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Motivation:

Gravitational dynamics of radiating classical BH (or NS) binary systems in the non-relativistic limit
is experimentally relevant (LIGO/VIRGO,...)
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Even for v <1 | the non-linear nature of GR makes this a difficult problem, involving a hierarchy
of length scales

Gravitational radius: 7" = QGNM
Physical radius: 7“5(: Ig for BH)
Tg~Tg>T 3> A
Orbital scale: T
Radiation wavelength A\

v

Experiments will be sensitive to at least ’06 corrections beyond Newtonian gravity (Thorne et al
1994). Numerical GR results also motivate computing higher order corrections.



In the NR limit U/C <& ] these scales are correlated:

ro~ Ty v A~r/v~r, /v

Thus at a fixed order in velocity (“Post-Newtonian expansion”), physics effects from all these
scales may appear.

~ Treat each scale separately, by constructing
a tower of gravity Effective Field Theories

(WGH+I. Rothstein, 2004)

The correct set of EFTs for the binary system has properties in common w/ its gauge theory
counterparts (HQET, NRQED/NRQCD,...)



Tower of gravity EFTs:
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IR matching
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IR matching
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IR matching

ne = r/A(= v, NR case)
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n3s = ry/ A= v>, NR case)

Independent EFTs with distinct expansion parameter coincide in PN limit.
UV divergence in EEF'1'; 1 1 corresponds to IR effect in EEF'T;



EFTI1l: 2-body bound state

This is a theory of 2 pt non-relativistic particles, interacting gravitationally

and emitting radiation:
(h=c=1)

SEH :—2m%l/d4m\/§R(x) S — SEH —|_ Spp (mQPl — 1/(327TGN))

The most general (mod. e.o.m’s) point particle Lagrangian consistent with
symmetries:

Spp:_m/dT—I—CE/dTEW/E“V+CB/dTBMVB“V_|_...

l 9

« o oA
E,.. = R,a3v P B, = ieﬂp(,)\’upv R,

Systematically encodes finite size = tidal effects. Eg.“Love numbers”

(Damour et al; Poisson et

(Flanagan+Hinderer, 2007) CNS ~J mR4 CBH,d:4 — O al;Kol+Smolkin 2010)

lgnoring spin and (until later in the talk) dissipation at the BH horizon.



The gravitational “Wilson line”

W =expil'|h, xz,| = /[Dhﬂ’/]b.c’seism’h’xa]

generates all the observables of the (classical) binary system.
Diagrammatically: 7
U
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_ > (BH irreducible diagrams)

where we split up the metric into a background field and a “fluctuating

part’: Guv = Ny + h’w/ + h/u/

background ~/ \— fluctuation

and integrate out fluctuations. (work in background field gauge)



For example,

[lh=0,7,] = /dtL(Xa,(t),Xa(t)) — two-body

Lagrangian

generates the equations of motion for the BH trajectories

The linear term in the background defines an effective energy-
momentum tensor:

— 1 B
Ol = 2] = -+ 5o /d%TW(x)hWJFW
0,T"" (z) =0 (Ward id. for diff

invariance)

which can be used to compute radiation at infinity



In particular, with standard in/out (Feynman) b.c.s, graviton emission amplitude is

Ap=12(k) :/d4xeik'xe* (h, k)TH ()

U

and the graviton emission rate over I — 00
1 d’k
T (2m)32|k]|

yield time-averaged energy and momentum emission rates:

(P*)h—to = /k“th(k),
(J) =2 / ndl’p—z(k) — 2 / ndl'p—_s(k),

(Equivalently, the radiated power spectrum follows directly from the
effective action:

dl'p (k) = An (k).

ilmseff[iba] — 1/ClEdQ d2r e dP — Edr, )

T 2 dEdQ’



Using in/in boundary conditions (as in cosmology) gives instantaneous
observables, e.g. radiation field at infinity:

h(x — 00,t) = /d4yDLth;a5(:B — )T (y)

which yields the time-dep. waveform seen in the detector.

