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NRQCD

e The effective field theory NRQCD is obtained by
integrating out scales of heavy quark mass m and above

e Expansion of the QCD Lagrangian in powers of v yields
the bilinear part of the NRQCD Lagrangian
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Quarkonium Decays

e Creation / annihilation of quarkonium states necessarily
iInvolves momentum scales of order m. Decays of
quarkonium states can occur only through higher
dimensional operators.

e Example : dimension-6 operators

O1(*So) = YIxx'v,

0:1(°S1) = Ylox-xTov,
Os('So) = YT xxT*,
Os(®S1) = YlaTx - x'aT™),

Ly =) co(H|O(n)|H)

n



Quarkonium Decays

Ly =Y co(H|O(n)|H)

n

e This is a factorization formula, where all long-distance
physics is encoded in the NRQCD matrix elements, and
the Wilson coefficients ¢, are only sensitive to short-
distance physics.

* The perturbative proof is carried out by showing that all
infrared (collinear and soft) divergences are absorbed into
long-distance matrix elements. The proof is completed by
the decoupling of the color and spin indices between the
short-distance and long-distance quantities.



Quarkonium Decays

Electromagnetic decays require the final state to be the
QCD vacuum. Electromagnetic operators are obtained by

iInserting |()> <()\ ;

Or("So) = ¥'x[0)0x'y
OrM(°S1) = ¢Ta'x[0)(0]xTo'y

Lt =) ca(H|OPM(n)|H)

n

Electromagnetic matrix elements are squares of meson-
to-vacuum matrix elements. Hence, we can work in the

amplitude level : AEM — ZA (0|c*M(n)|H)



Quarkonium Decays

e Operator matrix elements scale with v.

 Covariant derivatives and gauge fields are suppressed by
powers of v. In general, higher-dimensional 4-quark
operators are suppressed compared to dimension-6
operators.

e Quarkonium states have largest overlap with the |QQ)
Fock state with same color and J*¢ as the quarkonium.
Higher Fock states such as |Q()g) are suppressed by
powers of v.



Quarkonium Decays

e J/yp has JPC=1". |QQ) in color singlet S-wave spin triplet
state has same J¥C, and the operator

O0:1(°S1) = Ylox-x'oy

destroys the |QQ) in the same state. Therefore at leading
order in v, J/yp decay rate is given by a single color-
singlet operator matrix element

Ty = c(J/Y|01(°51)]T /)



Quarkonium Decays

* 1nchas Jr¢=0", \QQ} In color singlet S-wave spin singlet
state has same J¥C, and the operator

O1(*So) = ¢'xx'v,

destroys the |QQ) in the same state. Therefore at leading
order in v, n. decay rate is given by a single color-singlet
operator matrix element

. = c1(ne|O1(FSo) e



Quarkonium Decays

e hchas JPC=1*. |QQ) in color singlet P-wave spin singlet
state has same J¥C, and the operator

0,('P) = I (—iD)x-x'(-iD)w

destroys the |QQ) in the same state. This operator is
suppressed by v2 due to the covariant derivatives.

* On the other hand, the operator
Os('S0) = T xx"T*

destroys the |QQg) state with same JPC. This Fock state
is suppressed by v compared to |QQ).

e Hence, both matrix elements contribute at leading order:
T, = c1(he|O1(* P1)|he) + cs(he|Os(* So)|he)
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Vacuum-Saturation
Approximation

» The suppression of higher Fock states like |QQg)
compared to |QQ)) leads to the vacuum-staturation
approximation : a color-singlet operator can be replaced
by its electromagnetic counterpart, making errors of v4.

O, = (0 'K ;z X XT Kn P

(H|O|H) =Y (H|Y K x| X)(XIXT K| H) = (01X Koy H)|? [1+ O(v?)]
X
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Quarkonium Production

e Inverse processes of decays are trivial. For example,
Ne — Y7y Is often measured by the production process
Yy = 7Ne with /s = m,,_, followed by known decay
modes of 7. .

e EXxclusive production is related to electromagnetic decays
If the Initial state does not have strongly interacting
particles. For example, exclusive production in lepton
colliders of in decays of heavy particles.

e Inclusive production is nontrivial but most interesting.
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Exclusive production

e |n principle, can be described by analytical continuation

from a decay process. For example,
Higgs— Quarkonium+photon can be obtained from a

calculation of the decay Quarkonium—Higgs+photon.

e The resulting formula is similar to that of the
electromagnetic decay .

