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Motivation:
Gravitational dynamics of radiating classical BH (or NS) binary systems in the non-relativistic limit
 is experimentally relevant (LIGO/VIRGO,…)

rg = 2GNM

rs(= rg for BH)

Gravitational radius:   

Physical radius:

Orbital scale:

Radiation wavelength

r

�

Experiments will be sensitive to at least         corrections beyond Newtonian gravity (Thorne et al 
1994).   Numerical GR results also motivate computing higher order corrections.

v6

r

rsrs �

Even for                 , the non-linear nature of GR makes this a difficult problem, involving a hierarchy
 of length scales

v ⌧ 1

rg ⇠ rs � r � �



In the NR limit                      these scales are correlated:

(WG+I. Rothstein, 2004)

v/c ⌧ 1

Thus at a fixed order in velocity (“Post-Newtonian expansion”),  physics effects from all these 
scales may appear.

r ⇠ rg/v
2 � ⇠ r/v ⇠ rg/v

3

The correct set of EFTs for the binary system has properties in common w/ its gauge theory 
counterparts (HQET, NRQED/NRQCD,…)

Treat each scale separately, by constructing 
a tower of gravity Effective Field Theories



Tower of gravity EFTs:  

Independent EFTs with distinct expansion parameter coincide in PN limit.
UV divergence in                 corresponds to IR effect in EFTi+1 EFTi

Full theory:

Finite size
S = SEH + Spp

2-body
(“NRGR”)

⌘0 = rs/r(= rg/r,BH)

⌘1 = rg/r(= v2,NR case)

⌘2 = r/�(= v,NR case)

⌘3 = rg/�(= v3, NR case)

Radiation
(multipole+non-
linear GR)

UV

UV

UV IR matching

IR matching

IR matching

Gµ⌫ = 8⇡GNTµ⌫Includes
dissipation



EFT1I:   2-body bound state
This is a theory of 2 pt non-relativistic particles, interacting gravitationally 
and emitting radiation:

The most general (mod. e.o.m’s) point particle Lagrangian consistent with 
symmetries:

Systematically encodes finite size = tidal effects.   Eg. “Love numbers”

S = SEH + Spp

Ignoring spin and (until later in the talk) dissipation at the BH horizon.

Spp = �m

Z
d⌧ + cE

Z
d⌧Eµ⌫E

µ⌫ + cB

Z
d⌧Bµ⌫B

µ⌫ + · · ·

cNS ⇠ mR4 cBH,d=4 = 0 (Damour et al; Poisson et 
al;Kol+Smolkin 2010)(Flanagan+Hinderer, 2007)

Eµ⌫ = Rµ↵⌫�v
↵v� Bµ⌫ =

1

2
✏µ⇢��v

⇢v↵R⌫↵
��

SEH = −2m2

Pl

∫
d4x

√

gR(x) (m2

Pl = 1/(32πGN ))
(~ = c = 1)



The gravitational “Wilson line”

W = exp i�[h̄, xa] =

Z
[Dhµ⌫ ]b.c’se

iS[h,h̄,xa]

generates all the observables of the (classical) binary system.  
Diagrammatically:

BH1

BH2

t

W = · · ·+ + · · ·

h̄µ⌫

h̄µ⌫

where we split up the metric into a background field and a “fluctuating 
part”: gµ⌫ = ⌘µ⌫ + h̄µ⌫ + hµ⌫

background

and integrate out fluctuations.  (work in background field gauge)

fluctuation

= e
P
(BH irreducible diagrams)



For example, 

�[h̄ = 0, xa] =

Z
dtL(xa(t), ẋa(t)) =

generates the equations of motion for the BH trajectories

The linear term in the  background defines an effective energy-
momentum tensor:

two-body 
Lagrangian

�[h̄ =, xa] = · · ·+ 1

2mPl

Z
d4xTµ⌫(x)h̄µ⌫ + · · ·

which can be used to compute radiation at infinity

@µT
µ⌫(x) = 0 (Ward id. for diff 

invariance)



d�h(k) =
1

T

d3k

(2⇡)32|k| |Ah(k)|2,

In particular, with standard in/out (Feynman) b.c.’s, graviton emission amplitude is 

