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Motivation and Introduction

Evidence for Dark Matter I

We can infer the existence of dark matter from its gravitational effects

At different scales

1 Star-velocity distribution in a galaxy V. Rubin and W. Ford (1970)

2 Galaxy-velocity distribution in a cluster of galaxies F. Zwicky (1937)

3 Strong and weak gravitational lensing J. K. Adelman-McCarthy et al. (2005)

S. Biondini (AEC) Multi-Scale Problems using EFTs INT 3 / 52



Motivation and Introduction

Evidence for Dark Matter II

Even at cosmological scales

clear evidence from the Cosmic Microwave Background P.A.R. Ade et al. 1502.01589

early universe before recombination: baryon-photon fluid oscillations

Ωm, Ωb and photons

dynamics of the fluid: gravitational

collapse vs expansion due to pressure

Ωdmh
2 = 0.1186± 0.0020

Ωbh
2 = 0.02226± 0.00023

Ωb consistent with BBN predictions!

only with dark matter structure

formation could occur
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Motivation and Introduction

Weakly interacting massive particles

Many candidates: axions, sterile neutrinos, composite dark matter ... G. Gelmini 1502.01320

WIMPs are attractive for some reasons

arise to solve problems within particle physics realm (SUSY, extra dimensions...)

relic abundance from freeze-out (Ωdmh
2 today)

testable experimentally with direct, indirect and collider searches

How reliable is the curve obtained from the

cosmological relic abundance?
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Motivation and Introduction

Wimp relic density

The thermal history in brief... P. Gondolo and G. Gelmini (1991)

χ participates in weak interactions: equilibirum abundance in the early universe

χχ ↔ f f̄

Massive particle, introduce a scale besides the temperature T

Recombination f f̄ → χχ is Boltzmann suppressed at T < M (nF,B ∼ e−M/T )

Eventually the DM pairs do not annihilate any more: freeze-out abundance

T 6= 0

Boltzmann Equation

nχ total number density of DM particles

annihilation and creation processes

expanding background

dnχ
dt

+ 3Hnχ = −〈σv〉(n2
χ − n2

χ,eq)

Kinetic equilibrium is assumed
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Motivation and Introduction

Annihilation cross section

Early universe thermodynamics: particles in a hot plasma

f eq

B (E) =
1

eE/T − 1
, f eq

F (E) =
1

eE/T + 1

particle number density neq
χ = gχ

∫
p
f eq

F (E)→ gχ
(
MT
2π

) 3
2 e−

M
T

(
neq

i ≈ gi
T 3

π2

)
kinetic equilibrium: momenta distribution, e.g. χf → χf

p ∼ T , p ∼
√
MT ≈ M

√
T

M
≡ Mv fi (E) = f eq

i (E)
ni
neq

i

chemical equilibrium: detailed balance of a reaction, e. g. χχ↔ f f̄

thermally averaged cross section

〈σv〉 =

∫
p1

∫
p2
σv e−E1/T e−E2/T∫

p1

∫
p2
e−E1/T e−E2/T

, v = |v1 − v2| ,
dσ

dΩ
=

1

4M2v
|M|2 1

32π
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Motivation and Introduction

The overclosure bound from relic density

〈σv〉: input from particle physics and thermal averaged, with v ∼
√

T/M < 1

〈σv〉 ≈ 〈a + bv 2 + . . . 〉 = a + 3
2
b T

M
+ · · · ⇒ 〈σv〉 ≈ α2

M2

new variables Yχ = nχ/s and z = M/T ⇒ connect to the observed abundance

Yphys = Y (zfinal) : Ωdm =
MYphyss(T0)

ρcr(T0)
⇒ Ωdmh

2 =
M

GeV

Yphys

3.645× 10−9
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Non-relativistic WIMPs in a thermal bath

Wimp in a thermal bath

at T > 160 GeV the electroweak symmetry is restored 〈φ〉 = 0

χ are non-relativistic: have time to undergo several interactions

a) Mass correction b) Sommerfeld effect
and bound states

c) Interaction rate

How does all this reflect into the χχ annihilation?

hard

. . .

soft
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Non-relativistic WIMPs in a thermal bath

Non-relativistic and thermal scales I

Non-relativistic scales: M � Mv � Mv 2 (Coulomb potential v ∼ α)