Mpg =Y A (H|C"M(n)|0)

12



Inclusive Production

e |nclusive production is described in a similar way.
“Production” 4-quark operators :

07 (*Sy) = x' (GLGH) PTx,
of'¢s1) = xlo'y (afan)vlo'y.
O (*So) = X'T™ <aLaH) YIT,

Of () = xlo'T™y (alan)vlo'Tx

on =Y ¢, (0[0]0)

n
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Vacuum-Saturation
Approximation

* (Color-singlet production operators are also related to
electromagnetic decay counterparts.

O” =P |,C/‘ (&L&H) /.T,Cn.flr’{”

(010F]0) ~ (O]x' Kt (Z|H H|) I x[0)

m j

= (2J + 1)(H["K},x|0)(0|xKC,.00 | H)

~ (2J + 1)(H|O,|H),
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Production and decay of
S-wave Quarkonia

 For S-wave quarkonia, production and decay rates at
leading order in v are given by the a process-dependent
Wilson coefficient times the leading order color singlet
matrix element. This reproduces the color-singlet model.

Decay rate 'y = CH‘<O|01 HHQ
Electromagnetic decay / Mg = A0|0|H)

exclusive production amplitudes

Inclusive production rate OHg = 5" <O|01 ‘H> ‘2

e The S-wave color-singlet matrix element is therefore one
of the most important quantities in quarkonium
phenomenology, and needs to be determined reliably.
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Production and decay of
S-wave Quarkonia

* S-wave color-singlet matrix element is certainly important
to make reliable predictions to decay rates and exclusive
production rates.

e Even for inclusive production rates, where large color-
octet contributions are expected, color-singlet
contribution should be well constrained so that the
amount of color-octet contributions necessary to describe
data is well determined.
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S-wave color-singlet
matrix element

* The color-singlet matrix element can be computed from
lattice NRQCD, computed from potential models, or
extracted from phenomenology.

* One of the most widely used result is obtained by using a

potential-model description of the electromagnetic decay
rates of J/yw and 7.
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* |n a potential model, the color-singlet matrix element at
LO in v is given by the wavefunction at the origin. The
order-v2 matrix element is given by the derivative of the
wavefunction. If we take the potential to be the Cornell
potential, the linear potential can be fixed by the lattice
calculation of the string tension.

* The short-distance Coulomb strength and the quark mass
parameter is fixed by using the 1S5-2S splitting of the
charmonium states and the electromagnetic decay rate.

 EXpressions for the electromagnetic decay rate includes
corrections of order as and 2.
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Going to higher orders

* Predictions of decay / production rates can be
systematically improved by computing corrections to
Wilson coefficients at higher orders in as and including
higher-dimensional operators that contribute at higher
orders in v.

 While this sounds straightforward, the long-distance
matrix elements are UV-divergent and require
renormalization. Changing renormalization schemes and
scales induce mixing between operators of different
orders in v. Hence, there is tradeoff between adjusting
long-distance matrix elements and Wilson coefficients.

e As is usual in effective field theories, radiative corrections
iInvolve power divergences as well as logarithmic ones.
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1-loop example

* 1-loop correction to leading order spin-triplet matrix element at
leading order in v in perturbative NRQCD

Coulomb / transverse gluon

— ™V
/ WCVSCF i 1 |q|

I
ik = U/
| m™m ka—qu—/Lg
| 210, Cp / ki(k- o) 1 /k@‘(k-a)
| m - —
m? L k2(k2—2q-k—ie) 2 ), k3

* The integrals are linearly and quadratically power divergent.
A hard UV cutoff A yields contributions like (A/m)2 and A/m.