Ah=±2(k) =

Z
d4xeik·x✏⇤µ⌫(h, k)T

µ⌫(x)

yield time-averaged energy and momentum emission rates:

hṖµih=±2 =

Z
kµd�h(k),

hJ̇i = 2

Z
nd�h=2(k)� 2

Z
nd�h=�2(k),

and the graviton emission rate over T ! 1

(Equivalently, the radiated power spectrum follows directly from the 
effective action:

2

describe below in Sec. ??. Because these operators are
intrinsic to the structure of the sources, the matching can
be done for a single source in isolation, independently of
the complicated binary star dynamics. In this way the
EFT manages to disentangle the model dependent as-
pects of the gravitational wave signals from the features
that arise as unambiguous predictions of general relativ-
ity.

Any properly constructed EFT has manifest power
counting in the expansion parameter (here, the typical
orbital velocity v). In the present context, this means
that it is possible to assign velocity scaling dimensions
to the fields in such a way that an arbitrary operator
or Feynman diagram in the perturbative expansion will
have definite v scaling. The advantage of this is that
it is possible to easily determine which diagrams, built
out of the vertices generated by the e⇤ective Lagrangian,
contribute at a given order in perturbation theory.

In the next section we turn to a formulation of the
EFT. In Section we show that the coe⌃cients of opera-
tors in the e⇤ective lagrangian undergo RG running with
scale, and we work out some of the simplest consequences
of the RG flows. Finally in Section, we discuss how, given
a more complete stellar model one can determine the co-
e⌃cients of operators in the e⇤ective theory. This has
bearing on the 3PN ambiguity encountered in [? ].

II. THE EFFECTIVE THEORY

The starting point of our EFT formulation consists of
a theory of relativistic point particles coupled to gravity

S = SEH + Spp, (1)

where

SEH = �2m2
Pl

⌅
d4x
 

gR(x), (2)

describes the graviton dynamics2 and

Spp = �
⇤

a

ma

⌅
d⇥a +

⇤

a

c(1)
a

⌅
d⇥aR(xa)

+
⇤

a

c(2)
a

⌅
d⇥aRµ⇥(xa)ẋµ

a ẋ⇥
a + · · · (3)

determines the motion of the 2-body system (a = 1, 2
runs over the particle species). In this equation, d⇥a =⇧

gµ⇥dxµ
adx⇥

a is the proper time along the worldline xµ
a

of the a-th particle. We will ignore in this paper addi-
tional degrees of freedom that describe the spin or any
additional multipole moments carried by each particle.

2 Our conventions are Rµ⌫ = ⇥↵�↵
µ⌫ � ⇥⌫�↵

↵µ + · · · and signature
(+,�,�,�).

Thus strictly speaking the formalism presented here can
be used only to describe the dynamics of spinless black
holes. We will save the issue of including multipole mo-
ments in the EFT for future work

The first term in Spp generates geodesic motion about
the metric gµ⇥ (ma is the mass of the a-th point parti-
cle). Besides this term, we have also explcitly shown the
first two of an infinite set of possible non-minimal cou-
plings of the point objects to the spacetime metric. These
operators have unit mass dimension, so we expect the co-
e⇤cients c(i)

a to be proportional to a single power of some
characteristic length scale rs. Since these non-minimal
couplings cause deviations from pure geodesic motion,
one would expect them to be associated with the lead-
ing e⇤ects of curvature induced tidal forces. This means
that the higher-dimension “tidal” operators in Eq. (??)
encode information about the non-vanishing spatial ex-
tent of the binary star constituents. Thus by including
the most general set of such operators, we systematically
take into account all possible corrections due to the finite
size rs of the object. We will discuss in a Sec. ?? how
one goes about determining the precise relation between
the coe⌃cients of these operators and the microscopic
physics (ie, the stellar structure model) that determines
the internal structure. A discussion of the laws of motion
for extended objects in general relativity can be found in
[? ].

