Chiral effective field theory for dark matter direct detection

Martin Hoferichter

Institute for Nuclear Theory University of Washington

INT Program on

Multi-Scale Problems Using Effective Field Theories

Seattle, May 15, 2018

PLB 746 (2015) 410, PRD 94 (2016) 063505, PRL 119 (2017) 181803 with P. Klos, J. Menéndez, A. Schwenk

1802.04294, with A. Fieguth, P. Klos, J. Menéndez, A. Schwenk, C. Weinheimer

How to search for dark matter?

- Search strategies: direct, indirect, collider
- Assume DM particle is WIMP
- Direct detection: search for WIMPs scattering off nuclei in the large-scale detectors
- Ingredients for interpretation:
 - DM halo: velocity distribution
 - Nucleon matrix elements: WIMP-nucleon couplings
 - Nuclear structure factors: embedding into target nucleus

Direct detection of dark matter: schematics

- Nuclear recoil in WIMP-nucleus scattering
 - Flux factor Φ: DM halo and velocity distribution
 - WIMP-nucleus cross section
- Spin-independent: coherent ∝ A²
- **Spin-dependent**: $\propto \langle \mathbf{S}_p \rangle$ or $\langle \mathbf{S}_n \rangle$
- ullet Information on BSM physics encoded in normalization at q=0
 - \hookrightarrow for SI case: $\sigma_{\chi N}^{SI}$

Direct detection of dark matter: scales

 Λ_{BSM}

OBSM scale Λ_{BSM} : \mathcal{L}_{BSM}

2 Effective Operators: $\mathcal{L}_{\text{SM}} + \sum\limits_{i,k} \frac{1}{\Lambda_{\text{BSM}}^i} \mathcal{O}_{i,k}$

 $\Lambda_{\rm EW}$

Integrate out EW physics

- **Nuclear scale**: $\langle \mathcal{N} | \mathcal{H}_l | \mathcal{N} \rangle$
 - \hookrightarrow nuclear wave function

Direct detection of dark matter: scales

- Hadronic scale: nucleons and pions
 - \hookrightarrow effective interaction Hamiltonian H_i
- **Nuclear scale**: $\langle \mathcal{N} | H_l | \mathcal{N} \rangle$
- Typical WIMP-nucleon momentum transfer

$$|\mathbf{q}_{\mathsf{max}}| = 2\mu_{\mathcal{N}\chi}|\mathbf{v}_{\mathsf{rel}}| \sim 200\,\mathsf{MeV} \qquad |\mathbf{v}_{\mathsf{rel}}| \sim 10^{-3} \qquad \mu_{\mathcal{N}\chi} \sim 100\,\mathsf{GeV}$$

$$|\mathbf{v}_{\mathrm{rel}}|\sim 10^{-3}$$

$$\mu_{\mathcal{N}\chi}\sim$$
 100 GeV

- QCD constraints: spontaneous breaking of chiral symmetry
 - ⇒ Chiral effective field theory for WIMP-nucleon scattering

Prézeau et al. 2003, Cirigliano et al. 2012, 2013, Menéndez et al. 2012, Klos et al. 2013, MH et al. 2015, Bishara et al. 2017

 In NREFT Fan et al. 2010, Fitzpatrick et al. 2012, Anand et al. 2013 need to match to QCD to extract information on BSM physics ⇒ "the" EFT approach not unique!

Outline

- Chiral effective field theory
- Corrections beyond the standard nuclear responses
- Calculating nuclear responses
- Limits on Higgs Portal dark matter
- 6 Conclusions

Chiral Perturbation Theory

Effective theory of QCD based on chiral symmetry

$$\mathcal{L}_{ ext{QCD}} = ar{q}_L i ar{eta} q_L + ar{q}_R i ar{eta} q_R - ar{q}_L \mathcal{M} q_R - ar{q}_R \mathcal{M} q_L - rac{1}{4} G_{\mu
u}^a G_a^{\mu
u}$$

- Expansion in momenta p/Λ_{χ} and quark masses $m_q \sim p^2$ \hookrightarrow scale separation
- Two variants
 - SU(2): u- and d-quark dynamical, m_s fixed at physical value \hookrightarrow expansion in M_π/Λ_χ , usually nice convergence
 - SU(3): u-, d-, and s-quark dynamical

 ⇒ expansion in M_K/Λ_Y, sometimes tricky

Chiral EFT: a modern approach to nuclear forces

- Traditionally: meson-exchange potentials
- Chiral effective field theory
 - Based on chiral symmetry of QCD
 - Power counting
 - Low-energy constants
 - Hierarchy of multi-nucleon forces
 - Consistency of NN and 3N
 - \hookrightarrow modern theory of nuclear forces
- Long-range part related to pion-nucleon scattering

	2N force	3N force	4N force		
LO	\times $+$	_	_		
NLO	XHHM	_	_		
N²LO	심석	HH HX X	_		
№LO	X444	国料以			