Thermal scales: πT and mD ≈ α1/2T , if weakly-coupled plasma πT � mD

πT

gT

∆

RT

NREFT

pNREFT

M

Mv

Mv2

1. Thermal widths: the heavy particle is constantly kicked by plasma constituents
M. Laine, O. Philipsen, P. Romatschke and M. Tassler hep-ph/0611300; N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky 0804.0993;

N. Brambilla, M. A. Escobedo, J. Ghiglieri and A. Vairo 1109.5826 and 1303.6097

ΓGD ∼ α3T , ΓLD ∼ αT , Γpair
LD ∼ α2T 3r 2 ∼


Γ ∼ α2T3

M2v2 ∼ α2 T2

M
, v ∼

√
T/M

Γ ∼ α2T 3

M2v2 ∼ T 3

M2 , v ∼ α

S. Biondini (AEC) Multi-Scale Problems using EFTs INT 10 / 52



Non-relativistic WIMPs in a thermal bath

Non-relativistic and thermal scales I

Non-relativistic scales: M � Mv � Mv 2 (Coulomb potential v ∼ α)

Thermal scales: πT and mD ≈ α1/2T , if weakly-coupled plasma πT � mD

πT

gT

∆

RT

NREFT

pNREFT

M

Mv

Mv2

1. Thermal widths: the heavy particle is constantly kicked by plasma constituents
M. Laine, O. Philipsen, P. Romatschke and M. Tassler hep-ph/0611300; N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky 0804.0993;

N. Brambilla, M. A. Escobedo, J. Ghiglieri and A. Vairo 1109.5826 and 1303.6097

ΓGD ∼ α3T , ΓLD ∼ αT , Γpair
LD ∼ α2T 3r 2 ∼


Γ ∼ α2T 3

M2v2 ∼ α2 T 2

M
, v ∼

√
T/M

Γ ∼ α2T 3

M2v2 ∼ T 3

M2 , v ∼ α

S. Biondini (AEC) Multi-Scale Problems using EFTs INT 10 / 52



Non-relativistic WIMPs in a thermal bath

Non-relativistic and thermal scales II

2. Thermal masses: gauge-boson exchange mD ∼ α1/2T

m m +mD

the heavy dark matter particles experience thermal mass shifts

if T/M < α1/2 the resummed one is larger P.M. Chesler, A. Gynther and A. Vuorinen 0906.3052

δMth ∼ αT 2/M δMth ∼ −αmD/2 ∼ −α3/2T

Salpeter correction in nuclear theory: annihilation rate is enhanced

γ ∼ e−2M/T → γ ∼ e−2M/T eαmD/T
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Non-relativistic WIMPs in a thermal bath

Non-relativistic and thermal scales III

3. Sommerfeld effect: distortion of the wave function of the annihilating pair
J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami hep-ph/0610249; J.L. Feng, M. Kaplinghat and H.-B. Yu 1005.4678, M. Cirelli and

A. Strumia 0903.3381, M. Beneke, A. Bharucha, F. Dighera, C. Hellmann, A. Hryczuk, S. Recksiegel and P. Ruiz-Femenia 1601.04718 ...

Satt. =
(πα

v

) 1

1− exp(−πα
v

)
, Srep. =

(πα
v

) 1

exp(πα
v

)− 1

→ how do thermal effects change this?

4. Bound state: if they exist, they have binding energies |∆E | ∼ α2M
B. von Harling and K. Petraki 1407.7874; S.P. Liew and F. Luo 1611.08133; A. Mitridate, M. Redi, J. Smirnov and A. Strumia 1702.01141

γ ∼ e−2M/T → γ ∼ e−2M/T eα
2M/T

→ of O(1) for T ∼ α2M: really important if bound states exist at freeze-out!
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Non-relativistic WIMPs in a thermal bath

Annihilation rate

Annihilation of a heavy pair: DM-DM, with energies ∼ 2M (forget about T )

O = i
c

M2
φ†φ†φφ , c ≈ α2 (inclusive s-wave annihilation )

G. T. Bodwin, E. Braaten and G. P. Lepage hep-ph/9407339

c

M � T ⇒ ∆x ∼ 1
k
∼ 1

M
� 1

T
local and insensitive to the thermal scales

hard

. . .

soft

we want to ”thermal-average”

〈φ†φ†φφ〉T
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Non-relativistic WIMPs in a thermal bath