A gravitational wave detector such as LIGO measures
the power emitted in gravitational radiation from the bi-
nary system. Given the action Eq. (??), it is in principle
possible to calculate this quantity by writing the metric
as gµ⇥ = �µ⇥ +hµ⇥ and integrating out the graviton field
hµ⇥ to obtain an e⇤ective action for the particle coordi-
nates alone

exp[iSeff (xa)] =
⌅

Dhµ⇥ exp[iSEH + iSpp]. (4)

The e⇤ective action Seff [xa] has a real part which gen-
erates the coupled equations of motion for the 2-body
system, and an imaginary part that measures the total
number of gravitons emitted by a fixed two-particle con-
figuration {xa

µ} over an arbitarily large time T ⌅⇧

1
T

ImSeff [xa] =
1
2

⌅
dEd⇥

d2�
dEd⇥

, (5)

where d� is the di⇤erential rate for graviton emission
from the binary system. From this quantity we obtain the
classical power spectrum dP = Ed� seen by the detector.

In principle, one could directly evaluate Eq. (??) using
the Lorentz covariant Feynman rules generated by the
Einstein-Hilbert lagrangian. However, the perturbative
series generated in this way is not optimal for taking the
limit v ⇤ 1. For example, the one-graviton exchange
term in iSeff [xa],

⇤

a,b

mamb

16m2
Pl

⌅
d⇥ad⇥b

�
1� 2(ẋa · ẋb)2

⇥
DF (xa � xb) (6)

dP = EdΓ, )



Using in/in boundary conditions (as in cosmology) gives instantaneous 
observables, e.g. radiation field at infinity: 

hµ⌫(x ! 1, t) =

Z
d4yDret

µ⌫;↵�(x� y)T↵�(y)

which yields the time-dep. waveform seen in the detector.

(C. Galley)



gµ⌫ = ⌘µ⌫ + hµ⌫/mPl

w/ e.g 

SEH = �2m2
Pl

Z
d4x

p
gR

µ, ⌫ ↵,� =
i

k2
Pµ⌫;↵,�

k
(Feynman 
gauge)

To compute the generating function        one could use standard covariant 
Feynman rules obtained by expanding       

W

However, these Feynman rules are not optimal optimal for the NR limit  v ⌧ 1
The diagrams don’t have manifest power counting in the exp. parameter:

⇠ v?⇠ v2 + v4 + · · ·

(NOT A
PROPAGATOR!)==



“radiation”: (E � v/r, ⌥p � v/r)

“potential”: (E � 0, ⌃p � 1/r)

The radiation mode can be regarded as long wavelength background field 
in which potential gravitons propagate

The problem is that the diagrams involve momentum integrals over all 
momentum regions.   However, for NR kinematics, two momentum space 
configurations dominate:

The solution to this problem is well known (see HQET, NRQED/NRQCD, SCET).  
Decompose graviton into distinct momentum modes and “pull out” short 
scales:

gµ⌫(x) = ⌘µ⌫ + h̄µ⌫(x) +
X

k

e
ik·x

Hkµ⌫(x
0)

@µh̄ ⇠ v

r
h̄

k ⇠ 1

r

(off-shell)

@µHk ⇠ v

r
Hk



In addition, need to multipole expand the couplings of the radiation mode to the particles 
and to the potentials.   This yields an effective Lagrangian with manifest power counting in 
velocity:

By connecting vertices together, generate the 2-body potentials and the 
interactions of matter with radiation.   Drop quantum corrections

Radiation-potential 
interaction

⇠ v5/2/
p
L

⇠ ~/L ⌧ 1

Pt. particle-Newton 
potential
interaction:

⇠
p
L

Potential graviton cubic 
self-interaction

⇠ v2/
p
L



L =
1
2

�

a

ma⌃v
2
a +

GNm1m2

r

Leading order:   
Newton 
(1687)

Next-to-leading (1PN):   Einstein-Infeld 
Hoffman Lagrangian (1938)