Figure taken from 1011.1343

Nuclear Physics from first principles

- Piecewise overlap of ab-initio and various many-body methods ⇒ match to QCD
- Consistent NN interactions key at various stages
- Ab-initio not yet up to xenon, but impressive progress

Chiral EFT: currents

- Coupling to external sources $\mathcal{L}(v_{\mu}, a_{\mu}, s, p)$
- Same LECs appear in axial current

 ⇒ β decay, neutrino interactions, dark matter
- Vast literature for v_{μ} and a_{μ} , up to one-loop level

Baroni et al. 2015

Vector current in chiral EFT: deuteron form factors, magnetic moments

Axial-vector current in chiral EFT: ν -less double β decay

Menéndez, Gazit, Schwenk 2011

- Normal ordering over Fermi sea ⇒ effective one-body currents
- Two-body currents contribute to quenching of g_A in Gamov–Teller operator $g_A \sigma \tau^-$

Direct detection and chiral EFT

- Expansion around chiral limit of QCD
- Three classes of corrections:
 - Subleading one-body responses (a)
 - Radius corrections (b)
 - Two-body currents (c), (d)
- NREFT covers (a), but misses (b)–(d)
 - (b): modifies coefficient of O_i by momentum-dependent factor
 - (c), (d): do not match directly onto NREFT, need normal ordering

$$\langle N^{\dagger} N \rangle N^{\dagger} N \rightarrow \mathcal{O}_{i}^{\mathsf{eff}}$$

• (a)+(b) just ChPT for nucleon form factors, but (c)+(d) genuinely new effects

Chiral counting

Starting point: effective WIMP Lagrangian Goodman et al. 2010

$$\begin{split} \mathcal{L}_{\chi} &= \frac{1}{\Lambda^{3}} \sum_{q} \left[\textit{\textbf{C}}_{q}^{\textit{SS}} \bar{\chi} \chi \, \textit{m}_{q} \bar{q} q + \textit{\textbf{C}}_{q}^{\textit{PS}} \bar{\chi} i \gamma_{5} \chi \, \textit{m}_{q} \bar{q} q + \textit{\textbf{C}}_{q}^{\textit{SP}} \bar{\chi} \chi \, \textit{m}_{q} \bar{q} i \gamma_{5} q + \textit{\textbf{C}}_{q}^{\textit{PP}} \bar{\chi} i \gamma_{5} \chi \, \textit{m}_{q} \bar{q} i \gamma_{5} q \right] \\ &+ \frac{1}{\Lambda^{2}} \sum_{q} \left[\textit{\textbf{C}}_{q}^{\textit{VV}} \bar{\chi} \gamma^{\mu} \chi \, \bar{q} \gamma_{\mu} q + \textit{\textbf{C}}_{q}^{\textit{AV}} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi \, \bar{q} \gamma_{\mu} q + \textit{\textbf{C}}_{q}^{\textit{VA}} \bar{\chi} \gamma^{\mu} \chi \, \bar{q} \gamma_{\mu} \gamma_{5} q + \textit{\textbf{C}}_{q}^{\textit{AA}} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi \, \bar{q} \gamma_{\mu} \gamma_{5} q \right] \\ &+ \frac{1}{\Lambda^{3}} \left[\textit{\textbf{C}}_{g}^{\textit{S}} \bar{\chi} \chi \, \alpha_{\text{S}} \textit{\textbf{G}}_{\mu\nu}^{\textit{a}} \textit{\textbf{G}}_{a}^{\mu\nu} \right] \end{split}$$

Chiral power counting

$$\partial = \mathcal{O}(p), \qquad m_q = \mathcal{O}(p^2) = \mathcal{O}(M_\pi^2), \qquad a_\mu, v_\mu = \mathcal{O}(p), \qquad \frac{\partial}{m_N} = \mathcal{O}(p^2)$$

- \hookrightarrow organize in terms of **chiral order** ν , $\mathcal{M} = \mathcal{O}(p^{\nu})$

Chiral counting: summary

	Nucleon		V		Α		Nucleon	s	Р
WIMP		t	x	t	x	WIMP			
	1b	0	1 + 2	2	0 + 2		1b	2	1
V	2b	4	2 + 2	2	4 + 2	s	2b	3	5
	2b NLO	_	_	5	3 + 2		2b NLO	_	4
	1b	0+2	1	2 + 2	0	P	1b	2 + 2	1 + 2
Α	2b	4 + 2	2	2 + 2	4		2b	3 + 2	5 + 2
	2b NLO	_	_	5+2	3		2b NLO	_	4 + 2

- +2 from NR expansion of WIMP spinors, terms can be dropped if $m_\chi \gg m_N$
- Red: all terms up to $\nu = 3$
- Two-body currents: AA Menéndez et al. 2012, Klos et al. 2013, SS Prézeau et al. 2003, Cirigliano et al. 2012, but new currents in AV and VA channel 1503.04811
- Worked out the matching to NREFT and BSM Wilson coefficients for spin-1/2
 - → hierarchy predicted from chiral expansion