(C. Galley)



To compute the generating function W3 one could use.standard covariant
Feynman rules obtained by expanding  Sen = —2m3, /d4:c\/§R

Juv — Nuv =+ h,ul//mPl

k

vV > a8 L (Feynman
w/ e.g ANNANNNNNNN = 12 Puvia,p gauge)

However, these Feynman rules are not optimal optimal for the NR limit v <« 1
The diagrams don’t have manifest power counting in the exp. parameter:
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The problem is that the diagrams involve momentum integrals over all
momentum regions. However, for NR kinematics, two momentum space
configurations dominate:

“potential”: (E ~ 0,p~ 1/7) (off-shell)
“radiation”™: (B ~v/r,p~ v/r)

The solution to this problem is well known (see HQET, NRQED/NRQCD, SCET).
Decompose graviton into distinct momentum modes and “pull out” short

scales: 8, Hy ~ - Hy
/ % ,

g,uy(x) — Nuy + h,uy(a?) + Z eik.XHk,uV(xO)

/ k

— vV —

r kwl
/ro

The radiation mode can be regarded as long wavelength background field
in which potential gravitons propagate



In addition, need to multipole expand the couplings of the radiation mode to the particles
and to the potentials. This yields an effective Lagrangian with manifest power counting in
velocity:

Pt. particle-Newton
potential Radiation-potential

interaction: interaction
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Potential graviton cubic
self-interaction

By connecting vertices together, generate the 2-body potentials and the
interactions of matter with radiation. Drop quantum corrections ~ i/L <« 1



Leading order:
Newton

=

(1687)
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Next-to-leading (IPN): Einstein-Infeld
Hoffman Lagrangian (1938)
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2PN (1981-2002):  Some of the diagrams are (Gilmore+Ross, PRD 2008)

X | . |
-7 ,’/ b Y =51 .\\ /,
----9 - n-9 _--" Ko X
TN 1 T-- - -9 ) |
» ® ‘\.
b
miv)y
Lopy =
2PN 16
Gmyms [T , 5 . 3 . 3 4 . 1 .
+ . (8vil - /_lval VY — van-vln-vz + ﬁvaé + é(vl - va)*
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8! 4 16
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2r 279 B. Kol+M. Smolkin, 2007-2008.)



State of the art: Potentials at 4PN (Foffa, Sturani, Mastrolia, Sturm, PRD 2017). All
diagram topologies
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static part of the 2-body potentials:
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One graviton sector: radiation couplings WG+A Ross PRD
2010)

Integrating out potential modes gives the couplings of 2-body system to
radiation: 7
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(Ist graph=LO. Last three graphs are NLO).



The resulting action consists of a set of multipole moments coupled to the
worldline of composite object. In the CM frame,

(=2p _ 9,
\ zlz /

_ 1 4 L,
/d:l? [I ( )ROzOg —+ 3] ’Jk( O)Rojik -+ g[ﬁk(aj‘o)kaOioj -+ - ]

(= 3g

I'lh] =
Qmpl

For example, the quadrupole moment to NLO (Will+Wagoner, 19707)

) wa - 11 4 . . TF
R Ii; R — /d?’x [TOO + T + — D X279 — §T0kazk] 2’27 + O
s 3 Gynm
2 NTIth
:5 M X X2 1—|—§VQ—E Fe— E madQXaXX])
. I b a b )
4 d

— (Xa - VoXx'x?) — traces + O(v*)



R (Doubl ion: m=r/A~wv
EFTII: Radiation o i )

(WG+Ross, PRD 2010)

This is a field theory of radiation coupled to a point object with multipole
moments. Most general diff. invariant action:

C;L(A) 5= - / dr(A)m(X) — / da* Loy (N) wi’ (z(7)) +% / dr(\) Ly (N B (z(7))
é.:fl}“:jjﬂ _% /dTJab(A)Bab(CC) —|—%/dTIabc(>\)vcEab(lC)—l—---

The time evolution of the moments arises from short dist.
(potentials) as well as radiative corrections (radiation reaction).

7
€a=1,2.3

¢ Can regard the moments as time-dependent Wilson
coefficients (coupling constants). Radiative corrections in the
EFT will generate RG flows for them.



Can use this theory to compute observables at infinity, even if the short
distance time evolution of the moments is not known. For example, the
graviton emission amplitude involving the |st three moments:

Iz'j Jz'j Iz'jk

1An(k) = z + g + % T

= U ek, h) (KT (R) + 2K| e Tk () — LI T (k) + - -
l] 3

- 4mp1 3

Determines the time averaged energy loss rate of the composite system:

- () ) 2 (o)) 5o (o) )



UV and IR divergences in radiation

Focus on the ¢ = 2 channel. The amplitude to 3PN order is

17 7 m I

|k

I m m

Lk | k

Non-linear interaction of emitted gravitons with multipole moments
introduces both UV and IR divergences.

| k



Dissipative Effects in Compact Binaries

The formalism outlined so far neglects dissipation, ie absorption of GVVs by
the compact object.