Beyond the free case: the spectral function

Compare Boltzmann equation with linear response theory

(∂t + 3H)n = −〈σv〉(n2 − n2
eq) and (∂t + 3H)n = −Γchem(n − neq)

〈σv〉 ≡ Γchem

2neq

⇒ 〈σv〉 =
4

n2
eq

c

M2
γ where γ = 〈φ†φ†φφ〉T

D. Bodeker and M. Laine 1205.4987; S. Kim and M. Laine 1602.08105; S. Kim and M. Laine 1609.00474

thermal expectation value of the operators that annihilate/create a DM-DM pair

γ =
1

Z

∑
m,n

e−Em/T 〈m|φ†φ†|n〉〈n|φφ|m〉

any correlator in equilibrium can be expressed in term of the spectral function

ρ(ω, k) =

∫ ∞
−∞

dt

∫
r

e iωt−ik·r〈1
2

[
(φφ)(t, r), (φ†φ†)(0, 0)

]
〉T

γ =

∫ ∞
2M−Λ

dω

π
e−

ω
T

∫
k

ρ(ω, k) +O(e−4M/T ) , α2M � Λ ∼ M
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Non-relativistic WIMPs in a thermal bath

From ρ to a Schrödinger equation

ρ can be extracted from a the imaginary part of a Green’s function’

non-relativistic dynamics Y. Burnier, M. Laine and M. Vepsalainen, (2007)

Em ≡ ω = E ′ + 2M + k2

4M
and H = −∇

2

M
+ V (r)

[
H − iΓ− E ′

]
G(E ′; r, r′) = Nδ3(r − r′) lim

r,r′→0
ImG(E ′; r, r′) = ρ(E ′)

Γ→ 0+ : lim
T→0

ρ(E ′) = N
∑
m

|ψm(0)|2πδ(Em − E ′)

Em are the s-wave energy eigenvalues of H = −∇
2

M
+ V (r)

In the free case V (r)→ 0 and Γ→ 0+

ρfree(E
′) = N

M
3
2 θ(E ′)

√
E ′

4π
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Non-relativistic WIMPs in a thermal bath

From ρ to a Schrödinger equation

from the inhomogeneous to homogeneous equation M.J. Strassler and M.E. Peskin (1991)

% = αMr V = α2MṼ , Γ = α2MΓ̃ E ′ = α2MẼ ′

[
−

d2

d%2
+
`(`+ 1)

%2
+ Ṽ − i Γ̃− Ẽ ′

]
u`(%) = 0 ⇒ ρ(E ′) =

αM2N

4π

∫ ∞
0

d%Im

[
1

u0(%)

]

γ ≈
(
MT

2π

) 3
2

e−
2M
T

∫ ∞
−Λ

dE ′

π
e−

E′
T ρ(E ′) → γfree =

n2
eq

4
⇒ 〈σv〉 =

c

M2

2M ω

ρ
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Non-relativistic WIMPs in a thermal bath
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Non-relativistic WIMPs in a thermal bath

From ρ to a Schrödinger equation

from the inhomogeneous to homogeneous equation M.J. Strassler and M.E. Peskin (1991)
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Non-relativistic WIMPs in a thermal bath

Summary of the theoretical framework

relic density can be factorized in some steps M. Laine and S.‘Kim 1609.00474

Calculate the matching coefficients from the hard annihilation process, E ∼ 2M

Compute the static potentials and thermal widths induced by the particle

exchanged by the heavy ones

Extract the spectral function ⇒ annihilation rate

Solve the Boltzmann equation with the thermal cross section

Thermal Bound state SM dynamics
formation at T 6= 0

〈σv〉Tann

Boltzmann

Overclosure bounds

potentials

equation

colliderindirect

direct

ΩDM
h2 = 0.1186

ΩDMh
2 = 0.1186

M

σ
v
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The inert doublet model

The inert doublet model

Supplement SM with χ SU(2) doublet, no coupling with fermions, unbroken vacuum

We focus on the high-mass regime of the model: M >∼530 GeV

Degenerate case: 4 states, H0,H0̄,H± with the same mass

T. Hambye, F.-S. Ling, L. Lopez Honorez and J. Rocher, 0903.4010

Lχ = (Dµχ)†(Dµχ)−M2χ†χ

−
{
λ2 (χ†χ)2 + λ3 φ

†φ χ†χ + λ4 φ
†χ χ†φ +

[
λ5

2
(φ†χ)2 + h.c.