LEIH =
1
8

⇤

a

ma⌥v
4
a +

GNm1m2

2r

�
3(⌥v2

1 + ⌥v2
2)� 7⌥v1 · ⌥v2 � (⌥v1 · n)(⌥v1 · n)

⇥

�G2
Nm1m2

2r2



2PN  (1981-2002):     Some of the diagrams are (Gilmore+Ross, PRD 2008)

(simplification of PT via field redefs:  
B. Kol+M. Smolkin, 2007-2008. )

reducible to one-loop integrals via 
IBP:Z

dd�1k

(2⇡)d�1

1

[(k+ p)2]↵[k2]�



In terms of the metric parametrization (2.4), with Ai = 0, each world-line coupling to
the gravitational degrees of freedom �, �ij reads

Spp = −m� d⌧ = −m� dt e��⇤
�

1 − e−cd��⇤ �v2 + �ij
⇤

vivj� , (2.5)

and its Taylor expansion provides the various particle-gravity vertices of the EFT.
Also the pure gravity sector Sbulk = SEH + SGF can be explicitly written in terms

of the KK variables; we report here only those terms which are needed for the present
calculation2:

Sbulk ⊃ � dd+1x√� �1
4
�(�∇�)2 − 2(�∇�ij)

2
� − cd(�∇�)

2

−
1

⇤
�
�

2
�ij − �ij

���ik
,l�jl

,k
− �ik

,k�jl
,l
+ �,i�jk

,k
− �ik,j�

,k
�� . (2.6)
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Figure 1. The diagrams contributing at order G5
N . As in the EFT approach the massive objects

are non-dynamical, the horizontal black lines have to be seen as classical sources, and not as
propagators. Green solid lines stand for � field propagators, blue dashed lines for � fields.

2
It is understood that spatial indices in this expression, including those implicit in terms carrying a(�∇)2, are contracted by means of the spatial metric �ij , which implies the appearance of extra � fields, e.g.(�∇�)2 ≡ �ab�cd�ij�ab,i�cd,j and �ij = (�−1)ij (and on the second line �ij = �ij , � = �ij�ij).
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State of the art:   Potentials at 4PN (Foffa, Sturani, Mastrolia, Sturm, PRD 2017).   All 
diagram topologies

static part of the 2-body potentials:



Tµ⇥ = +
h̄µ⇥

+

One graviton sector:  radiation couplings
Integrating out potential modes gives the couplings of 2-body system to 
radiation:

h̄µ⇥ +

· · · h̄µ⇥

h̄µ⇥

+

v0 v2

(1st graph=LO. Last three graphs are NLO).

(WG+A. Ross, PRD 
2010)



The resulting action consists of a set of multipole moments coupled to the 
worldline of composite object.   In the CM frame,

Eij =
⇧

d3x
⇤
T 00 + T aa +

11
42

x2T̈ 00 � 4
3
Ṫ 0kxk

⌅ �
xixj

⇥TF +O(v4)

=
⇤

a

maxi
ax

j
a

�
1 +

3
2
v2

a �
⇤

b

GNmb

|xa � xb|

⇥
+

11
42

⇤

a

ma
d2

dt2
(xa

2xi
ax

j
a)

�4
3

�

a

ma
d

dt
(xa · vaxi

ax
j
a)� traces + O(v4)

For example, the quadrupole moment to NLO (Will+Wagoner, 1970’s)

` = 2E ` = 2B ` = 3E

�[h̄] =
1

2mPl

Z
dx0


IijE (x0)R0i0j +

4

3
Ii,jkB (x0)R0jik +

1

3
IijkE (x0)rkR0i0j + · · ·

�

Iij



EFTIII:   Radiation
This is a field theory of radiation coupled to a point object with multipole 
moments.   Most general diff. invariant action:

(Double expansion:           
                                                    )

(WG+Ross, PRD 2010)

S = �
Z

d⌧(�)m(�)�
Z

dxµLab(�)!
ab
µ (x(⌧)) +

1

2

Z
d⌧(�)Iab(�)E

ab(x(⌧))

vµ = ẋµ

eµa=1,2,3

xµ(�)

The time evolution of the moments arises from short dist. 
(potentials) as well as radiative corrections (radiation reaction).