Matching to nonrelativistic EFT

Operator basis in NREFT Fan et al. 2010, Fitzpatrick et al. 2012, Anand et al. 2013

• Matching to chiral EFT (f_N , . . .: Wilson coefficients + nucleon form factors)

$$\begin{split} \mathcal{M}_{1,\mathrm{NR}}^{SS} &= \mathcal{O}_1 f_N(t) & \quad \mathcal{M}_{1,\mathrm{NR}}^{SP} = \mathcal{O}_{10} g_5^N(t) & \quad \mathcal{M}_{1,\mathrm{NR}}^{PP} = \frac{1}{m_\chi} \mathcal{O}_6 h_5^N(t) \\ \mathcal{M}_{1,\mathrm{NR}}^{VV} &= \mathcal{O}_1 \left(f_1^{V,N}(t) + \frac{t}{4 m_N^2} f_2^{V,N}(t) \right) + \frac{1}{m_N} \mathcal{O}_3 f_2^{V,N}(t) + \frac{1}{m_N m_\chi} \left(t \mathcal{O}_4 + \mathcal{O}_6 \right) f_2^{V,N}(t) \\ \mathcal{M}_{1,\mathrm{NR}}^{AV} &= 2 \mathcal{O}_8 f_1^{V,N}(t) + \frac{2}{m_N} \mathcal{O}_9 \left(f_1^{V,N}(t) + f_2^{V,N}(t) \right) \\ \mathcal{M}_{1,\mathrm{NR}}^{AA} &= -4 \mathcal{O}_4 g_A^N(t) + \frac{1}{m_N^2} \mathcal{O}_6 g_P^N(t) & \quad \mathcal{M}_{1,\mathrm{NR}}^{VA} &= \left\{ -2 \mathcal{O}_7 + \frac{2}{m_\chi} \mathcal{O}_9 \right\} h_A^N(t) \end{split}$$

- Conclusions
 - \mathcal{O}_2 , \mathcal{O}_5 , and \mathcal{O}_{11} do not appear at $\nu = 3$, not all \mathcal{O}_i independent
 - 2b operators of similar or even greater importance than some of the 1b operators

Direct detection of dark matter: scales

- **Nuclear scale**: $\langle \mathcal{N}|H_I|\mathcal{N}\rangle$ \hookrightarrow nuclear wave function

Coherence effects

Six distinct nuclear responses

Fitzpatrick et al. 2012, Anand et al. 2013

- $M \leftrightarrow \mathcal{O}_1 \leftrightarrow SI$
- $\Sigma', \Sigma'' \leftrightarrow \mathcal{O}_4, \mathcal{O}_6 \leftrightarrow SD$
- $\Phi'' \leftrightarrow \mathcal{O}_3 \leftrightarrow \text{quasi-coherent}$, spin-orbit operator
- Δ , $\tilde{\Phi}'$: not coherent
- Quasi-coherence of Φ"
 - Spin-orbit splitting
 - Coherence until mid-shell
 - About 20 coherent nucleons in Xe
 - Interference $M-\Phi'' \leftrightarrow \mathcal{O}_1-\mathcal{O}_3$
- Further coherent *M*-responses from \mathcal{O}_5 , \mathcal{O}_8 , \mathcal{O}_{11} , but no interference with \mathcal{O}_1 due to sum over \mathbf{S}_χ

Spectra and shell-model calculation

- Shell-model diagonalization for Xe isotopes with ¹⁰⁰Sn core
- Uncertainty estimates: currently phenomenological shell-model interaction
 - \hookrightarrow chiral-EFT-based interactions in the future?
 - $\hookrightarrow \text{ab-initio calculations for light nuclei?}$

Consequences for the structure factors

- $\xi_{\mathcal{O}_i}$ kinematic factors for $\frac{\mathcal{O}_i}{\mathcal{O}_i}$, e.g. $\xi_{\mathcal{O}_1} = 1$, $\xi_{\mathcal{O}_3} = \frac{\mathbf{q}^2}{2m_N^2}$
- \mathcal{O}_{11} assumes $m_{\chi}=2\,\mathrm{GeV}$
 - $\hookrightarrow \mathsf{much} \; \mathsf{stronger} \; \mathsf{suppressed} \; \mathsf{for} \; \mathsf{heavy} \; \mathsf{WIMPs}$
- Structure factors imply **hierarchy** as long as coefficients do not differ strongly