]}

Annihilations happening at T ∼ M/20...M/103 ⇒ v ∼
√

T/M � 1

χ =
1
√

2M

(
Ce−iMt + D†e iMt

)
, χ

† =
1
√

2M

(
De−iMt + C†e iMt

)

δLNREFT = i
( c1

M2
C†pD

†
pDqCq︸ ︷︷ ︸
≡ O1

+
c2

M2
C†pT

a
pqD
†
q DrT

a
rsCs︸ ︷︷ ︸

≡ O2

+
c3

M2
D†pD

†
qDpDq︸ ︷︷ ︸
≡ O3

+
c4

M2
C†pC

†
qCpCq︸ ︷︷ ︸
≡ O4

)
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The inert doublet model

Matching the hard process

Matching matrix elements of four-particle states: imaginary part of ci

c1 =
g4

1 + 3g4
2 + 8λ2

3 + 8λ3λ4 + 2λ2
4

256π

c2 =
g2

1 g
2
2 + λ2

4

32π

c3 = c4 =
λ2

5

128π

=+ + . . . c1 c2

Degenerate case: cross section with free-heavy scalar

〈σv〉 = 4
n2

eq

∑4
i ciγi and with N1 = 2, N2 = 3

2
, N3 = N4 = 6 we obtain

〈σeff v〉(0) =
c1

2
+

3c2

8
+

3(c3 + c4)

2

we redefined the ci → ci/M
2
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The inert doublet model

Including the potentials

the quasi-static heavy scalars interact with gauge bosons, W±0 ,B0,A0

[
−
∇2

r

M
+ Vi (r)− E ′

]
Gi (E

′; r, r′) = Ni δ
(3)(r − r′) , lim

r→~0
ImGi (E

′; r, r′) = ρi (E
′)

Electroweak thermal potentials

VW(r) ≡
g2

2

4

∫
k
e ik·r i〈W+

0 W−0 〉T(0, k) ,

VA(r) ≡
g2

2

4

∫
k
e ik·r i〈A3

0A
3
0〉T(0, k)

VB(r) ≡
g2

1

4

∫
k
e ik·r i〈B0B0〉T(0, k)
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The inert doublet model

HTL propagators for gauge bosons

m� πT , capture thermal effects with Hard-Thermal Loop (i.e. T � 30 GeV for Z ,W )

J. Frenkel and J.C. Taylor (1990), E. Braaten and R.D. Pisarski (1990), J.C. Taylor and S.M.H. Wong (1990)

i〈W+
0 W−0 〉T =

1

k2 + m2

W̃

− iπT

k

m2
E2

(k2 + mW̃ )2
(static limit)

m2

W̃
= m2

W + m2
E2 and mW = g2vT/2

m2
E1 =

(
nS
6

+
5nG

9

)
g 2

1T
2, m2

E2 =

(
2

3
+

nS
6

+
nG
3

)
g 2

2T
2

VW(r) =
g2

2

16π

[
exp(−m

W̃
r)

r
− i

Tm2
E2φ(m

W̃
r)

m2
W̃

]

VW(0) = −
g2

2

16π

(
m

W̃
+ i

Tm2
E2

m2
W̃

)
+

g2
2mW

16π

∣∣∣∣
T=0
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The inert doublet model

Results for the spectral functions

the potential for the attractive channel reads

V1 = 2VW(0) + VA(0) + VB(0)− 2VW(r)− VA(r)− VB(r)

-1e-02 0e+00 1e-02 2e-02 3e-02
E’ / M

0e+00

2e-03

4e-03

ρ
1
 /

 (
ω

2
 Ν

1
)

free

M = 4 TeV

free ∗ S
1

T = M / 20

-1e-02 0e+00 1e-02 2e-02 3e-02
E’ / M

0e+00

2e-03

4e-03

ρ
2
 /

 (
ω

2
 Ν

2
)

free

M = 4 TeV

free ∗ S
2

T = M / 20

there is no large deviation with respect to a T = 0 Sommerfeld factor

no bound states around the freeze-out, non-zero tail in the repulsive channel
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The inert doublet model

T-Averaged Sommerfeld factors

S̄i : distortion of the wave function, thermal widths, Salpeter correction, bound states

S̄i ≡
e2∆MT /T

Ni

(
4π

MT

) 3
2
∫ ∞
−Λ

dE ′

π
e−E′/T

ρi (E
′) , 2∆MT ≡ Re [2VW (0) + VA(0) + VB (0)]