* |In DR, power divergences are discarded, and the loop integral
do not have logarithmic divergences. Thus, the 1-loop
correction appears finite in DR. This does not mean that
power divergences do not play a role in DR.
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1-loop example

Consider the Wilson coefficient for the electromagnetic current
(0|ypy*1p| H) . This is a conserved current in QCD, and hence, it
is free of UV divergences to all orders in perturbation theory.

The factorization formula in NRQCD at LO inv;

0[py* ¢ |H) = c(0|xToy|H)

Since the full-QCD quantity is scale invariant, the scale
dependence of the matrix element is cancelled by the scale
dependence of the Wilson coefficient c.

In DR, the 1-loop correction to the matrix element vanishes, and
so, the Wilson coefficient c is finite at NLO in as.

However, in cutoff regularization, the 1-loop correction to ¢
involves power divergences of the form (A/m)n.
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2-loop example

e 2-loop correction to leading order spin-triplet matrix element at
leading order in v in perturbative NRQCD.

* In cutoff regularization,

Cr Cag
3 2

o’ Lt = o:Cr < ) log A + UV-finite terms

* |n DR, the loop correction is scaleless, and hence vanishes in
the form

O‘i :: ...ZO&?CF CF CA ! !
X 6 4 €UV €IR
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2-loop example
* Returning to the factorization formula in NRQCD at LO in v :
(O[y*p|H) = c(0lx o | H )

* |In DR, the UV pole in the NNLO correction to the matrix element

IS subtracted by renormalizing the matrix element. The 2-loop
corrections to the matrix element gives

C C 1 1
e (4-) G- e
Cuv CIR

[ (4 -5) (o ) v

CIR

* The IR pole cancels the infrared divergence of the 2-loop
perturbative correction to the QCD current (0]Wy* )| H) .

e Hence, in DR, scale dependence in the Wilson coefficient first

appears at two loops. .



EM Current in DR

* The quarkonium EM current has been calculated up to 3 loops
in DR. 2-loop result in DR has been known since 1997.

 The NNLO correction factor in MS scheme is given by

S, 3572 2 11 125¢(3) 51172 89 14 ) 2
L= agfrm) - [ 277T log (7/;2> - 27;f i g( - 32;: Tt 97T210g2] (a 7(T’m)> +0(e)
Sa, 2 s ’
_ o Bas(m) e 12.81og [ £ ) — 0.41n,| [ = (m) +O(a?)
37 m? 4

Czarnecki and Melnikov, PRL80, 2531 (1998)
Beneke, Signer, Smirnov, PRL80, 2535 (1998)

e Scale dependence agrees with what is expected from the 2-loop
correction to the matrix element.

* Not only the finite piece is large, but also the scale dependence
IS strong.
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EM Current in DR

e Relative sizes of NLO and NNLO corrections

NNLO | NNLO
(=m) | (u=mv)
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EM Current in DR

* |t is possible that large radiative corrections are associated with
renormalons, which, in turn, is related to power divergences in
loop corrections to matrix elements.

* Renormalons imply ambiguities in dimensionally regulated
matrix elements and corresponding Wilson coefficients.

* Renormalon ambiguities cancel in observables, and hence, In
factorization formulae. However, in NRQCD, cancellation of
renormalon ambiguities can occur among matrix elements of
different orders in v. For example, renormalon ambiguities
cancel in the vector current in the following combination :

(Ae) x (Ox o b H) + A0 ol H) + - A0 D?ou|H) = 0

Braaten and Chen, PRD57, 4236 (1998)
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EM Current in DR

e So far, renormalons have generally been studied in the large-ny
limit. In quarkonium production and decay processes, the large-
nr limit does not seem to work very well. Hence, the usual
treatment of renormalons has limited applicabillity.

* |t might be worth investigating other regularization schemes that
make power divergences explicit.