Two-body currents

- Finite at |**q**| = 0
- Most important next to IS and IV O₁
- Sensitive to new combination of Wilson coefficients, e.g. for scalar channel

$$f_{N} = \frac{m_{N}}{\Lambda^{3}} \left(\sum_{q=u,d,s} C_{q}^{SS} f_{q}^{N} - 12\pi f_{Q}^{N} C_{g}^{\prime S} \right) \qquad f_{\pi} = \frac{M_{\pi}}{\Lambda^{3}} \sum_{q=u,d} \left(C_{q}^{SS} + \frac{8\pi}{9} C_{g}^{\prime S} \right) f_{q}^{\pi} \qquad f_{\pi}^{\theta} = -\frac{M_{\pi}}{\Lambda^{3}} \frac{8\pi}{9} C_{g}^{\prime S}$$

Typically (5–10)% effect, enhanced whenever cancellations occur: blind spots,

Radius corrections

- Set scale as \mathbf{q}^2/m_N^2
- Strong suppression at small |q|, but potentially relevant later
- Yet another new combination

$$\dot{f}_{N} = \frac{m_{N}}{\Lambda^{3}} \left(\sum_{q=u,d,s} C_{q}^{SS} \dot{f}_{q}^{N} - 12\pi \dot{f}_{Q}^{N} C_{g}^{\prime S} \right)$$

Full set of coherent contributions

Parameterize cross section as

$$\begin{split} \frac{\mathsf{d}\sigma_{\chi^{\prime}N}^{\mathcal{S}\prime}}{\mathsf{d}\mathbf{q}^{2}} &= \frac{1}{4\pi\mathbf{v}^{2}} \left| \left(\mathbf{c}_{+}^{M} - \frac{\mathbf{q}^{2}}{m_{N}^{2}} \, \dot{\mathbf{c}}_{+}^{M} \right) \mathcal{F}_{+}^{M}(\mathbf{q}^{2}) + \left(\mathbf{c}_{-}^{M} - \frac{\mathbf{q}^{2}}{m_{N}^{2}} \, \dot{\mathbf{c}}_{-}^{M} \right) \mathcal{F}_{-}^{M}(\mathbf{q}^{2}) \right. \\ &\left. + \left. \mathbf{c}_{\pi} \mathcal{F}_{\pi}(\mathbf{q}^{2}) + \mathbf{c}_{\pi}^{\theta} \mathcal{F}_{\pi}^{\theta}(\mathbf{q}^{2}) + \frac{\mathbf{q}^{2}}{2m_{N}^{2}} \left[\mathbf{c}_{+}^{\Phi^{\prime\prime}} \mathcal{F}_{+}^{\Phi^{\prime\prime}}(\mathbf{q}^{2}) + \mathbf{c}_{-}^{\Phi^{\prime\prime}} \mathcal{F}_{-}^{\Phi^{\prime\prime}}(\mathbf{q}^{2}) \right] \right|^{2} \end{split}$$

- Single-nucleon cross section: $\sigma_{\chi N}^{\rm SI} = \mu_N^2 |c_+^M|^2 / \pi$
- c related to Wilson coefficients and nucleon form factors

Discriminating different response functions

- White region accessible to XENON-type experiment
- Can one tell these curves apart in a realistic experimental setting?
- Consider XENON1T-like, XENONnT-like, DARWIN-like settings

Discriminating different response functions

- DARWIN-like setting, $m_{\chi} = 100 \, \text{GeV}$
- q-dependent responses more easily distinguishable
- If interaction not much weaker than current limits, DARWIN could discriminate most responses from standard SI structure factor

25

Two-body currents: SD case

 Nuclear structure factors for spin-dependent interactions

Klos et al. 2013

- Based on chiral EFT currents (1b+2b)
- Shell model
- u = q²b²/2 related to momentum transfer
- 2b currents absorbed into redefinition of 1b current

Two-body currents: SD case

Xenon becomes competitive for σ_p thanks to two-body currents!

Higgs Portal dark matter

Higgs Portal: WIMP interacts with SM via the Higgs

Scalar: H[†] H S²

• Vector: $H^{\dagger}HV_{\mu}V^{\mu}$

• Fermion: H[†]H ff

• If $m_h > 2m_\chi$, should happen at the LHC

 \hookrightarrow limits on invisible Higgs decays

Higgs Portal dark matter

Higgs Portal: WIMP interacts with SM via the Higgs

Scalar: H[†] H S²

• Vector: $H^{\dagger}HV_{\mu}V^{\mu}$

Fermion: H[†] H ff

Translation requires input for Higgs-nucleon coupling

$$f_{N} = \sum_{q=u,d,s,c,b,t} f_{q}^{N} = \frac{2}{9} + \frac{7}{9} \sum_{q=u,d,s} f_{q}^{N} + \mathcal{O}(\alpha_{s}) \qquad m_{N} f_{q}^{N} = \langle N | m_{q} \bar{q} q | N \rangle$$