10
1

10
2

10
3

10
4

z = M/T

10
-1

10
0

10
1

10
2

M = 12.0 TeV

M = 4.0 TeV

M = 0.5 TeV

S
1,eff

_

-4e-04 -2e-04 0e+00 2e-04

E’ / M

0e+00

2e-03

4e-03

6e-03

ρ
1
 /

 (
ω

2
 Ν

1
)

T = 600 GeV

T = 100 GeV

T = 10 GeV

M = 12 TeV

〈σv〉(0) → 〈σv〉 =
c1S̄1

2
+

3 c2S̄2

8
+

3 (c3 + c4)S̄3

2
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The inert doublet model

Overclosure bound for IDM

Y ′(z) = −〈σv〉MmPl
c(T )√

24πe(T )

Y 2(z)− Y 2
eq(z)

z2

∣∣∣∣∣
T=M/z

10
1

10
2

10
3

z = M / T

10
-16

10
-14

10
-12

10
-10

10
-8

Y

λ
3,4,5

 = 0

λ
3,4,5

 = 1

λ
3,4,5

 = π

M = 12.0 TeV, ∆M = 10
-3

M

Y
eq

0 2 4 6 8 10 12 14
M / TeV

0.0

0.1

0.2

0.3

Ω
d

m
h

2

λ
3,4,5

 = 0

λ
3,4,5

 = 1

λ
3,4,5

 = π

0.50 0.55

overclosure

viable

∆ M = 350 MeV [19]

λi = 0: M < 519± 4GeV → M < 523± 4GeV or M < 562± 4GeV

λi = π: M < 10.6± 0.1TeV → M < 11.1± 0.1TeV or M < 12.1± 0.1TeV
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A look at strongly interacting mediators

Simplified models

To link effectively a BSM theory and dark matter

example: SUSY has a rather large parameter space

Constraints are set on a simple model that captures the most relevant physics

A. De Simone and T. Jacques 1603.08002

Majorana fermion DM + Coloured mediator

L = LSM + Lχ + Lη + Lint

LM
χ =

1

2
χ̄i /∂χ−

M

2
χ̄χ , Lη = (Dµη)† (Dµη)−M2

ηη
†η − λ2

(
η†η
)2

Lint = −y η†χ̄PRq − y∗ q̄PLχη − λ3η
†ηH†H

M. Garny, A. Ibarra and S. Vogl 1503.01500

the annihilation of χχ pairs is p-wave suppressed J. Edsjö and P. Gondolo hep/ph-9704361

⇒ the role of the (co)annihilating η is important and driven by QCD

〈σv〉 ≈ 〈σv〉χχ + e−
∆M
M 〈σv〉ηχ + e−2 ∆M

M 〈σv〉ηη
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A look at strongly interacting mediators

Strong interactions enter...

Again η = 1√
2M

(
φe−iMt + ϕ†e iMt

)
and χ = (ψe−iMt ,−iσ2ψ

∗e iMt)

Labs = i
{
c1 ψ
†
pψ
†
qψqψp + c2

(
ψ
†
pφ
†
αψpφα + ψ

†
pϕ
†
αψpϕα

)
+ c3 φ

†
αϕ
†
αϕβφβ + c4 φ

†
αϕ
†
β ϕγφδ T

a
αβT

a
γδ + c5

(
φ
†
αφ
†
βφβφα + ϕ

†
αϕ
†
βϕβϕα

)}

the matching coefficients are

c1 = 0 , c2 =
|y |2(|h|2 + g2

s CF )

128πM2
,

c3 =
1

32πM2

(
λ

2
3 +

g4
s CF

Nc

)
, c4 =

g4
s (N2

c − 4)

64πM2Nc

, c5 =
|y |4

128πM2
.
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A look at strongly interacting mediators

Thermal masses and interaction rates I

the gluonic contribution are IR sensitive → need to be resummed for a correct result

ReΠR
2Mη

= g2sCFT
2

12Mη

ImΠR
2Mη

= 0∼

2

the real part is analogous to that for a heavy fermion

J.F. Donoghue, B.R. Holstein and R.W. Robinett (1986)

the imaginary part vanishes because there is no phase space for the 1↔ 2 process
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A look at strongly interacting mediators

