
Open Quantum Systems for Quarkonia in QGP

Yukinao Akamatsu (Osaka)
with

Masayuki Asakawa, Shiori Kajimoto (Osaka),
Alexander Rothkopf (Stavanger)

May 23, 2018 at INT Program on
“Multi-Scale Problems Using Effective Field Theories”

References: Akamatsu-Asakawa-Kajimoto-Rothkopf 1805.00167,
Kajimoto-Akamatsu-Asakawa-Rothkopf (18),
Akamatsu (15,13), Akamatsu-Rothkopf (12)

1 / 25



Motivation and Outline

When forming a muon pair, the two reconstructed muon
candidates are required to match the dimuon trigger and to
originate from a common vertex with a χ2 probability larger
than 1%. The ϒ transverse momentum and rapidity ranges
studied in this analysis are pT < 30 GeV/c and jyj < 2.4.
The ϒ ratios are not affected by the small number of
additional collision vertices (pileup) present in the pp and
Pb-Pb samples.
Figure 1 shows the invariant mass distributions of

opposite-charge muon pairs for centrality-integrated Pb-Pb
collisions. The double ratios are computed from the signal
yields obtained independently from unbinned maximum
likelihood fits to the pp and Pb-Pb spectra. The analysis
of the ϒð2SÞ double ratio is performed in three pT bins, two
jyj bins, and nine centrality bins, while the ϒð3SÞ double
ratio is studied in four centrality bins. As a cross-check,
simultaneous fits of the two dimuon invariant mass distri-
butions, where the double ratios are directly extracted, were
also performed. The two procedures give consistent results.
The shape of each ϒ state is modeled with the sum of

two crystal ball functions [34], with parameters fixed from
MC simulation studies. The mass parameter of the ϒð1SÞ
resonance is left free to account for possible shifts in the
momentum scale of the reconstructed tracks, and is found
to be consistent between pp and Pb-Pb data. The masses of
the excited states are fixed to the ϒð1SÞ mass scaled by the
ratio of the world average mass values [35]. The systematic
uncertainty in the double ratio from the choice of signal
model is evaluated by testing two fit variations. One uses
the same function, but allowing all previously fixed
parameters to float one by one and propagating as sys-
tematic uncertainty the maximum observed deviations from
the double ratios obtained with the nominal signal model.

The second fit variation uses a sum of a crystal ball function
and Gaussian function as an alternative fit model. The total
uncertainties related to the signal model are determined by
summing in quadrature the two systematic components,
and are in the ranges 1%–10% and 9%–15% for the ϒð2SÞ
and ϒð3SÞ double ratios, respectively.
The background is modeled with an error function

multiplied by an exponential function as in Ref. [4], a
parametrization selected, in each analysis bin, through a
log-likelihood ratio test comparing several functional
forms, while fixing the signal parameters. For the two
highest pT bins in this analysis, using an exponential
without the error function provides the best fit. Possible
deviations in the results when choosing an alternative
background model, in the form of a fourth-order poly-
nomial, are studied using pseudoexperiments. For this
purpose, the nominal background and signal models are
used to generate pseudoinvariant mass distributions in each
bin of the analysis. These distributions are then fit with the
nominal model as well as using the alternative background
model. The average resulting differences between nominal
and alternative fit model are found to be in the 2%–15%
range for the ϒð2SÞ and ϒð3SÞ double ratios, respectively.
The signal and background model uncertainties are the
dominant sources of systematic uncertainty in this analysis.
Possible effects of noncancellation of reconstruction,

trigger, and muon identification efficiencies in the double
ratios are studied by comparing the results of simulations
using PYTHIA 8.209 [36] tune CUETP8M1 (for the low-
occupancy pp environment) with those obtained using
PYTHIA 8 embedded in HYDJET 1.9 [37] (for the high-
occupancy Pb-Pb data). The ϒ transverse momentum
distributions in the MC samples are reweighted to match
the signal pT spectra seen in data, since the reconstruction
efficiency depends on pT . The rapidity distributions in
simulation are consistent with those in data; hence, no
reweighting is applied as a function of y. The maximum
deviation from unity of the double ratio of efficiencies,
among all the analysis bins, was found to be 1.4%, a value
taken as a systematic uncertainty.
Acceptance corrections are not applied because they