• Issues: input for $f_N = 0.260...0.629$ outdated, two-body currents missing

Higgs-nucleon coupling

One-body contribution

$$f_N^{1b} = 0.307(9)_{ud}(15)_s(5)_{pert} = 0.307(18)$$

- Limits on WIMP-nucleon cross section subsume two-body effects
 - → have to be included for meaningful comparison
- Two-body contribution
 - Need s and θ^{μ}_{μ} currents
 - Treatment of θ^{μ}_{μ} tricky: several ill-defined terms combine to $\langle \Psi | T + V_{NN} | \Psi \rangle = E_{b}$
 - A cancellation makes the final result anomalously small

$$f_N^{\text{2b}} = [-3.2(0.2)_A(2.1)_{\text{ChEFT}} + 5.0(0.4)_A] \times 10^{-3} = 1.8(2.1) \times 10^{-3}$$

Improved limits for Higgs Portal dark matter

Improved limits for Higgs Portal dark matter

Contact terms

- Scalar source suppressed for $(N^{\dagger}N)^2$
 - → long-range contribution dominant (in Weinberg counting)
- Typical size (5–10)%
 - → reflected by results for structure factors
 - \hookrightarrow more important in case of cancellations
- ullet Contact terms do appear for other sources, e.g. $heta_\mu^\mu$
 - \hookrightarrow related to nuclear binding energy E_b
- Same structure factor in spin-2 two-body currents MH, Klos, Menéndez, Schwenk, in preparation

Conclusions

- Chiral EFT for WIMP-nucleon scattering
- Predicts hierarchy for corrections to leading coupling
- Connects nuclear and hadronic scales
- Ingredients: nuclear matrix elements and structure factors
- Applications:
 - discriminating nuclear responses
 - $\sigma_p^{\rm SD}$ limits from xenon via two-body currents
 - improved limits on Higgs Portal dark matter from LHC searches

Rate and structure factors

Rate

$$\frac{\mathrm{d}R}{\mathrm{d}\mathbf{q}^2} = \frac{\rho M}{m_A m_\chi} \int_{\nu_{\mathrm{min}}}^{\nu_{\mathrm{esc}}} \mathrm{d}^3 v \, |\mathbf{v}| f(|\mathbf{v}|) \, \frac{\mathrm{d}\sigma_{\chi \mathcal{N}}}{\mathrm{d}\mathbf{q}^2}$$

- Halo-independent methods Drees, Shan 2008, Fox, Liu, Weiner 2010, ...
- Nuclear structure factors Engel, Pittel, Vogel 1992

$$\frac{\mathsf{d}\sigma_{\chi\mathcal{N}}}{\mathsf{d}\mathbf{q}^2} = \frac{8G_F^2}{(2J+1)v^2} \Big[S_A(q) + S_S(q) \Big]$$

• Normalization at $|\mathbf{q}| = 0$:

$$\begin{split} S_{S}(0) &= \frac{2J+1}{4\pi} \Big| c_{0} A + c_{1} (Z-N) \Big|^{2} \\ S_{A}(0) &= \frac{(2J+1)(J+1)}{4\pi J} \Big| (a_{0} + a_{1}) \langle \mathbf{S}_{\rho} \rangle + (a_{0} - a_{1}) \langle \mathbf{S}_{n} \rangle \Big|^{2} \end{split}$$

• Assume $c_1 = 0$ and SI scattering

$$\frac{\mathsf{d}\sigma_{\chi\mathcal{N}}^{\mathsf{SI}}}{\mathsf{d}\mathbf{q}^2} = \frac{\sigma_{\chi\mathcal{N}}^{\mathsf{SI}}}{4\mathbf{v}^2\mu_{\mathcal{N}}^2} \mathcal{F}_{\mathsf{SI}}^2(\mathbf{q}^2)$$

 \hookrightarrow phenomenological **Helm form factor** $\mathcal{F}^2_{SI}(\mathbf{q}^2)$

Gell-Mann-Oakes-Renner relation

Leading order in SU(2) meson ChPT

$$\mathcal{L}_{ChPT} = \frac{F_{\pi}^{2}}{4} \text{Tr} \Big(d^{\mu} U^{\dagger} d_{\mu} U + 2 \mathbf{B} \mathcal{M} (U + U^{\dagger}) \Big) + \cdots$$

$$= (m_{u} + m_{d}) \mathbf{B} F_{\pi}^{2} - \frac{1}{2} (m_{u} + m_{d}) \mathbf{B} (\pi^{0})^{2} - (m_{u} + m_{d}) \mathbf{B} \pi^{+} \pi^{-} + \cdots$$

Comparison with QCD Lagrangian

$$\left<\mathcal{L}_{\text{QCD}}\right> = -\textit{m}_{\textit{u}}\langle\bar{\textit{u}}\textit{u}\rangle - \textit{m}_{\textit{d}}\langle\bar{\textit{d}}\textit{d}\rangle + \cdots \quad \Rightarrow \quad \textit{BF}_{\pi}^2 = -\langle\bar{\textit{q}}\textit{q}\rangle \qquad \langle\bar{\textit{q}}\textit{q}\rangle = \langle\bar{\textit{u}}\textit{u}\rangle = \langle\bar{\textit{d}}\textit{d}\rangle$$