On general grounds, dissipation implies the existence of low frequency modes
with @ ~wWew (eg NS: hydro modes,.... BH: horizon absorption) not
captured by the point particle EFT

Spp:_m/dT—I—CE/dTEw/E“V+cB/dTBMVB“V_|_...



eg, for a Schwarschild black hole, the spectrum contains an infinite tower of
modes labeled by SO(3) . In this case there are some zero modes:

Mode Freq. Jr
m(\) 0 0

zh () 0 1t
wij(A) (spin) 0 1~

there are also an infinite tower of quasinormal modes

=2 =3 =4

0.37367 -0.088961 | 0.59944 -0.092701 | 0.80918 -0.094161
0.34671 -0.273911 | 0.58264 -0.281301 | 0.79663 -0.28443 1
0.30105 -0.478281 | 0.55168 -0.479091 | 0.77271 -0.47991 1
0.25150 -0.705141 | 0.51196 -0.690341 | 0.73984 -0.68392 1

(from Kokkotas and Schmidt, gr-qc/9909058).

Table 1: The first four QNM frequencies (wM ) of the Schwarzschild black hole

for £ =23, and 4 [135]. The frequencies are gwen in geometrical units and for
conversion into kHz one should multiply by 2w (5142H =) x (Mg /M).

G b = S H=

which are increasingly “broad resonances”



Even though the form of the internal spectrum depends on the details of the internal structure, can
incorporate the effects of dissipation in a model independent way using open system EFT methods.

The idea is to treat the compact object as R — ( as an “atom”, i.e a worldline with local operators
coupled to gravitons.  For a spherical symmetric object, the leading interactions with gravitons

take the form

1 1
S +y [ ATNQENEwe) + 5 [ drN)QEO)Ba((V) +
With operators Q% ()), QW () acting on the Hilbert space of internal states.

Microscopic properties are then encoded in the correlation functions

<QE,B o QE,B>

which can be related to observable quantities of the compact object.



Example: Graviton absorption and power dissipation

Consider an compact object of mass M . Graviton absorption amplitude in the object’s rest
frame:

iA(gn(k) + M — X)) = (X|Te ") @Hint |k by M)

-2
~ ZLeij(k)/alte_’“‘”f<X\Q;E- (t)| M) + magnetic
2mpy /
absorption cross section is
, I 1 5
Oaps(w) = lim — - — A(g(k) + M — X))

Tooo T 9w

then, assuming unitarity (even for BHs!):

Z X)X =1 o> o, (v)= * /d:voe_wxo wW?e, eca(QE (0)QE (2V))

— 2
8sz

(k% €)ap(k X €)ca{Qan(0)Qcal(z"))]
where the 2-pt. correlators are in the initial state of the compact object

(QF(0)Q"(2")) = (M|Q"(0)Q" (2°)| M)

(alternatively, initial state could be mixed/thermal)



Equivalently, using the optical theorem

Im : 3
: W
: Tabs,p(W)

— I, Im |[Fg(w) + Fp(w)]

(w>0)
where the time-ordered two-point function is, using rotational invariance

. 7 2
/dxoe—zwzc <Tng(O) ]cEd(xO» — _5 5ac5bd - 5ad5bc — §5ab5cd FE(W)a

and similarly for the magnetic contribution

(see also Klebanov’s computation of greybody factors in AdS/CFT...)



The same two-point correlators show up in the two-body sector and control dissipative effects in
the evolution of non-relativistic binaries.

Using the NRGR formalism, this is given by the box
diagram with potential exchange:
1 Ql Ql
l 1
1
- |
ilepplo1,T2) = l i +(1<2)+---
l Il
2 —> *
mo mo
m3 0 7-0,7..0 70 0 0 -0 -0
= ImA drydzidrydy (T Hoo(2z) Eij(21)) (T Hoo(Z2) Ers(Z1))
Pl
X (TQi;(27)Qrs(73)) + (12 2) + -+ .
1 o dw g 21, (a) 2
=G Y [ R @ml) @) +
a#b
4y (t) = 0705 |xa2(t)|
Absorption power spectrum:
2 dw dP dP,, 1 Gy = 02 (w)
—1 Fe — _ avs __ _ — abs 2 (a) 2
T elt w dw — dw T 6472 ot w? Malds; (W)

is related to the low frequency graviton absorption cross section by the compact binary.