are expected to cancel in the Pb-Pb over pp ratio for each
state. If, however, the ϒ meson acceptances were different
in pp and Pb-Pb because of physical effects, such as a
change in polarization or strong kinematical differences
from pp to Pb-Pb collisions within an analysis bin, these
would not cancel in the double ratio. The hypothesis that
such potential effects can be neglected is supported by the
absence of significant changes of theϒðnSÞ polarizations in
pp collisions as a function of event activity [38]. Moreover,
when studying the pT and jyj distributions in the pp and
Pb-Pb data samples, it is observed that they have similar
shapes. As in previous analyses [2–4,39,40], possible
differences in Pb-Pb and pp acceptances due to physical
effects are not considered as systematic uncertainties.
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FIG. 1. Measured dimuon invariant mass distribution in Pb-Pb
data. The total fit (solid blue line) and the background component
(dot-dashed blue line) are also shown, as are the individual
ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ signal shapes (dotted gray lines). The
dashed red line represents the pp signal shape added to the Pb-Pb
background and normalized to the ϒð1SÞ mass peak in Pb-Pb.
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1. Basics of Open Quantum System

2. Application to Quarkonium in QGP

3. Quantum State Diffusion Simulation for a Heavy Quark

What do we learn from heavy-ion data?
Can we understand the data in terms of in-medium QCD forces at high T?
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Basics of Open Quantum System
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Open quantum systems

S E
HI

S S*

1. Total system consists of system (S) and environment (E)

Htot = HS ⊗HE

2. Hamiltonian

Htot = HS ⊗ 1 + 1⊗HE +HI , HI =
∑

H
(S)
I ⊗H

(E)
I

3. Reduced density matrix & Master equation

ρS(t) ≡ TrEρtot(t), i
d

dt
ρtot = [Htot, ρtot] → i

d

dt
ρS =?︸ ︷︷ ︸

Markovian limit

4. Theoretical methods
▶ Influence functional – path integral representation for the master equation
▶ Schwinger-Dyson equation – time evolution equation for the density matrix
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Time scale hierarchies

Three basic time scales

▶ Environment correlation time τE

▶ System intrinsic time scale τS

▶ System relaxation time τR
τ	>	τS	

Time scale hierarchies

▶ Quantum Brownian motion

τE ≪ τR︸ ︷︷ ︸
Markov approx.

, τE ≪ τS︸ ︷︷ ︸
derivative expansion

→ good description in phase space

▶ Quantum optical system

τE ≪ τR︸ ︷︷ ︸
Markov approx.

, τS ≪ τR︸ ︷︷ ︸
rotating wave approx.

→ good description in eigenbasis

It is very important to estimate the relevant time scales
We adopt QBM-type approximation scheme to study quarkonium
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Time scales of a quarkonium quantum Brownian motion in QGP

▶ Environment (QGP) correlation time τE
1. Time scales of QGP

Particle collision intervals soft ∼ 1/g2T , hard ∼ 1/g4T
Field correlation times electric ∼ 1/gT , magnetic ∼ 1/g4T ln(1/g)

2. Heavy quarks mostly couple to electric field

τE ∼
1

gT

▶ System (Quarkonium) intrinsic time scale τS
Orbital period = inverse energy gap = formation time

τS ∼
1

∆E
∼

1

Mα2︸ ︷︷ ︸
Coulomb bound states

, ∼ ∞︸ ︷︷ ︸
above threshold

▶ System relaxation time τR
Kinetic equilibration / color relxation (for a single HQ / longer for a quarkonium)