Gell-Mann-Oakes-Renner relation

$$M_{\pi}^2 = (m_u + m_d) \frac{B}{B} + \mathcal{O}(m_q^2)$$
 $\frac{B}{B} = -\frac{\langle \bar{q}q \rangle}{F^2}$

Gell-Mann-Oakes-Renner relation

Leading order in SU(2) meson ChPT

$$\mathcal{L}_{\text{ChPT}} = \frac{F_{\pi}^{2}}{4} \text{Tr} \Big(d^{\mu} U^{\dagger} d_{\mu} U + 2 \mathbf{B} \mathcal{M} (U + U^{\dagger}) \Big) + \cdots$$

$$= (m_{u} + m_{d}) \mathbf{B} F_{\pi}^{2} - \frac{1}{2} (m_{u} + m_{d}) \mathbf{B} (\pi^{0})^{2} - (m_{u} + m_{d}) \mathbf{B} \pi^{+} \pi^{-} + \cdots$$

Comparison with QCD Lagrangian

$$\langle \mathcal{L}_{QCD} \rangle = -m_u \langle \bar{u}u \rangle - m_d \langle \bar{d}d \rangle + \cdots \quad \Rightarrow \quad {}^{\mathsf{B}} F_\pi^2 = -\langle \bar{q}q \rangle \qquad \langle \bar{q}q \rangle = \langle \bar{u}u \rangle = \langle \bar{d}d \rangle$$

Mass difference entirely due to electromagnetism

$$M_{\pi^{\pm}}^2 = M_{\pi^0}^2 + 2e^2F_{\pi}^2Z + \mathcal{O}(m_d - m_u)^2$$

Gell-Mann-Oakes-Renner relation

$$\label{eq:mu_power} \textit{M}_{\pi^0}^2 = 2\hat{\textit{m}} \frac{\textit{B}}{\textit{B}} + \mathcal{O}\big(\textit{m}_{\textit{q}}^2\big) \qquad \hat{\textit{m}} = \frac{\textit{m}_{\textrm{u}} + \textit{m}_{\textrm{d}}}{2} \qquad \frac{\textit{B}}{\textit{E}} = -\frac{\langle \bar{\textit{q}}\textit{q}\rangle}{\textit{F}^2}$$

Example: chiral counting in scalar channel

Leading pion-nucleon Lagrangian

$$\mathcal{L}_{\pi N}^{(1)} = \bar{\Psi} \bigg[i \gamma_{\mu} \big(\partial^{\mu} - i \textbf{\textit{v}}^{\mu} \big) - \textit{m}_{N} + \frac{g_{A}}{2} \gamma_{\mu} \gamma_{5} \Big(2 \frac{\textbf{\textit{a}}^{\mu}}{F_{\pi}} - \frac{\partial^{\mu} \pi}{F_{\pi}} \Big) + \cdots \bigg] \Psi$$

→ no scalar source!

	Nucleon	s
WIMP		
	1b	2
S	2b	3

Example: chiral counting in scalar channel

Leading pion–nucleon Lagrangian

$$\mathcal{L}_{\pi N}^{(1)} = \bar{\Psi} \bigg[i \gamma_{\mu} \big(\partial^{\mu} - i \textbf{\textit{v}}^{\mu} \big) - \textit{m}_{N} + \frac{g_{A}}{2} \gamma_{\mu} \gamma_{5} \Big(2 \frac{\textbf{\textit{a}}^{\mu}}{F_{\pi}} \Big) + \cdots \bigg] \Psi$$

- → no scalar source!
- Scalar coupling

$$f_N = \frac{m_N}{\Lambda^3} \sum_{q=u,d,s} C_q^{SS} f_q^N + \cdots \qquad \langle N | m_q \bar{q} q | N \rangle = f_q^N m_N$$

Nucleon S
WIMP

1b 2
S 2b 3

 \hookrightarrow for q = u, d related to **pion–nucleon** σ -term $\sigma_{\pi N}$

Chiral expansion

$$\sigma_{\pi N} = -4c_1 M_{\pi}^2 - \frac{9g_A^2 M_{\pi}^3}{64\pi F_{\pi}^2} + \mathcal{O}(M_{\pi}^4) \qquad \dot{\sigma} = \frac{5g_A^2 M_{\pi}}{256\pi F_{\pi}^2} + \mathcal{O}(M_{\pi}^2)$$

- \hookrightarrow slow convergence due to strong $\pi\pi$ rescattering

σ -term from Roy–Steiner analysis of pion–nucleon scattering

Error analysis

$$\sigma_{\pi N} = 59.1 \pm \underbrace{0.7}_{\text{flat directions}} \pm \underbrace{0.3}_{\text{matching}} \pm \underbrace{0.5}_{\text{systematics}} \pm \underbrace{1.7}_{\text{scattering lengths}} \pm \underbrace{3.0}_{\text{low-energy theorem}} \text{MeV}$$

