Holographic hydrodynamics of gauge theory plasma: Beyond large-N and beyond Navier-Stokes

Alex Buchel

(Perimeter Institute & University of Western Ontario)

Based on arXiv: 1801.96165 also in progress (with Matteo Baggioli)

Multi-Scale Problems Using Effective Field Theories, INT, 9 May 2018

⇒ Motivation: we would like to understand dynamics of quantum gauge theories in non-equilibrium setting

- Heavy ion collision experiments (QGP dynamics)
- Cosmology (early Universe, signatures of ^physics beyond SM)

⁼[⇒] Standard tools:

 \Rightarrow **Advocate:** gauge theory/string theory (holographic) correspondence: a tool to study quantum gauge theories at strong coupling

There is huge literature devoted to the subject, including:

- computation of the equation of state of QGP-like theories (conformal/non-conformal)
- \blacksquare hydrodynamics transport coefficients (viscosities, conductivities, \cdots)
- hydrodynamics as an effective theory (higher order derivative expansion, resummation, effective transport coefficients)
- dynamical simulations of out-of-equilibrium (holographic) QGP plasma (quantum quenches, approac^h to equilibrium, turbulence)
- quage theory dynamics in de Sitter

⇒ Most (but all not) analysis are done when the holographic duality between the gauge theory and string theory reduced to the correspondence with *classical supergravity*

For this to be true:

- quantum string loop corrections must be suppressed, *i.e.*,
	- $N \to \infty$ & $g_{YM}^2 \to 0$ with $N g_{YM}^2 = \text{const}$ (string loop corrections $\propto \frac{1}{2}$ $\frac{1}{N^2})$
	- $c-a \propto \frac{1}{N}$ $\frac{1}{N^2} \rightarrow 0$ at the UV fixed point of the theory
- $Ng_{YM}^2 = \infty$ (higher derivative corrections to 10D type IIB SUGRA $\propto (N g_{YM}^2)^{-3/2})$

⇒ Recently, there has been renewed interest in exploring *conformal* holographic QGP models with $c - a \neq 0$

 \Rightarrow I report on results for *non-conformal* holographic QGP models

Outline:

- Non-conformal Gauss-Bonnet (GB) holographic model
	- how does $c a \neq 0$ come about
	- holographic renormalization, EOS, speed of sound
- Hydrodynamic transport
	- **shear viscosity**
	- **Dulk viscosity**
- Homogeneous and isotropic expansion of GB QGP
	- check on bulk viscosity
	- large-order behavior of the hydrodynamic expansion \blacksquare
- Causality of the GB hydrodynamics
- Conclusions and future directions
	- holographic viscoelastic materials

=[⇒] Consider RG flows close to UV fixed point, with Lagrangian density \mathcal{L}_{CFT} perturbed by a relevant operator of \mathcal{O}_{Δ} of dimension Δ :

$$
\mathcal{L} = \mathcal{L}_{CFT} + \lambda_{4-\Delta} \mathcal{O}_\Delta
$$

- UV CFT has finite (non-infinitesimal) $c a \neq 0$
- by 'close' I mean

$$
\frac{|\lambda_{4-\Delta}|}{T^{4-\Delta}} \ll 1
$$

i.e., , the effects of the conformal symmetry breaking in thermal ^plasma state are small.

this is ^a simplifying technical assumption.

 \Rightarrow It is important to emphasize that we are discussing holographic models, rather than ^a top-down string theory construction — in real holography is in inconsistent to be within SUGRA approximation with finite $c - a \neq 0$

=[⇒] The reason such model are nonetheless interesting, as they allow to explore effects of microscopic causality on the hydrodynamics

⁼[⇒] Gravitational holographic model:

$$
\mathcal{I} = \frac{1}{2\ell_P^3} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \left[\mathcal{L}_{CFT} + \delta \mathcal{L} \right]
$$

with

$$
\mathcal{L}_{CFT} = \frac{12}{L^2} + R + \frac{\lambda_{GB}}{2} L^2 \left(R^2 - 4R_{\mu\nu} R^{\mu\nu} + R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} \right)
$$

$$
\delta \mathcal{L} = -\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2
$$

- \mathcal{L}_{CFT} is the bulk Lagrangian of the UV conformal fixed point
- $\delta \mathcal{L}$ is the conformal symmetry breaking perturbation, $\phi \leftrightarrow \mathcal{O}_{\Delta}$ with 1 1

$$
m^2 L^2 \beta_2 = \Delta(\Delta - 4), \qquad \beta_2 = \frac{1}{2} + \frac{1}{2} \sqrt{1 - 4\lambda_{GB}}
$$