Can regard the moments as time-dependent Wilson 
coefficients (coupling constants).   Radiative corrections in the 
EFT will generate RG flows for them.

�2

3

Z
d⌧Jab(�)B

ab(x) +
1

6

Z
d⌧Iabc(�)rcEab(x) + · · ·

⌘2 = r/� ⇠ v

⌘3 = r/rg ⇠ v3



Ṗ 0 =
GN

5

*✓
d3

dt3
Iij(t)

◆2
+

+
16GN

45

*✓
d3

dt3
J ij(t)

◆2
+

+
GN

189

*✓
d4

dt4
Iijk(t)

◆2
+

+ · · ·

Can use this theory to compute observables at infinity, even if the short 
distance time evolution of the moments is not known.   For example, the 
graviton emission amplitude involving the 1st three moments:

Determines the time averaged energy loss rate of the composite system:



Focus on the             channel.   The amplitude to 3PN order is

UV and IR divergences in radiation

Iij

iA(k) = + +

+ + · · ·

Non-linear interaction of emitted gravitons with multipole moments 
introduces both UV and IR divergences.

↓ k

↓ k ↓ k

↓ k

+

↓ k

` = 2



Dissipative Effects in Compact Binaries

The formalism outlined so far neglects dissipation, ie absorption of GWs by 
the compact object.   

Spp = �m

Z
d⌧ + cE

Z
d⌧Eµ⌫E

µ⌫ + cB

Z
d⌧Bµ⌫B

µ⌫ + · · ·

On general grounds, dissipation implies the existence of low frequency modes 
with               (eg NS: hydro modes,….  BH:   horizon absorption) not 
captured by the point particle EFT

! ⇠ !GW



eg, for a Schwarschild black hole, the spectrum contains an infinite tower of 
modes labeled by          .  In this case there are some zero modes:

Mode Freq. J
P

0

1
+

(spin)

0

1
−0

0

there are also an infinite tower of quasinormal modes 

(from Kokkotas and Schmidt, gr-qc/9909058).

m(�)

xµ(�)

!ij(�)

SO(3)

which are increasingly “broad resonances”



Even though the form of the internal spectrum depends on the details of the internal structure, can 
incorporate the effects of dissipation in a model independent way using open system EFT methods.

The idea is to treat the compact object as            as an “atom”, i.e a worldline with local operators 
coupled to gravitons.     For a spherical symmetric object, the leading interactions with gravitons 
take the form 

R ! 0

+
1

2

Z
d⌧(�)Qab

E (�)Eab(x(�)) +
1

2

Z
d⌧(�)Qab

B (�)Bab(x(�))Spp = · · · + · · ·

With operators                                      acting on the Hilbert space of internal states.Qab
E (�), Qab

B (�) · · ·

Microscopic properties are then encoded in the correlation functions

⟨QE,B · · ·QE,B⟩

which can be related to observable quantities of the compact object.



Example:    Graviton absorption and power dissipation

Consider an compact object of mass       .   Graviton absorption amplitude in the object’s rest 
frame: 

M

�abs(!) =
!

8m2
Pl

Z
dx0e�i!x0

[!2✏⇤ab✏cdhQE
ab(0)Q

E
cd(x

0)i

+(k⇥ ✏⇤)ab(k⇥ ✏)cdhQB
ab(0)Q

B
cd(x

0)i]

absorption cross section is 

then, assuming unitarity (even for BHs!):

where the 2-pt. correlators are in the initial state of the compact object

hQE(0)QE(x0)i = hM |QE(0)QE(x0)|Mi

(alternatively, initial state could be mixed/thermal)

�abs(!) = lim
T!1

1

T
· 1

2!