τkinR ∼
M

T

1

g4T ln(1/g)
, τ colorR ∼

1

g2T

⇒Time scale hierarchy for quarkonium quantum Brownian motion

τE ≪ τR, τE ≪ τS → g ≪︸︷︷︸
color

1, g3 ln(1/g) ≪︸︷︷︸
kinetic

M

T
≪︸︷︷︸

potential

g

α2
∼ 100

g3

Scale hierarchy satisfied/challenged at weak/strong coupling
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Open quantum system by path integral

1. Path integral

ρtot(t, x, y︸︷︷︸
∈ S

, X, Y︸ ︷︷ ︸
∈ E

) =

∫
dx0dy0dX0dY0

∫ x,y,X,Y

x0,y0,X0,Y0

D[x̄, ȳ, X̄, Ȳ ]

× ρtot(0, x0, y0, X0, Y0)︸ ︷︷ ︸
factorizable ρS(0) ⊗ ρ

eq
E

eiStot[x̄,X̄]−iStot[ȳ,Ȳ ]

2. Influence functional SIF [Feynman-Vernon (63)]

ρS(t, x, y) =

∫
dXdY δ(X − Y )︸ ︷︷ ︸

trace out E = path closed at t

ρtot(t, x, y,X, Y )

=

∫
dx0dy0ρS(0, x0, y0)

∫ x,y

x0,y0

D[x̄, ȳ]eiSS [x̄]−iSS [ȳ]+iSIF[x̄,ȳ]

Influence functional contains all the information of the open system
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Coarse graining for quantum Brownian motion

1. Influence functional up to quadratic order

iSIF[x, y] =− 1

2

∫ t

0

dt1dt2(x, y)(t1)

(
G11 −G12

−G21 G22

)
(t1,t2)︸ ︷︷ ︸

correlation function of E

(
x
y

)
(t2)

2. Choice of time after coarse graining

t> = max(t1, t2), s = |t1 − t2|

3. Derivative expansion in s when τS ≫ τE

iSIF[x, y] = 2γmT

∫ t

0

dt>(x, y)

(
−1 1
1 −1

)(
x
y

)
︸ ︷︷ ︸

momentum diffusion (fluctuation)

+ iγm

∫ t

0

dt>(x, y)

(
−1 −1
1 1

)(
ẋ
ẏ

)
︸ ︷︷ ︸

drag force (dissipation)

+ · · ·

Influence functional is single time integral after coarse graining
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Caldeira-Leggett master equation

1. From path integral to differential equation

ρS(t, x, y) =

∫
dx0dy0ρS(0, x0, y0)

∫ x,y

x0,y0

D[x̄, ȳ]eiSS [x̄]−iSS [ȳ]+iSIF[x̄,ȳ]

→ i
∂

∂t
ρS(t, x, y) = H(x)ρS(t, x, y)−H(y)ρS(t, x, y)

− iγ
[
2mT (x− y)2︸ ︷︷ ︸

fluctuation

+(x− y)(∂x − ∂y)︸ ︷︷ ︸
dissipation

]
ρS(t, x, y)

▶ Equivalent to Fokker-Planck equation through Wigner transform

2. Ehrenfest equations

d

dt
⟨p⟩ = −2γ⟨p⟩, d

dt
⟨H⟩ = −4γ

(
⟨H⟩ − T

2

)
Quantum mechanical description for Brownian motion
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Caldeira-Leggett master equation is NOT Lindblad

1. Positivity of the density matrix

∀|α⟩ → ⟨α|ρS |α⟩ ≥ 0

2. Any Markovian positive map is written by the Lindblad equation [Lindblad (76)]

d

dt
ρS(t) = −i[H, ρS ] +

N∑
i=1

γi

(
LiρSL

†
i −

1

2
L†

iLiρS − 1

2
ρSL

†
iLi

)
3. Lindblad form is obtained when higher order expansion is included [Diosi (93)]