Thermal masses and interaction rates II

at high temperatures these naive results are misleading

ReΠR
2Mη

= g2sCFT
2

12Mη

ImΠR
2Mη

= 0∼

2

Mη + ∆M and ∆M � πT � Mη

real part ∼ g 2
s CF∆M and imaginary part ∼ g 2

s CF |∆M|nB(|∆M|) ∼ g 2
s CFT

Bose enhancement of the soft contribution compensates against the phase-space

suppression
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A look at strongly interacting mediators

Thermal masses and interaction rates III

η quasi static and interact with Aa
0, in a plasma Debye screened mD ∼ gsT

∼

2

+

ReΠR

2Mη
=

g2
s CFT

2

12Mη
+

g2
s CF

2

∫
p

1

p2 + m2
D

=
g2
s CFT

2

12Mη
−

g2
s CFmD

8π

ImΠR

2Mη
= −

g2
s CF

2

∫
p

πTm2
D

p(p2 + m2
D)2

= −
g2
s CFT

8π

Real part: Debye-screened Coulomb self-energy

g 2
s
T 2

M
. g 2

s (gsT )⇒ T
M

. gs

imaginary part: reflects fast colour and phase-changing 2→ 2 scatterings off light

medium particles (first derived for heavy quarks)
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A look at strongly interacting mediators

Rates and annihilation cross section

∆MT ≡ ∆M +
(g2

s CF +λ3)T 2

12M
− g2

s CFmD
8π

the potential that plays a role involves QCD gluons

V (r) ≡ g 2
s

2

∫
k

e ik·r
[

1

k2 + m2
D

− i
πT

k

m2
D

(k2 + m2
D)2

]
, mD = gs

√
Nc

3
+

Nf

6

after the Fourier transform

V (r) =
g 2
s

2

{
exp(−mD r)

4πr
− iT

2πmD r

∫∞
0

dz sin(zmD r)

(1+z2)2 , r > 0

−mD
4π
− iT

4π
, r = 0
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A look at strongly interacting mediators

Rates and annihilation cross section
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s CF +λ3)T 2

12M
− g2

s CFmD
8π
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D
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πT

k
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+
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A look at strongly interacting mediators

V1 = 0 , V2 = CFV (0) , V3 = 2CF [V (0)− V (r)]

V4 = 2CFV (0) +
V (r)

Nc
, V5 = 2CFV (0) +

(Nc − 1)V (r)

Nc

the thermally modified Sommerfeld factors are

S̄i =
( 4π

MT

) 3
2

∫ ∞
−Λ

dE ′

π
e [ReVi (∞)−E ′]/T ρi (E

′)

Ni

〈
σeff v

〉
=

2c1 + 4c2Nc e
−∆MT /T + [c3S̄3 + c4S̄4CF + 2c5S̄5(Nc + 1)]Nc e

−2∆MT /T(
1 + Nc e

−∆M
T
/T
)2
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A look at strongly interacting mediators

V1 = 0 , V2 = CFV (0) , V3 = 2CF [V (0)− V (r)]

V4 = 2CFV (0) +
V (r)

Nc
, V5 = 2CFV (0) +

(Nc − 1)V (r)

Nc

the thermally modified Sommerfeld factors are

S̄i =
( 4π

MT

) 3
2

∫ ∞
−Λ

dE ′

π
e [ReVi (∞)−E ′]/T ρi (E
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Ni

〈
σeff v

〉
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2c1 + 4c2Nc e
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T
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A look at strongly interacting mediators

Bound states and thermal widths

-4e-02 -2e-02 0e+00 2e-02
E’ / M

0e+00

2e-02

4e-02

6e-02

8e-02

ρ
 /

 (
ω

2
 Ν

)

free ∗ S

free

T = 100 GeV

T = 150 GeV

T = 200 GeV

T = 300 GeV

T = 500 GeV

Gluon exchange, M = 3 TeV

-1×10
-2 0

E’ / M

10
-6

10
-4

10
-2

10
0

10
2

ρ
3
 /

 (
ω

2
 Ν

3
 )

T = 100 GeV

T = 10 GeV

T = 3 GeV

free

M = 3 TeV, ∆ M = 0

bound states already start to form at z ∼ 15 and visible at z ∼ 20

at high temperatures: reduced Sommerfeld effect with respect to a massless gluon
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A look at strongly interacting mediators