X

X

|A(g(k) +M ! X)|2

⇡ i!2

2mPl
✏ij(k)

Z
dte�i!thX|QE

ij(t)|Mi+magnetic

iA(gh(k) +M ! X) = hX|Te�i
R
dtHint |k, h;Mi

X

X

|XihX| = I



Equivalently, using the optical theorem 

where the time-ordered two-point function is, using rotational invariance 

and similarly for the magnetic contribution

Z
dx0e�i!x0

hTQE
ab(0)Q

E
cd(x

0)i = � i

2


�ac�bd + �ad�bc �

2

3
�ab�cd

�
FE(!),

�abs,p(!) =
!3

4m2
Pl

Im [FE(!) + FB(!)]
Im

(see also Klebanov’s computation of greybody factors in AdS/CFT…)

(! > 0)



The same two-point correlators show up in the two-body sector and control dissipative effects in 
the evolution of non-relativistic binaries.    Using the NRGR formalism, this is given by the box 
diagram with potential exchange:  

dPabs

d!
= � 1

T

GN

64⇡2

X

a 6=b

�(b)
abs(!)

!2
m2

a|q
(a)
ij (!)|2,

=
1

4
G2

N

X

a 6=b

Z
d!

2⇡
FE
b (!)m2

a|q
(a)
ij (!)|2 + · · · .

Absorption power spectrum:

q(a)ij (t) = @a
i @

a
j |x12(t)|�1

2

T
Im�eff =

Z
d!

!

dP

d!

=
m

2
2

8m4
Pl

Z
dx

0
1dx̄

0
1dx

0
2dx̄

0
2hTH00(x

0
2)Eij(x

0
1)ihTH00(x̄

0
2)Ers(x̄

0
1)i

⇥ hTQE
ij(x

0
1)Q

E
rs(x̄

0
2)i+ (1 $ 2) + · · · .

i�eff [x1, x2] = +(1 $ 2) + · · ·

1

2

 is related to the low frequency graviton absorption cross section by the compact binary.



For the case of black holes, the low frequency               can be calculated analytically, by finding the 
graviton wavefunctions in the BH background:

�abs(!)

⇤BHhµ⌫ = 0

hµ⌫(x) = e�i!tR`(r)

r
Y `m
µ⌫ (⌦)

Schrodinger eqn for radial modes
=“Regge-Wheeler” eqn.

V`(r) =
⇣
1� rs

r

⌘✓
`(`+ 1)

r2
� 3rs

r3

◆

r⇤ ! 1

V`,s(r
⇤)

�1 

R`(r ! 1) ! e�i!r⇤ +R(!)ei!r⇤

R`(r ! rs) ! T (!)e�i!r⇤

|R(!)|2 + |T (!)|2 = 1

�abs(!) ⇠ |T (!)|2

BCs for scattering:    

(QNMs:   Same eqn. but purely outgoing bc’s at the horizon and infinity)

(r⇤ = r + rs ln |r/rs � 1|)



These absorption coefficients were computed by Page (1975) for massless particles of arbitrary 
spin in the case of Kerr black holes:

P ARTIC LE EMISSION BATE S F ROM A BLACK HOLE:. . . 201

From the behavior of these analytic absorption probabilities at low frequencies for the various angular
modes, one can get the low-frequency (M&«1) absorption cross section for a massless particle of spin
s averaged over all orientations of the black hole:"

s=0
2',

o,(&u}=war ' I; &X(3M'-u'} '
1s 2

s=1 (19}

A(5M'+ &M'g'+ g )&u', s =2.

At high frequencies (M&@» 1}the angle-averaged
cross section for each kind of particle must ap-
proach the geometrical-optics limit of 27mM' for
a nonrotating hole and roughly the same value for
a rotating hole. " Thus the cross sections are
smaller at low frequencies. As the frequency is
reduced to zero, the cross sections retain finite
values for neutrinos and hypothetical spin-0 mass-
less particles and go to zero as the frequency
squared for photons and as the frequency to the
fourth power for gravitons.
Combining the low-frequency absorption prob-

abilities (13) and (14) with the thermal factor (4)
for a black hole with negligible rotation, one gets
the emission rate in a given angular and polari-
zation eigenstate for low frequencies,

d & P (l- s)!(I+s)! ' „+,
dfd+ ~ 4v (2 f )!(2l + 1) !!