For the case of black holes, the low frequency o,,s(w) can be calculated analytically, by finding the
graviton wavefunctions in the BH background:

_ d?
Br Iy =0 (2 +Vilr) ) Ralr) = PRt

_iwt Be(r) o om T l+1) 3
hﬂl/(aj) — € r Y,uy (Q) ‘/E(T) — (1 _ E) _ "s
r 12 3

Schrodinger eqn for radial modes

=“Regge-Wheeler” eqn.
BCs for scattering:
Ve,s(r™)
Ro(r — 1) = T(w)e™ ™"
D <
Ri(r — 00) = e~ 4+ R(w)e™™ 5
— Tabs(w) ~ |T(w)]

[R(w)]* + |T(w)|* =1

7

—00 ¢ (r=r+rsnfr/ry—1) 1 =00

(QNMs: Same eqn. but purely outgoing bc’s at the horizon and infinity)



These absorption coefficients were computed by Page (1975) for massless particles of arbitrary
spin in the case of Kerr black holes:

r A, s=0
2nM?2, s=3

-2
O(w) TW Z sWwimp (U"’O < S-A(st"' aZ)wz’ S-—-l
_#5AGM® + $M%a’+ a")w?, s=2.

Using his result we can match the two-point functions in the case s = 2
ImFg(w) = ImFg(w) = 16G3ym°|w|/45

yielding predictions for horizon power absorption in NR binary evolution:

16 \% X - Vv)?
O T B )
a#b

(in agreement with Poisson (1995) in the extreme mass limit ™M1 > m2)

Note: Pups/Pyuad ~ v® is a (small) 4PN effect. Absorption enhanced to v° for rotating black
holes (see Porto; Endlich+Pencco for EFT description)



Hawking emission and EFT  (w rothstein,in progress)

In principle, same methods can be applied to capture long distance effects of emission by black hole
horizon. (phenomenological applications: none whatsoever)

E.g neutral black hole electrodynamics:

St = = [ drpu(EX ()~ [ drma(r)B ()

as in the graviton case, the correlators (p ) (m,m,;) are related to absorptive processes.

4
Using Page’s result ogps(w) = griwz :
. : 47
F(w > 0)dg = /dTeZ“’T<pa(7')pb(0)> = /dTeWT<ma(7')mb(O)> = ?rgw%b
BH emission involves the same correlators, but at negative frequency:
1 &Pk
dU' (M — (k) + X) = = M — y(k) + X)J?

(assuming unitarity)

a0 ; /dTe_iw (€0t (Pa(T)Pp(0)) + (72 X €)o (70 X € )y (ma(T)ms(0))]

dQdw ~ 1673

= @F(—W)



In this case we match to Hawking’s prediction for the photon emission rate:

drs,é,m,h _ Fs,ﬁ,m,h(w) _ Fs,ﬁ,m,h(w)
dw ehw/Tu _ 1 edrrsw ]

Greybody factors from Page:
_ (I =s)!(I +s)!7? ! w—mﬂ)z] w—mﬂ)(AK 21+1
rswlmk - [(zl) !(2l+1) ! !-‘ H [1 + ( K 2 ( K 2" w) y 28 eVen,

_ (l—S)!(l+s)!‘2 W — S 2?] (_‘éﬁ_ )2z+1
stlmp"' [(21)!(21+1)'!J g [1+ (nK-—‘z"IK) 2 w y 28 Odd,

Our operators correspond to the case s =/ =1 :

(rsw < 1) 1

—[F(—w) = -7°

' w’® Ty Tspmn(w)
h W 3 °

F(-w)

dw 2

(Can also obtain same result by imposing KMS condition on absorptive part:

Giddings+Witten, unpublished)



Application: Soft Hawking photon emission in glancing BH
collisions BH(’U) LM BH(fU’) n ’Y(k)

Small neutral BH scattering off the gravitational field of heavy point mass M.

v v
U\&/_;/ ’
i ~ l
4 l
& (w=k%—0) (
M )
d? M
50 (1) = ~Thsv*0” zh(r) ~ b+ vhr0(—7) + o' 76(T)
T

Work in the weak gravity limit with small deflections/large impact parameter:

AGNM  (u-v)%2—1/2
b*  wevy/(u-v)2 -1

AvP = ov'* — ot = W <« 1




Hawking emission amplitude in the point EFT limit:

A — ' ' A

L
®

Emission rate to leading order in deflection:

d’T 3w k- Av
— S k . 2 1 =
dwd$) ~ 2473 F ) [ kv

] - O(Av?) + O(raw)
Radiated power:

dP = hwdl



Conclusions

Proliferation of length scales in the binary merger problem motivates
the construction of a tower of EFTs

Dissipation (eg black hole absorption) incorporated by including worldline degrees
of freedom

Same approach can be used to account for particle emission:

EFT for ultralight axions emission/superradiance in binary dynamics.
(Baumann, Chia, Porto, 2018)

Hawking soft photon theorems in hard scattering processes!?

(w/ Rothstein, in progress)