- λ_{GB} Gauss-Bonnet coupling constant
- \bullet L asymptotic AdS curvature radius, related to the central charge (# of UV DOF, rank of the gauge group)

 \implies Encoding gauge theory parameters in the model \mathcal{L}_{CFT} :

$$
\langle T^{\mu}_{\ \mu} \rangle_{CFT} = \frac{c}{16\pi^2} I_4 - \frac{a}{16\pi^2} E_4
$$

where $\{a, c\}$ are the two central charges, and the Euler density E_4 and the square of Weyl curvature $I_4,$

$$
E_4 = R_{\nu\nu\rho\lambda} R^{\mu\nu\rho\lambda} - 4R_{\mu\nu} R^{\mu\nu} + R^2, \qquad I_4 = R_{\mu\nu\rho\lambda} R^{\mu\nu\rho\lambda} - 2R_{\mu\nu} R^{\mu\nu} + \frac{1}{3} R^2
$$

In our model

$$
c = \frac{\pi^2}{2^{3/2}} \frac{L^3}{\ell_P^3} (1 + \sqrt{1 - 4\lambda_{GB}})^{3/2} \sqrt{1 - 4\lambda_{GB}}
$$

$$
a = \frac{\pi^2}{2^{3/2}} \frac{L^3}{\ell_P^3} (1 + \sqrt{1 - 4\lambda_{GB}})^{3/2} \left(3\sqrt{1 - 4\lambda_{GB}} - 2\right)
$$

$\delta {\cal L}$:

To study equilibrium thermal states of the model we use the bulk metric ansatz

$$
ds_5^2 = \frac{r_h^2}{x} \left(-f_1 \beta_2 \ dt^2 + \sum_{i=1}^3 dx_i^2 \right) + \frac{1}{f_2} \frac{dx^2}{4x^2}, \qquad x \in [0, 1]
$$

where $x = 1$ is the AdS Schwarzschild horizon and $x \to 0_+$ is the asymptotic AdS_5 (Poincare) boundary

• r_h determines the Hawking temperature of the horizon/plasma

$$
T = \frac{\kappa}{2\pi} = \frac{r_h \beta_2^{1/2}}{\pi} \left. \frac{\sqrt{f_1' f_2'}}{2} \right|_{x=1}
$$

• asymptotically near the boundary

$$
\phi = \delta_{\Delta} \times \begin{cases} x^{1/2} + \mathcal{O}(x^{3/2}), & \Delta = 3, \\ x \ln x + \mathcal{O}(x), & \Delta = 2 \end{cases}
$$

$$
\lambda_{4-\Delta} = \delta_{\Delta} r_h^{4-\Delta} \qquad \Longleftrightarrow \qquad \mathcal{L}_{CFT} + \lambda_{4-\Delta} \mathcal{O}_{\Delta}
$$

 \implies Holographic renormalization (cut-off at $x = \epsilon$):

$$
\mathcal{I} \rightarrow \mathcal{I}_{renom,cut-off} \equiv \mathcal{I}_{cut-off} + S_{GB,cut-off} + S_{c.t,cut-off}
$$

• generalized Gibbons-Hawking term $(K \equiv K_{\mu}^{\ \mu}, J \equiv J_{\mu}^{\ \mu})$:

$$
S_{GH} = -\frac{1}{\ell_P^3} \int_{\partial \mathcal{M}_5} d^4x \sqrt{-\gamma} \left[K + (\beta_2 - \beta_2^2) \left(J - 2G^{\mu\nu}_{\gamma} K_{\mu\nu} \right) \right]
$$

$$
K_{\mu\nu} = -\frac{1}{2} \left(\nabla_{\mu} n_{\nu} + \nabla_{\nu} n_{\mu} \right)
$$

$$
J_{\mu\nu} = \frac{1}{3} \left(2K K_{\mu\rho} K^{\rho}_{\nu} \right) + K_{\rho\sigma} K^{\rho\sigma} K_{\mu\nu} - 2K_{\mu\rho} K^{\rho\sigma} K_{\sigma\nu} - K^2 K_{\mu\nu} ,
$$