 $= 59.1 \pm 3.5 \, \text{MeV}$

• Crucial result: relation between $\sigma_{\pi N}$ and πN scattering lengths

$$\sigma_{\pi N} = 59.1 \, \text{MeV} + \sum_{l_s} c_{l_s} \Delta a_{0+}^{l_s}$$

• Pionic atoms: $\pi^- p/d$ bound states

A new σ -term puzzle

- Recent lattice calculations of σ_{πN}
 - BMW 1510.08013;

$$\sigma_{\pi N} = 38(3)(3) \text{ MeV}$$

χQCD 1511.09089:

$$\sigma_{\pi N} = 45.9(7.4)(2.8) \,\text{MeV}$$

ETMC 1601.01624;

$$\sigma_{\pi N} = 37.2(2.6)\binom{+4.7}{-2.9} \text{ MeV}$$

RQCD 1603.00827;

$$\sigma_{\pi N} = 35(6) \, \text{MeV}$$

Similar puzzle in lattice calculation of

$$K
ightarrow \pi\pi$$
 RBC/UKQCD 1505.07863, also 3σ level

A new σ -term puzzle: issues with the pionic-atom scattering lengths?

- Something wrong with pionic-atom data?
- Direct fit to pion-nucleon data base 1706.01465, requires careful treatment of
 - Radiative corrections
 - Experimental normalization uncertainties
- Bottom line:

$$\sigma_{\pi N} = 58(5) \,\mathrm{MeV}$$

A new σ -term puzzle: what could lattice do?

- πN : lattice calculation of $a^{1/2}$, $a^{3/2}$
 - \hookrightarrow test input for πN scattering lengths
- Possible issues of σ -term calculations:
 - Finite-volume corrections
 - Discretization effects
 - Excited-state contamination

Status of the phenomenological determination of $\sigma_{\pi N}$

- Karlsruhe/Helsinki partial-wave analysis KH80 Höhler et al. 1980s
 - \hookrightarrow comprehensive analyticity constraints, old data
- ullet Formalism for the extraction of $\sigma_{\pi N}$ via the Cheng–Dashen low-energy theorem Gasser, Leutwyler, Locher, Sainio 1988, Gasser, Leutwyler, Sainio 1991
 - \hookrightarrow "canonical value" $\sigma_{\pi N} \sim 45\,\text{MeV}$, based on KH80 input
- GWU/SAID partial-wave analysis Pavan, Strakovsky, Workman, Arndt 2002
 - \hookrightarrow much larger value $\sigma_{\pi N} = (64 \pm 8) \, \text{MeV}$
- ChPT fits vary according to PWA input Fettes, Meißner 2000 (same problem in different regularizations (w/ and w/o Δ) Alarcón et al. 2012)

Status of the phenomenological determination of $\sigma_{\pi N}$

- Karlsruhe/Helsinki partial-wave analysis KH80 Höhler et al. 1980s
- Formalism for the extraction of $\sigma_{\pi N}$ via the Cheng–Dashen low-energy theorem Gasser, Leutwyler, Sainio 1988, Gasser, Leutwyler, Sainio 1991
 - \hookrightarrow "canonical value" $\sigma_{\pi N} \sim 45\,\text{MeV}$, based on KH80 input
- GWU/SAID partial-wave analysis Pavan, Strakovsky, Workman, Arndt 2002
 - \hookrightarrow much larger value $\sigma_{\pi N} = (64 \pm 8) \, \text{MeV}$
- ChPT fits vary according to PWA input Fettes, Meißner 2000
 (same problem in different regularizations (w/ and w/o Δ) Alarcón et al. 2012)
- ullet Our work: two new sources of information on low-energy πN scattering
 - Precision extraction of πN scattering lengths from hadronic atoms
 - Roy-equation constraints: analyticity, unitarity, crossing symmetry

1506.04142,1510.06039

QCD constraints for subleading nuclear corrections

- One-body operators: known nuclear form factors
 - \hookrightarrow determines radius corrections (b)
- Axial Ward identity relates $g_{A,P}^N(t)$ and

$$\mathcal{M}_{1,NR}^{AA} = -4\mathcal{O}_4 g_A^N(t) + \frac{1}{m_N^2} \mathcal{O}_6 g_P^N(t)$$

- \hookrightarrow fixed combination of $\mathcal{O}_{4,6}$ in (a)
- ullet \mathcal{O}_{10} only appears in SP channel \Rightarrow not coherent and vanishes at $\mathbf{q}=0$