10
1

10
2

10
3

z = M / T

10
-16
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-10

10
-8

Y

free, ∆M / M = 0.0

∆M / M = 0.010

∆M / M = 0.005

∆M / M = 0.000

M = 3 TeV, y = 0.3, λ
3
 = 1.0

Y
eq

2 4 6 8

M / TeV

0.0

0.1

0.2

0.3

Ω
d

m
h

2

overclosure

viable

free, ∆M / M = 0.0

∆M / M = 0.010

∆M / M = 0.005

∆M / M = 0.000

y = 0.3, λ
3
 = 1.0

a blind ∆M = 0 brings to very large masses M

however the splitting cannot be arbitrary small!

if 2∆M − |E1| < 0 the lightest two-particle states are (η†η)

⇒ (χχ) rapidly convert into (η†η) that are short lived and promptly annihilate
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A look at strongly interacting mediators

0.00 0.01 0.02 0.03
∆M / M

0.0
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M
)

M = 2 TeV
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h

2
 = 0.1186(20)
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gray bands implement the constraint 2∆M − |E1| > 0

the model can be phenomenologically viable up to M ∼ 5...7 TeV

y and h have a small impact on Ωdm, whereas λ3 enters the very efficient singlet

channel thorough c3 = (λ2
3 + g 2

s CF/Nc)/(32π2M2)

Note: a λ3 6= 0 is always generated at high scale (from RGEs)
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Conclusions and Outlook

Summary and Outlook

Attempt to refine the calculation of the thermal freeze-out for WIMPs

the freeze-out calculation is factorized into 〈σv〉 ≈ ci 〈Oi 〉T
E ∼ M: matching coefficients at T = 0 → NREFTs

E ∼ T ,mD solve a thermally modified Schrödinger equation for ρ(E):

distortion of the wave function, thermal widths, Salpeter correction, bound states

Modest effect for the Inert Doublet Model: 1% to 20%

however study the parameter space compatible with the new overclosure bounds

Simplified models with QCD (or strong) interactions: much larger effect

The overclosure bound is shifted from M ∼ 1.2 TeV up to M ∼ 6 TeV

Outlook: Address other models, study the impact of the Higgs (scalar) exchange,

assess the impact on experimental analysis (SB and Stefan Vogl in preparation)
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Back-up slides

IDM mass ranges

Low-mass regime: M <∼MW

Intermediate regime: MW <∼M <∼ 535 GeV, ruled out by XENON

XENON100 Collaboration, E. Aprile et al. (2012), 1207.5988

High-mass regime: M >∼ 535 GeV, unitary bound λi ∼ 4π ⇒ M ∼ 58 TeV

T. Hambye, F.-S. Ling, L. Lopez Honorez and J. Rocher, 0903.4010
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Back-up slides

Thermally average cross section and
freeze-out

thermally averaged cross section

〈σv〉 =

∫
d3p1d

3p2 σv e
−E1/T e−E1/T∫

d3p1d3p2e−E1/T e−E1/T

Freeze-out estimation

H ∼ n〈σv〉 ⇒ T 2

mPl

∼
(
MT

2π

)3/2

e−
M
T
α2

M2

Thermal expectation value

γ =
1

Z e−Em/T
∑
m

〈m|θ†η†ηθ|m〉

kinetically equilibrated particle: Ekin ≈ Mv2 ∼ T
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Back-up slides

Sommerfeld factors at T = 0

electroweak potentials: short distance part r � mW̃

V1(r) ' 3g 2 + g ′2

16πr
, V2(r) ' g 2 − g ′2

16πr
, V3(r) ' g 2 + g ′2

16πr

then we can use the standard form of the Sommerfeld factors

S1 =
X1

1− e−X1
, S2,3 =

X2,3

e−X2,3 − 1

where Xi = παi/v and E ′ = 2∆MT + Mv 2
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Back-up slides

HTL approximation

HTL is justified when the particle with which the gauge fields interact are

ultrarelativistic, i.e. m� πT

top and bottom common mass mf , W±,Z , h with a common mass mg

m2
E1 '

g ′2

2

[
49T 2

18
+

11χF (mf )

3
+ χB(mg )

]

m2
E2 '

g ′2

2

[
3T 2

2
+ 3χF (mf ) + 5χB(mg )

