^{\mathrm{LG}} = (e+p)u^{\mu}u^{\nu} + p\eta^{\mu\nu}$ $\langle \hat{J}^{\mu}_{R}(x)\rangle_{\bar{t}}^{\mathrm{LG}} = n_{R}u^{\mu}$
$\psi^{(I)}$: Order $\mathcal{O}(p)$

Weyl fermion : $\mathcal{L} = \frac{i}{2} \xi^{\dagger} \left(e_m^{\ \mu} \sigma^m \overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu} \sigma^m e_m^{\ \mu} \right) \xi$ - $\Psi[\lambda] = \log \int \mathcal{D}\xi^{\dagger} \mathcal{D}\xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^{2})$ $\mathcal{O}(p^{0}) \qquad \mathcal{O}(p^{1})$

- Building blocks : $\lambda = \{e^{\sigma}, a_{\overline{i}}, \mu_R, \overline{A}_{\overline{i}}\}$

 $\int d^3 \bar{x} \sqrt{\gamma'} C_1(\beta, \mu_R) \epsilon^{\bar{i}\bar{j}\bar{k}} \bar{\mathcal{A}}_{\bar{i}} \partial_{\bar{j}} \bar{\mathcal{A}}_{\bar{k}} \longrightarrow \mathbb{S} \xrightarrow{\mu_R \neq \mu_L}_{\bar{j} \propto \bar{B}} \mathbb{N}$

 $\int d^3 \bar{x} \sqrt{\gamma'} C_2(\beta, \mu_R) \epsilon^{\bar{i}\bar{j}\bar{k}} \bar{\mathcal{A}}_{\bar{i}} \partial_{\bar{j}} a_{\bar{k}} \quad \Longrightarrow \quad$

Derivation of CME/CVE

$$\Psi^{(1)}[\lambda] = \int d^3x \varepsilon^{0ijk} \left[\frac{\nu_R}{8\pi^2} A_i \partial_j A_k + \left(\frac{\nu_R \mu_R}{8\pi^2} + \frac{T}{24} \right) A_i \partial_j \tilde{g}_{0k} \right]$$
$$\downarrow \langle \hat{J}_R^i(x) \rangle_{(0,1)}^{\text{LG}} = \frac{1}{\sqrt{-g}} \frac{\delta \Psi^{(1)}}{\delta A_i(x)} = \frac{\mu_R}{4\pi^2} B^i + \left(\frac{\mu_R^2}{8\pi^2} + \frac{T^2}{24} \right) \omega^i$$
$$\langle \hat{J}_V^i(x) \rangle_{(0,1)}^{\text{LG}} = \frac{\mu_5}{2\pi^2} B^i + \frac{\mu\mu_5}{2\pi^2} \omega^i$$
$$\langle \hat{J}_A^i(x) \rangle_{(0,1)}^{\text{LG}} = \frac{\mu}{2\pi^2} B^i + \left(\frac{\mu^2 + \mu_5^2}{4\pi^2} + \frac{T^2}{12} \right) \omega^i$$

Summary

MOTIVATION;

Relativistic hydrodynamics from quantum field theory?

APPROACH;

QFT for initial local Gibbs distribution

(1) Renormalized/optimized perturbation for dissipative part

2 Path-integral formula for non-dissipative part

 $\Psi[\lambda] \leftarrow \text{QFT in } d\tilde{s}^2 = -e^{2\sigma} (d\tilde{t} + a_{\overline{i}} dx^{\overline{i}})^2 + \gamma'_{\overline{i}\overline{j}} dx^{\overline{i}} dx^{\overline{j}}$

Symmetry = Spatial diffeomorphism + Kaluza-Klein gauge

RESULTS

Derivation of Navier-Stokes eq. ∼ & anomaly-induced transports

$$d\tau$$
 $\beta(x)$

 $\bigvee \quad \stackrel{}{\longrightarrow} \Psi^{(1)} \rightarrow \overline{j} = \frac{e\mu_5}{2\pi^2} \vec{B}$

Outlook

DISSIPATION AND FLUCTUATION:

How to implement dissipation and fluctuation based on QFT?

- Zubarev et al. (1979) - Becattini et al. (2015)
- Hayata, Hidaka, MH, Noumi (2015)
- Haehl, Loganayagam, Rangamani (2015-)
- Harder, Kovtun, Ritz (2015)
- Crossley, Giorioso, Liu (2015-)
- Jensen et al. (2017-)

NON-DISSIPATIVE TRANSPORT:

Evaluation of Masseiu-Planck fcn. in several situations

s.t. in the presence of magnetic field/vorticity ...

- Hattori, Yin(2016) - Beca

- Becattinil et al. (2015)

SUPERFLUID/MAGNETO-HYDRODYNAMICS:

Extension to cases with other zero modes

s.t. Nambu-Goldstone-mode, Photon

- Grozdanov et al. (2017)