Comparison to NREFT

- For the **leading corrections** all \mathcal{O}_i but \mathcal{O}_3 are small
 - \hookrightarrow not necessary to keep 2 \times 14 parameters in first step
- But: some new parameters for two-body effects and radius corrections
- Nucleon operators: 1, \mathbf{S}_N , \mathbf{v}^{\perp} , $\mathbf{v}^{\perp} \times \mathbf{q}$, $\mathbf{v}^{\perp} \cdot \mathbf{q} = 0$
 - \hookrightarrow only $\mathbf{v}^\perp \to \mathbf{\nabla}$ can produce new coherent (nuclear) effect
- Similarly to SD searches: define subleading "cross sections"
 - → pion–WIMP scattering
- NREFT only first step in chain of EFTs
 - \hookrightarrow need **matching to QCD** to make connection to BSM, ChEFT one crucial step

Analysis strategies

• Parameters ($\zeta = 1(2)$ for Dirac (Majorana)):

$$\begin{split} \mathbf{c}_{\pm}^{\textit{M}} &= \frac{\zeta}{2} \Big[f_{\textit{p}} \pm f_{\textit{n}} + f_{1}^{\textit{V},\textit{p}} \pm f_{1}^{\textit{V},\textit{n}} \Big] \qquad \mathbf{c}_{\pi} = \zeta f_{\pi} \qquad \mathbf{c}_{\pi}^{\theta} = \zeta t_{\pi}^{\theta} \qquad \mathbf{c}_{\pm}^{\phi''} = \frac{\zeta}{2} \Big(f_{2}^{\textit{V},\textit{p}} \pm f_{2}^{\textit{V},\textit{n}} \Big) \\ \dot{\mathbf{c}}_{\pm}^{\textit{M}} &= \frac{\zeta m_{N}^{\textit{Q}}}{2} \Big[\dot{f}_{\textit{p}} \pm \dot{f}_{\textit{n}} + \dot{f}_{1}^{\textit{V},\textit{p}} \pm \dot{f}_{1}^{\textit{V},\textit{n}} + \frac{1}{4m_{N}^{\textit{Q}}} \Big(f_{2}^{\textit{V},\textit{p}} \pm f_{2}^{\textit{V},\textit{n}} \Big) \Big] \end{split}$$

Couplings

$$\frac{f_N}{\Lambda^3} \left(\sum_{q=u,d,s} C_q^{SS} f_q^N - 12\pi f_Q^N C_g^{'S} \right) \qquad f_{\pi} = \frac{M_{\pi}}{\Lambda^3} \sum_{q=u,d} \left(C_q^{SS} + \frac{8\pi}{9} C_g^{'S} \right) f_q^{\pi} \qquad f_{\pi}^{\theta} = -\frac{M_{\pi}}{\Lambda^3} \frac{8\pi}{9} C_g^{'S}$$

- Conclusions
 - Different c probe different linear combinations of Wilson coefficients
 - Ideally: global analysis of different experiments
 - One-operator-at-a-time strategy: producing limits e.g. on $c_{\pi}^{\underline{M}}$ and c_{π} in addition to $c_{+}^{\underline{M}}$ would provide additional information on BSM parameter space
 - QCD constraints: when considering \mathcal{O}_3 should also keep radius corrections

Spin-2 and coupling to the energy-momentum tensor

- Effective Lagrangian truncated at dim-7, but if WIMP heavy $m_\chi/\Lambda = \mathcal{O}(1)$
 - → heavy-WIMP EFT Hill, Solon 2012, 2014

$$\mathcal{L} = \frac{1}{\Lambda^4} \bigg\{ \sum_q \frac{C_q^{(2)}}{\bar{\chi}} \bar{\chi} \gamma_\mu i \partial_\nu \chi \frac{1}{2} \bar{q} \Big(\gamma^{\{\mu} i \mathcal{D}_-^{\nu\}} - \frac{m_q}{2} g^{\mu\nu} \Big) q + C_g^{(2)} \bar{\chi} \gamma_\mu i \partial_\nu \chi \Big(\frac{g_{\mu\nu}}{4} G_{\lambda\sigma}^a G_a^{\lambda\sigma} - G_a^{\mu\lambda} G_{a\lambda}^{\nu} \Big) \bigg\}$$

- → similar two-body current as in scalar case, pion pdfs, EMC effect
- Coupling of trace anomaly θ^{μ}_{μ} to $\pi\pi$

$$\frac{\theta^{\mu}_{\mu}}{g_{\mu}} = \sum_{q} m_{q} \bar{q} q + \frac{\beta_{\text{QCD}}}{2g_{s}} G_{\mu\nu}^{3} G_{a}^{\mu\nu} \quad \Leftrightarrow \quad \langle \pi(p') | \theta_{\mu\nu} | \pi(p) \rangle = \rho_{\mu} \rho_{\nu}' + \rho_{\mu}' \rho_{\nu} + g_{\mu\nu} \left(M_{\pi}^{2} - p \cdot p' \right)$$

 \hookrightarrow probes gluon Wilson coefficient C_g^S