]

this is however a pure phenomenological recipe mb < πT < mt

temperature dependent Higgs expectation value (it vanishes for T ≈ 160GeV )

v 2
T ≡ −

m2
φ

λ
for m2

φ < 0 , m2
φ ≡ −

m2
h

2
+

(g ′2 + 3g 2 + 8λ+ 4h2
t )T 2

16
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Back-up slides

Low-temperature and mass splitting

the vacuum mass difference ∆M becomes important at very low temperature

the effect is to reduce the importance of the coannihilating species

it can be phenomenologically included via the substitution

S̄1 → S̄1,eff ≡ S̄1

[
1

4
+

3e−2∆M/T

4

]
S̄2,3,4 → S̄2,3,4,eff ≡ S̄2,3,4

[
1

12
+

e−∆M/T

3
+

7e−2∆M/T

12

]
the appearance of 2∆MT in S̄i is due to

neq ≈ 4

(
MT

2π

) 3
2

e−(M+∆MT )/T (1)

S. Biondini (AEC) Multi-Scale Problems using EFTs INT 42 / 52



Back-up slides
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IDM scalar masses

with v ≡ 〈φ〉

MH0 = M2 +
1

2
(λ3 + λ4 + λ5)v2 ,

MH0̄
= M2 +

1

2
(λ3 + λ4 − λ5)v2 ,

MH0 = M2 +
1

2
λ3v

2 ,

∆MSM =
g2

4π
MW sin2 θW

2

the different components can be non degenerate in mass

C =

(
H+

H0−iH0̄√
2

)
, D =

(
H−

H0+iH0̄√
2

)
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A. Goudelis, B. Herrmann and O. Stal 1303.3010
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Scalar QCD potential

V (r) =
g 2
s

2

{
exp(−mD r)

4πr
− iT

2πmD r

∫∞
0

dz sin(zmD r)

(1+z2)2 , r > 0

−mD
4π
− iT

4π
, r = 0

V1 = 0 , V2 = CFV (0) , V3 = 2CF [V (0)− V (r)]

V4 = 2CFV (0) +
V (r)

Nc
, V4 = 2CFV (0) +

(Nc − 1)V (r)

Nc
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Sommerfeld for scalar QCD
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Rates I

ReΠR
2Mη

= g2sCFT
2

12Mη

ImΠR
2Mη

= 0∼

2

Mη + ∆M and ∆M � πT � Mη

real part ∼ g2
s CF∆M and imaginary part ∼ g2

s CF |∆M|nB(|∆M|) ∼ g2
s CFT

Resummed mass correction dominates over the unresummed when

g2
s

T 2

M
. g2

s gsT︸︷︷︸
mD

⇒ T

M
. gs
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Rates II

∼

2

+
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Rates III: equilibrium in the dark sector

1→ 2 and 2→ 2 scattering

Γ1→2 =
|y |2NcM

4π

(
∆

M

)2

nF (∆)

Γ2→2 =
Nc |y |2

8M

∫
d3p

(2π)3

πm2
q

p(p2 + m2
q)
nF

(
∆ +

p2

2M

)

10 50 100 500 1000 5000

10-19

10-14

10-9

10-4

10

z=M/T

Γ
(G
eV

)

M=1 TeV, Δ = 10-2M, |y 2=(0.33)2
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Gluodissociation in quarkonium

M � 1/r � T � ∆V , start with pNRQCD

difference between the octet and singlet potential

∆V =
1

r

(
αs

2Nc
+ CFαs

)
=

Ncαs

2r
∼ Mα2

s

the thermal width is

Γ =
4

3
CFαs r

2(∆V )3nB(∆V ) ≈ 1

3
N2

cCFα
3
sT

at small distances the two contributions are

ΓLD ∼ g2
s CFTm

2
Dr

2 , ΓGD ∼ g2
s CFT (∆E )2r2

S. Biondini (AEC) Multi-Scale Problems using EFTs INT 51 / 52



Back-up slides

RGEs for the models

IDM

for mZ < µ < M , the couplings are evolved like in the Standard Model

for µ > M (in the annihilation process, ci ) we use IDM P.M. Ferreira and D.R.T. Jones 0903.2856

Simplified model

The only coupling that we need at a scale µ� M is the strong coupling

we evaluate it at 2-loop level for µ . M

For µ > M , the contribution of the coloured scalar is added and we switch
over to 1-loop running

in the thermal potential we have small and large distance scales:
1 short distances: µ = e−γE /r , and no scalar in the running
2 large distances: thermal couplings from EQCD at finite T
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