 Hard cutoff regularization does not work well beyond one loop
due to the breakdown of Ward identities.
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EM Current in Lattice

. 0.50 | | ' | | -

e Quarkonium EM current have 1 45 | 1P QCD, PRD86, 094501 (2012) -
been mvestlg_ated in lattice S o4} "
QCD and lattice NRQCD. S oul ' ]

\s 0.42 S -

 J/w EM current has been 3 i
computed with relativistic 040
charm quarks. Excellent -8 L ' 1 ' ' |

- . 0.0 0.1 0.2 0.3 0.4 0.5
agreement with experiment. (am,)?

e Y EM current has been HPQCD, PRD91, 074514 (2015)
computed with lattice NRQCD, & :p @ o o -
also good agreement with S
experiment. = | s

= \ J 'I';I[?'ll.;'.‘-i('.'ll. |
Q Experiment
v U 0.).'1;1_)2. U.;."l U.(.:;.'s (.02 0.025
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EM Current in Lattice

HPQCD, PRD91, 074514 (2015)

e Inthe Y EM current, the matching

coefficients were computed
nonperturbatively by comparing 3-
loop perturbative calculation of
hadronic vacuum polarization.

e The matching coefficients depend
on the lattice spacing nontrivially,
but the coefficient at leading order
in v Is close to the tree-level value.

e One-loop lattice perturbation
theory calculations also show
nontrivial dependence on lattice

spacing.

Hart, Hippel, Horgan, PRD75, 014008 (2007)
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PNRQCD

e The pNRQCD effective field theory describes NRQCD matrix
elements in terms of wavefunctions and gluonic correlators.

(Vo(nS)|01(°81)|Vo(nS)) = Ca

RO [, Eng 28 | 267" &5,
27 (1 "m0 3m? 3m2> ’
Brambilla, Eiras, Pineda, Soto, Vairo, PRD67, 034018 (2003)

* The weak-coupling regime is well suited for investigating the

UV (short-distance) properties of matrix elements.

For example, the 1- and 2-loop corrections to the NRQCD

matrix elements can be related to the corrections to the

wavefunction from potentials of higher orders in 1/m.
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PNRQCD example

* The correction from the perturbative spin-dependent potential
corresponds to part of a divergent 2-loop correction to the

matrix element. .
Vs
VS:1 — w (r)
%
¥n(0) = 0(0) — G(ED) 5 40(0)

(())

(0)
(! . / T (-) -
G f‘m Z ’(U | — lim (G(l?) = Y (m( I )
m \0) ]7‘,‘, — ]?

(0)
m#n ” DR o

Kiyo, Pineda, Signer, NPB841 (2010) 231
* The zero-distance Green’s function is UV divergent.
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PNRQCD example

* In DR, the perturbative Green’s function is given by

) a.Crm? [ —mE ] 1 | |
Gpr(E) = : ( ) {__ ax T 3 — e — (1 —)\)+()(()]

4 Te VE

* An alternative regularization is to compute the wavefunction
at a finite distance r from origin

| | aC'rm? ] o ] ] —4dmFE
Gr(E) = — —log(pue™r) — —— - log — | 1= —¥(1-A
() 4 [(\,(’pmr og(ue’™r) oA 2 ( j1? > e =Y )]

* The difference between the two Green’s functions gives the

1-loop finite renormalization needed to convert finite-r
regularization to DR.
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Neat example

e Sometimes the scale and scheme dependences in the Wilson
coefficients can be made cancel manifestly by using ratios.

 Example : Higgs decay into J/y + photon

@ %3 o
Bodwin, Petriello, Stoynev, Velasco, PRD88, 053003 (2013)

7 Bodwin, HSC, Ee, Lee, Petriello, PRD90, 113010 (2014)
Bodwin, HSC, Ee, Lee, PRD95, 054018 (2017),
~ Jr = OW 7 7 \JW PRD96, 116014 (2017)
Konig, Neubert, JHEP 1508 (2015) 012
e AtLO in v, the ratio Jr/Jy is perturbative and independent
on the renormalization scheme. Thus,

JT — (JT/JV)perturbative X (JV)measured
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Summary

Quarkonium phenomenology requires well-determined long-
distance matrix elements and Wilson coefficients with good
perturbative control.

Perturbative corrections are often quite large in quarkonium
production and decay processes in dimensional
regularization. Renormalization scheme dependence also
seem to be large.

This might have to do with the way power divergences are
dealt with in DR, as power divergences are related to
renormalons.

Rewriting matrix elements in pNRQCD may give new insights
to these issues.
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