(20)

where P=2 for bosons and P=7t' for fermions. The
fractional errors are of order M(~-mQ). Thus in
each case the emission rate at low frequencies
goes as td, and the power goes as + . This
qualitative behavior causes the particles with low-
er spine (and thus lower l allowed, since l ~ s) to
be emitted faster from a nonrotating hole, there-
by dominating the low-frequency power drain from
such a hole. However, the analytic expressions
for low frequency break down long before the
actual spectra peak, so numerical calculations
are needed to determine whether and to what ex-
tent this effect holds also for the total power drain.

III. NUMERICAL CALCULATIONS

The particle emission rates were calculated by
using Hawking's formula (4) and Eq. (11)with the
absorption probabilities ~ computed by the method
of Ref. 9, Sec. VII, using Bardeen's transforma-
tion discussed therein to allow stable integration
of the Teukolsky equation from the horizon to in-
finity. A purely ingoing solution was chosen on
the horizon, and after this solution was numeri-

cally integrated out to a sufficiently large radius,
it was resolved into ingoing and outgoing waves at
infinity. Then I' was calculated as the ratio of the
energy going down the hole to the energy of the
ingoing wave at infinity, and the thermal factors
were multiplied in to give the quantum emission
rates. These rates were multiplied by the energy
or angular momentum of each particle, integrated
over frequency, and summed over all angular
modes, polarizations, and species of particles to
give the total power and torque emitted [cf. Eq.
(12)] .
The accuracy of the numerical result was limited

by the step size in integrating the Teukolsky
equation, the radius where the resolution into in-
going and outgoing waves is made, and the step
size in integrating the spectra. To keep these
three sources of error under control, variable
step sizes were used with an error criterion for
each step, and the resolution into ingoing and out-
going waves was required to be the same within
a certain accuracy at two different radii. Thus the
total error was governed by three accuracy criter-
ia, and these were chosen for each mode to give
roughly the same effect on the final result so that
the result might have nearly the greatest accuracy
possible for a given computer machine time.
The numerical calculations of the emission rates

compared favorably with Eq. (20} at low frequen-
cies, although departures from the extended
Starobinsky- Churilov expression become signifi-
cant at fairly small values of M&. For example,
the actual value of 1 for neutrinos with l = ~

becomes 50% larger than that given by Eq. (14}
when Mt'd =0.05. This effect prevents one from
getting an accurate estimate of the total power
and torque emitted by inserting (13) and (14) into
(12). [One might have expected such an estimate
to be fairly accurate on grounds that the exponen-
tial of 8'~ (for a nonrotating hole) in the denom-
inator of (12) might become large and make the
integrand small before the expression for I' de-
velops serious errors. ] In fact, such an estimate
gave only 35% of the actual total power in neu-

Using his result we can match the two-point functions in the case 

ImFE(!) = ImFB(!) = 16G5
Nm6|!|/45

yielding predictions for horizon power absorption in NR binary evolution:

Pabs =
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(in agreement with Poisson (1995) in the extreme mass limit                 )m1 � m2

Note:                              is a (small) 4PN effect.   Absorption enhanced to       for rotating black 
holes (see Porto; Endlich+Pencco for EFT description)

s = 2

Pabs/Pquad ⇠ v8 v5



Hawking emission and EFT (w/ Rothstein, in progress)

In principle, same methods can be applied to capture long distance effects of emission by black hole 
horizon.    (phenomenological applications:   none whatsoever)

E.g neutral black hole electrodynamics:

Sint = �
Z

d⌧pa(⌧)E
a(⌧)�

Z
d⌧ma(⌧)B

a(⌧)

as in the graviton case, the correlators                            are related to absorptive processes.  hpapbi hmambi

BH emission involves the same correlators, but at negative frequency:
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2Using Page’s result                               :
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(assuming unitarity)