• counter-terms:

$$
S_{c.t.} = \frac{1}{\ell_P^3} \int_{\partial \mathcal{M}_5} d^4x \sqrt{-\gamma} \left[\mathcal{L}_{c.t., CFT} + \mathcal{L}_{c.t., \Delta} \right]
$$

with (known)

$$
\mathcal{L}_{c.t., CFT} = -\left(2b_2^{1/2} + b_2^{-1/2}\right) + \left(\frac{1}{2}b_2^{3/2} - \frac{3}{4}\beta_2^{1/2}\right)R_{\gamma} \n+ \left(\frac{1}{8}\beta_2^{5/2} - \frac{1}{16}\beta_2^{3/2}\right)P_{2,\gamma} \ln \epsilon \n\mathcal{P}_{2,\gamma} = \mathcal{P}_{\gamma}^{\mu\nu}\mathcal{P}_{\mu\nu,\gamma} - \left(\gamma^{\mu\nu}\mathcal{P}_{\mu\nu}\right)^2, \qquad \mathcal{P}_{\gamma}^{\mu\nu} = R_{\gamma}^{\mu\nu} - \frac{1}{6}R_{\gamma}\gamma^{\mu\nu}
$$

and (previously unknown)

$$
\mathcal{L}_{c.t.,\Delta} = \begin{cases}\n-\frac{1}{4}\beta_2^{-1/2}\phi^2 - \frac{\beta_2^{-1/2}}{48(2\beta_2 - 1)}\phi^4 \ln \epsilon - \frac{\beta_2^{1/2}}{48}R_\gamma\phi^2 \ln \epsilon, & \Delta = 3, \\
-\frac{1}{2}\beta_2^{-1/2}\phi^2 - \frac{1}{2}\beta_2^{-1/2}\phi^2 \frac{1}{\ln \epsilon}, & \Delta = 2\n\end{cases}
$$

 \implies removing the cut-off, $i.e.,$, $\epsilon \to 0,$ produces finite results of physics interest

Results:

(we focus on $\Delta = \{2,3\}$ conformal symmetry breaking deformations)

• EOS

$$
c_s^2 = \frac{\partial P}{\partial \mathcal{E}}
$$

$$
c_s^2 - \frac{1}{3} = \left(\frac{\lambda_{4-\Delta}}{T^{4-\Delta}}\right)^2 \mathcal{F}_{\Delta}(\lambda_{\text{GB}})
$$

Notice that

$$
c_s^2 \ < \ \frac{1}{3} \ = \ c_{s,CFT}^2
$$

Results:

(we focus on $\Delta = \{2, 3\}$ conformal symmetry breaking deformations)

• shear viscosity

Notice:

$$
\eta_{\Delta}(\lambda_{\text{GB}} = 0) = 0 \iff \text{universality at } a = c
$$
\n
$$
\frac{\eta}{s} \leq \frac{1}{4\pi} \quad \text{and} \quad \frac{\eta}{s} \leq \frac{\eta}{s} \bigg|_{CFT}
$$

Results:

(we focus on $\Delta = \{2,3\}$ conformal symmetry breaking deformations)

• bulk viscosity

 \implies Bulk viscosity bound:

$$
\frac{\zeta}{\eta} \; \geq \; 2\left(\frac{1}{3} - c_s^2\right)
$$

=[⇒] reparameterized bulk viscosity bound

$$
\frac{\zeta}{\eta} \; = \; 2 \left(\frac{1}{3} - c_s^2 \right) \; \left(\; 1 + \mathcal{B}_{\Delta}(\lambda_{\rm GB}) \; \right) \, , \qquad \mathcal{B}_{\Delta} \; \geq \; 0
$$

red dots demonstrate check on previously known result

$$
\mathcal{B}_{\Delta}\Big|_{\lambda_{\rm GB}=0} = \begin{cases} \frac{\pi}{2} - 1, & \Delta = 3, \\ \frac{\pi^2}{4} - 1, & \Delta = 2 \end{cases}
$$

violation of bulk viscosity bound occurs for $a - c > 0 \sim \mathcal{O}(c)$; while shear viscosity bound is violated for $c - a > 0 \sim o(c)$

A question:

Why in all plots $\lambda_{\text{GB}} \in (-0.2, 0.1)$?