SIF = Sfluct︸︷︷︸
∝ xx

+ Sdiss︸︷︷︸
∝ xẋ︸ ︷︷ ︸

Caldeira-Leggett

+ S(2)︸︷︷︸
∝ ẋẋ

If L ∼ x+ ẋ, then L†L ∋ ẋẋ

Lindblad equation is not a must, but theoretically more complete
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Application to Quarkonium in QGP
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Influence functional for heavy quarks

1. Heavy quarks in the non relativistic limit

LI = −gAa
0

[
Q†taQ+Qct

aQ†
c

]
= −gAa

0ρ
a

2. Influence functional: −gAa
0ρ

a is a source term for QGP

eiSIF[ρ] ≃
∫

D[A, q]ρeqQGP[A, q] exp
[
i

∫
x∈CTP

{LQGP(A, q)− gAa
0ρ

a}
]

3. Perturbative expansion in terms of gluon correlators in QGP
▶ Choose t> = max(t1, t2) as a single time variable in SIF

iSIF = −g2
∫
t>

∫
xy

(ρa1 , ρa2)(t,x)

∫
s>0

[
GF −G<

−G> GF̃

]
(s,x−y)

(
ρa1
ρa2

)
(t−s,y)

4. Derivative expansion based on hierarchy of time scales between G and ρ
▶ Expand in s

SIF = Spot + Sfluct︸ ︷︷ ︸
∝ ρρ

+ Sdiss︸︷︷︸
∝ ρρ̇

+ S(2)︸︷︷︸
∝ ρ̇ρ̇

+ · · ·
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More on influence functional for heavy quarks

1. Gluon correlators at low frequencies

V (r) = g2GR(ω = 0, r), D(r) = g2T
∂

∂ω
σ(ω = 0, r)︸ ︷︷ ︸
spectral function

2. Using the ra-basis: ρr = (ρ1 + ρ2)/2, ρa = ρ1 − ρ2
▶ potenital

Spot =

∫
t

∫
xy

V (x− y)ρa(x)ρr(y)

▶ fluctuation

Sfluct =
i

2

∫
t

∫
xy

D(x− y)ρa(x)ρa(y) ⇔ SCL
fluct = 2iγmTx2

a

▶ dissipation

Sdiss = −
1

2T

∫
t

∫
xy

D(x− y)ρa(x)ρ̇r(y) ⇔ SCL
diss = −2γmxaẋr

▶ 2nd order

S(2) ≃
i

4

∫
t

∫
xy

D(x− y)

8T 2
ρ̇a(x)ρ̇a(y)

Fluctuation-dissipation theorem in QGP sector relates Sfluct and Sdiss
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Master equation from influence functional

THIS IS THE MOST DIRTY PART

1. From path integral to functional differential equation
▶ Analogous to “Schrödinger equation from path integral”

ρS [t, Q
fin
1 , Qfin

2 ]︸ ︷︷ ︸
“wave function” at t

=

∫
dQini

1,2 ρS [0, Q
init
1 , Qinit

2 ]︸ ︷︷ ︸
initial “wave function”

∫ Qfin
1,2

Qinit
1,2

D[Q1,2]e
iSS [Q1]−iSS [Q2]+iSIF[Q1,Q2]

→ ∂

∂t
ρS [t,Q1, Q2] = L[Q1, Q2]ρS [t, Q1, Q2]

2. From functional density matrix to density matrix
(i) Recall that the basis of the functional space is the coherent state

|Q⟩ ∼ e−
∫
x Q(x)Q̂†(x)|Ω⟩

(ii) Introduce a heavy quark by functional differentiation

ρQ(t,x,y) ∼
δ

δQ1(x)