In this case we match to Hawking’s prediction for the photon emission rate:

Greybody factors from Page:
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47] g
A

hole decrease at the rates given by the total power
and torque emitted:

= ~[2 —Q„'+2(1 —!I),' —a,'}'~'] F, , ~fLexp[2vv '(ru-mQ —ec)]g &l fftP

a
4M (9) ')) 'm)& ))2)

1+(1—Q*' —a ')' '
q 2 /2(1 q 2 u 2)&)'2

(10)

Here the quantities after the arrows are the lead-
ing terms for a -=a/M -=J/M' «1 and tL), —= !I)/M«1.
To convert from the expected number emitted

per mode to the average emission rate per fre-
quency interval, one counts the number of modes
per frequency interval with periodic boundary
conditions in a large container around the black
hole and divides by the time it takes a particle to
cross the container, finding

= (~)—dÃ vdk d~
dt 2m 2m

for eachj, l, m, p, and frequency interval
((u, a)+d(u). Since each particle carries off ener-
gy and angular momentum m about the axis of
the hole, the mass and angular momentum of the

The nontrivial part of the calculation of the
power and torque is the determination of the ab-
sorption probabilities ~. Fortunately, Teukolsky
has shown" that the fundamental equations for
gravitational, electromagnetic, and neutrino-
field perturbations of an uncharged rotating black
hole decouple into a single equation for each field,
and furthermore that each of these equations is
completely separable into ordinary differential
equations. Teukolsky and P ress" have developed
analytic and numerical techniques for interpreting
and solving these equations for gravitational and
electromagnetic perturbations. Their techniques
can be extended easily to the neutrino field, and
I have simply modified their computer programs
to cover neutrinos as well as gravitons and photons.
A check on the numerical computation can be

given by the analytic form of Ffor small M~, which
has been derived by Starobinsky and Churilov"
for boson fields and which is extended in the Ap-
pendix to fermion fields obeying the Teukolsky
equation. For a massless field with spin-s
scattering off an uncharged hole, the formulas are

(l —s)!($+s)! '~ ) a&-mQ ' &o —mQ Aa

) (l —s)!(f+s)! ' ~' (o-mQ ' A~

with fractional errors of order (At(&o)" '. Since l ~ s, the dominant contribution is from the l = s modes,
which give

F,~~ =—m' = 8M [M+(M' —a')'~'] aP for s = 0,
1r

(16)

—[M'+!fn' —1)a'] (&u-mQ)~' for &=1,4 A
(17)

I'
2 ~ = —[M'+(m' —l)a'][M'+(&m' —l)a'](~ —mQ)&u' for s=2. (18)

Here only the lowest-order term in has been kept, except for the -mO factor for bosons which guar-
antees that in the superradiant regime ~&mQ, the absorption probability for bosons in negative. [I.e.,
waves are amplified rather than absorbed. The thermal factor of Eq. (12) is also negative in this regime,
so the quantum emission rate remains positive. ]

Our operators correspond to the case                  :    s = ` = 1

(Can also obtain same result by imposing KMS condition on absorptive part:

   Giddings+Witten, unpublished) 

d�s,`,m,h

d!
=

�s,`,m,h(!)

e~!/TH � 1
=

�s,`,m,h(!)

e4⇡rs! � 1



Application:    Soft Hawking photon emission in glancing BH 
collisions

Small neutral BH scattering off the gravitational field of heavy point mass     .      

Work in the weak gravity limit with small deflections/large impact parameter:



Hawking emission amplitude in the point EFT limit:

Emission rate to leading order in deflection:

Radiated power:



Conclusions

Proliferation of length scales in the binary merger problem motivates
the construction of a tower of EFTs

Dissipation (eg black hole absorption) incorporated by including worldline degrees 
of freedom

Same approach can be used to account for particle emission:

EFT for ultralight axions emission/superradiance in binary dynamics.

Hawking soft photon theorems in hard scattering processes?

(w/ Rothstein, in progress)

(Baumann, Chia, Porto, 2018)