The answer:

⁼[⇒] Consider ^a ^plasma at thermodynamic equilibrium. ^A spectrum of fluctuations in the plasma:

$$
\mathfrak{w}=\mathfrak{w}(\mathfrak{q})
$$

The speed with which a wave-front propagates out from a discontinuity in any initial data is governed by

$$
\lim_{|\mathfrak{q}|\to\infty} \ \frac{\text{Re}(\mathfrak{w})}{\mathfrak{q}} = v^{front}
$$

 \implies Statement of causality:

$$
v^{front} \le 1
$$

for all branches of the excitations in plasma

=[⇒] Early studies (Hofman-Maldacena & Buchel-Myers) found that for \mathcal{L}_{CFT} , dual to GB gravity, causality in the bulk graviton QNM towers lead to

$$
-\frac{7}{36} \le \lambda_{\text{GB}} \le \frac{9}{100} \qquad \Longleftrightarrow \qquad -\frac{1}{2} \le \frac{c-a}{c} \le \frac{1}{2}
$$

 \implies Can this result be changed when

$$
\mathcal{L}_{CFT} \ \rightarrow \ \mathcal{L} = \mathcal{L}_{CFT} + \delta \mathcal{L} ?
$$

⇒ The question of micro-causality is the question of the deep UV properties of the theory; thus one expects:

breaking the scale invariance with $\Delta \leq 4$ operator, should not affect the UV CFT result

causality should not depend on the state of the theory, for example, the temperature compare to the coupling strength $\lambda_{4-\Delta}$.

 \implies However, in principle,

- If several relevant couplings are present, causality can be affected by the dimensionless ratio of these couplings
- different channels of the fluctuations in ^plasma affect causality differently: the scalar channel of the bulk graviton fluctuations constraints

$$
\lambda_{\rm GB} \leq \lambda_{\rm GB}^{scalar} = \frac{9}{100}
$$

while the shear and the sound channels constraint correspondingly:

$$
\lambda_{GB} \ge \lambda_{GB}^{shear} = -\frac{3}{4}, \qquad \lambda_{GB} \ge \lambda_{GB}^{sound} = -\frac{7}{36}
$$

- it is only the union of all the constraints that determines full causality range
- if the theory is non-conformal, additional branches of the QNMs appear which can further constraint the microscopic causality of the model.

\implies Analysis of the new towers of QNMs due to $\delta \mathcal{L}$ shows that there are no further constrains on λ _{GB} on top of the one provided by graviton QNM towers of \mathcal{L}_{CFT}

∗ Interplay of different relevant $\mathcal{O}_{\boldsymbol{\Delta}}$ operators on causality is an open question

Homogeneous and isotropic expansion of GB plasma

Motivation:

we would like to have an independent computation of the bulk viscosity; we would like to understand the interplay between the large-order behavior of the hydrodynamic expansion and causality

Methodology:

• put GB plasma in expanding FLRW Universe, *i.e.*,, the background metric is $(a(t))$ is the scale factor)

$$
ds_4^2 = \hat{g}_{\alpha\beta} dx^{\alpha} dx^{\beta} = -dt^2 + a(t)^2 \sum_{i=1}^3 dx_i^2
$$

• In the FLRW geometry the matter expansion is locally static

$$
u^{\alpha} = (1, 0, 0, 0) \qquad \underline{\text{but}} \qquad \Theta \equiv \nabla_{\alpha} u^{\alpha} = 3\dot{a}/a
$$

• effective hydrodynamic expansion is the series in Θ^n and $d^n/dt^n(\Theta)$; when $a(t) = \exp(Ht)$ (de Sitter), the hydrodynamic expansion is a series in H^n

• The corresponding gravitational geometry is:

$$
ds_5^2 = 2dt \ (dr - Adt) + \Sigma^2 \ \sum_{i=1}^3 dx_i^2
$$

where A, Σ, ϕ are functions of $\{t, r\}$

• AdS-boundary asymptotics encode the data:

$$
\Sigma = a r + \mathcal{O}(r^{-1}), \qquad A = \frac{r^2}{2\beta_2} - \frac{\dot{a}r}{a} + \mathcal{O}(r^0)
$$

$$
\int \frac{1}{r} + \mathcal{O}(r^{-2}), \qquad \Delta = 3,
$$

$$
\phi = \lambda_{4-\Delta} \begin{cases} \frac{1}{r} + \mathcal{O}(r^{-2}), & \Delta = 3, \\ -\frac{\ln r^2}{r^2} + \mathcal{O}(r^{-2}), & \Delta = 2 \end{cases}
$$

• An interesting observable to focus is the *dynamical/non-equilibrium* co-moving entropy density

$$
a(t)^3s(t)
$$

identified with the Bekenstein-Hawking entropy density of the apparent horizon in the bulk geometry

$$
a^3 s = \frac{2\pi}{\ell_P^3} \left. \Sigma^3 \right|_{r=r_h}
$$

• From the holographic bulk Einstein equations, the co-moving entropy production rate is

$$
\frac{d(a^3s)}{dt} = \frac{4\pi}{\ell_P^3} (\Sigma^3)' \left. \frac{(d_+\phi)^2}{24 - m^2 \phi^2} \right|_{r=r_h}
$$

where $' \equiv \partial_r$ and $d_+ \equiv \partial_t + A\partial_r$

=[⇒] To be specific, from now on we focus on de Sitter expansion (generalization to other $a(t)$ is straightforward)

$$
a(t) = e^{Ht}, \qquad H = \text{ constant}
$$

• Contribution to the production rate in plasma of local temperature $T = \frac{T_0}{a(t)}$ from operator of dimension Δ in de-Sitter cosmology reads:

$$
\frac{d(a^3s)}{dt} = N^2(aT)^2 \ a^{7-2\Delta} \times \Omega_{\Delta}^2
$$

where

$$
\Omega_{\Delta} \equiv \sum_{n=0}^{\infty} c_n(\Delta) \left(\frac{H}{T}\right)^n
$$

 \bullet c_0 coefficient describes entropy production due to bulk viscosity; explicitly

$$
\frac{d}{dt} \ln (a^3 s) \Big|_{hydro} \approx \frac{1}{T} (\nabla \cdot u)^2 \frac{\zeta}{s} = \frac{1}{T} (3H)^2 \frac{\zeta}{s}
$$

• holography allows to express Ω_{Δ} (semi-analytically) through the behavior of ϕ at the apparent horizon

\implies Computation of Ω_{Δ}

• to order $\mathcal{O}(\lambda_{4-\Delta})$, the bulk geometry is known analytically:

$$
A = -\frac{r\dot{a}}{a} + \frac{r^2}{4\beta_2(1-\beta_2)} \left(1 - \sqrt{(2\beta_2 - 1)^2 - \frac{4\beta_2(\beta_2 - 1)(\pi T_0)^4}{r^4 a^4}}\right)
$$

$$
\Sigma = ra
$$

Note, apparent horizon is located at

$$
r_h = \frac{\pi T_0}{a(t)}
$$

so

$$
r \in (r_h, +\infty)
$$
 \iff $z \equiv \frac{\pi T_0}{r a(t)} \in (0, 1)$

• to order $\mathcal{O}(\lambda_{4-\Delta})$, the scalar field equation

$$
\phi = \phi \left(t, z \equiv \frac{\pi T_0 x}{a} \right)
$$

on the above geometry is

$$
0 = \frac{\partial^2 \phi}{\partial z^2} + \frac{4a\beta_2(\beta_2 - 1)}{\mu(1 - \sqrt{G})} \frac{\partial^2 \phi}{\partial t \partial z} + \frac{(\sqrt{G}(3 - \sqrt{G}) - 2(2\beta_2 - 1)^2)}{z(\sqrt{G} - 1)\sqrt{G}} \frac{\partial \phi}{\partial z}
$$

$$
+ \frac{6\beta_2 a(\beta_2 - 1)}{z\mu(\sqrt{G} - 1)} \frac{\partial \phi}{\partial t} - \frac{2\Delta(\Delta - 4)(\beta_2 - 1)}{(\sqrt{G} - 1)z^2} \phi
$$

where

$$
G \equiv (2\beta_2 - 1)^2 - 4z^4 \beta_2 (\beta_2 - 1)
$$

 \implies turns out scalar PDE can be organized into a series of successive (coupled) ODEs

• A general solution for ϕ can be represented as a series expansion in the successive derivatives of the FLRW boundary metric scalar factor $a(t)$:

$$
\phi = \hat{\delta}_{\Delta} \ a^{4-\Delta} \sum_{n=0}^{\infty} \ \frac{\mathcal{T}_{\Delta,n}[a]}{(\pi T_0)^n} \ F_{\Delta,n}(z) \,, \qquad \hat{\delta} \equiv \frac{\lambda_{4-\Delta}}{(\pi T_0)^{4-\Delta}} \,,
$$

with $\mathcal{T}_{\Delta,0}=1$ and

$$
\mathcal{T}_{\Delta,n} = \frac{1}{4} \bigg(a \dot{\mathcal{T}}_{\Delta,n-1} + (4 - \Delta) \dot{a} \mathcal{T}_{\Delta,n-1} \bigg), \qquad n \ge 1
$$

and

$$
0 = F''_{\Delta,0} + \frac{\sqrt{G}(3-\sqrt{G}) - 2(2\beta_2 - 1)^2}{z(\sqrt{G}-1)\sqrt{G}} F'_{\Delta,0} - \frac{2\Delta(\Delta - 4)(\beta_2 - 1)}{(\sqrt{G}-1)z^2} F_{\Delta,0}
$$

$$
0 = F''_{\Delta,n} + \frac{\sqrt{G}(3 - \sqrt{G}) - 2(2\beta_2 - 1)^2}{z(\sqrt{G} - 1)\sqrt{G}} F'_{\Delta,n} - \frac{2\Delta(\Delta - 4)(\beta_2 - 1)}{(\sqrt{G} - 1)z^2} F_{\Delta,n}
$$

$$
-\frac{16\beta_2(\beta_2 - 1)}{\sqrt{G} - 1} \left(F'_{\Delta,n-1} - \frac{3}{2z}F_{\Delta,n-1}\right), \qquad n \ge 1
$$

with boundary conditions

$$
F_{\Delta,0} = \begin{cases} z + \mathcal{O}(z^2), & \Delta = 3, \\ z^2 \ln z^2 + \mathcal{O}(z^2), & \Delta = 2, \end{cases} \qquad F_{\Delta,n \ge 1} = \mathcal{O}(zF_{\Delta,0})
$$

• in de Sitter, we find analytically

$$
\mathcal{T}_{\Delta,n} = \frac{\Gamma(n+4-\Delta)H^n a^n}{4^n \Gamma(4-\Delta)}, \qquad n \ge 0
$$

- the equations for $F_{\Delta,n}$ has to be solved numerically
- at the end of the day:

$$
\Omega_{\Delta} = \sum_{n=0}^{\infty} c_n(\Delta) \left(\frac{H}{T}\right)^n, \qquad c_n = \frac{\Gamma(n+4-\Delta)H^n a^n}{(8\pi)^n \Gamma(4-\Delta)} F_{\Delta,n}(z \equiv 1)
$$

Note that

$$
c_n \propto n! F_{\Delta,n}(1)
$$

so unless $F_{\Delta,n}(1)$ dies off factorially fast (*it does not!*) hydrodynamic expansion is divergent

Comparison of the bulk viscosity coefficient ζ_{Δ} , extracted from the sound waves dispersion relation and the corresponding coefficient $\hat{\zeta}_{\Delta}$, extracted from the leading hydrodynamic contribution in the entropy production rate for the FLRW flow.

⁼[⇒] Hydrodynamic expansion is Borel summable, and the Borel transform of $\Omega_{\Delta}(\xi \equiv \frac{H}{T})$ $\frac{H}{T}$) $\rightarrow \Omega_{\Delta}^{B}$ has poles at complex $\xi = \xi_0$:

QNMs and leading singularities on the Borel plane for the $\Delta = 2$ RG flow with $\beta_2=1$ (or $\lambda_{\rm GB}=0$):

- \blacksquare filled circles poles
- green crosses QNMs (non-hydrodynamics modes in plasma)

What if $\lambda_{\text{GB}} \neq 0$? and in particular outside causal regime?

QNMs and leading singularities on the Borel plane for the $\Delta = 2$ RG flow with $\beta_2 = 3$ (or $\lambda_{\text{GB}} = -6$) (left panel) and $\beta_2 = 5$ (or $\lambda_{\text{GB}} = -20$) (right panel):

- orange lines show the 'flow of QNMs' from $\lambda_{GB} = 0$ to $\lambda_{GB} \neq 0$ (corresponding QNMs red crosses)
- hydrodynamic expansion stays asymptotic, even when we are driven out of causal regime
- note the accumulation of poles as β_2 increases: poles \rightarrow branch-cuts?

Conclusions and future directions

P please refer to the paper for some phenomenological application of the results

Work in progress with Matteo Baggioli:

- Hydrodynamics is an asymptotic effective theory, and the ^physics responsible for its zero radius of convergence is the existence of non-hydrodynamic excitations in plasma
- likewise, the theory of elasticity, is an asymptotic effective theory as well:

A.Buchel and J.P.Sethna, "Elastic Theory Has Zero Radius of Convergence", Phys. Rev. Lett. 77, ¹⁵²⁰ (1996), cond-mat/9604117

Here, the physics responsible for its zero radius of convergence is the thermal nucleation of cracks in the material

Question: what about viscoelastic materials? \blacksquare

•

Answer: stay tuned — there is a holographic model! П