δ

δQ2(y)
ρS [t,Q1, Q2]|Q=0

There must be several ways to derive the master equation from SIF
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Lindblad equation for a quarkonium in QGP

d

dt
ρ
QQ̄

(t) = −i[H, ρ
QQ̄

] +
∑
k

(
LkρQQ̄

L†
k − 1

2
L†

kLkρQQ̄
− 1

2
ρ
QQ̄

L†
kLk

)

Lk =
√

D(k)eikx/2
[
1 +

ik · ∇x

4MT︸ ︷︷ ︸
∆xQ ∼ k/MT

]
eikx/2 + heavy antiquark

▶ Scattering Qg → Qg with momentum transfer k with rate D(k)

▶ Momentum transfer without recoil = stochastic potential (no dissipation)

Lk =
√

D(k)eikx︸ ︷︷ ︸
∆pQ = k

+ heavy antiquark

▶ Quantum dissipation from heavy quark recoil during a collision

▶ Coefficient 1/4MT fixed by fluctuation-dissipation theorem for QGP correlators
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Quantum State Diffusion Simulation for a Heavy Quark
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Quantum State Diffusion simulation for Lindblad equation

1. Lindblad equation

d

dt
ρS(t) = −i[H, ρS ] +

N∑
i=1

γi

(
LiρSL

†
i −

1

2
L†

iLiρS − 1

2
ρSL

†
iLi

)
2. Stochastic unravelling

▶ Equivalent to a nonlinear stochastic Schrödinger equation [Gisin-Percival (92)]

ρS(t) = lim
N→∞

1

N

N∑
i=1

|ϕi(t)⟩⟨ϕi(t)|
||ϕi(t)||2︸ ︷︷ ︸

ϕ(t) unnormalized

= M

[
|ϕ(t)⟩⟨ϕ(t)|
||ϕ(t)||2

]
,

|dϕ⟩ = −iH|ϕ(t)⟩dt+
∑
n

(
2⟨L†

n⟩ϕLn︸ ︷︷ ︸
nonlinear in ϕ

−L†
nLn

)
|ϕ(t)⟩dt+

∑
n

Ln|ϕ(t)⟩dξn,

⟨dξndξ∗m⟩︸ ︷︷ ︸
complex noise

= 2δnmdt

Apply this technique to heavy quark Lindblad equation
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Nonlinear stochastic Schrödinger equation for a heavy quark

▶ Nonlinear stochastic Schrödnger equation

dϕ(x, t) = ϕ(x, t+ dt)− ϕ(x, t)

≃
(
i
∇2

2M
− 1

2
D(0)

)
ϕ(x)dt+ dξ(x)ϕ(x)

+
dt

||ϕ(t)||2

∫
d3yD(x− y)ϕ∗(y)ϕ(y)ϕ(x) +O(T/M)

▶ Correlation of complex noise field

⟨dξ(x)dξ∗(y)⟩ = D(x− y)dt, ⟨dξ(x)dξ(y)⟩ = ⟨dξ∗(x)dξ∗(y)⟩ = 0

▶ Density matrix for a heavy quark

ρQ(x, y, t) = M

[
ϕ(x, t)ϕ∗(y, t)

||ϕ(t)||2

]

What is the equilibrium solution of the Lindblad equation?
How does a heavy quark approach equilibrium?
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QSD simulation for a single heavy quark in an external potential

Numerical setups

Vext(x) = 0,
1

2
Mω2x2, − α√

x2 + r2c

D(x) = γ exp
[
−x2/l2corr

]
∆x ∆t Nx T γ lcorr ω α rc
1/M 0.1M(∆x)2 128, 127 0.1M T/π 1/T 0.04M 0.3 1/M

∆x =
1

M
≪ lcorr =

10

M
≪ Nx∆x =

128

M

Do the density matrix approach ∝ exp(−H/T )?
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Solitonic wave function in one sampling
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Wave function is localized because of the nonlinear evolution equation
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Equilibration of a heavy quark: Vext = 0

Time evolution of momentum distribution
▶ Relaxation time of corresponding classical system Mτrelax ∼ 300
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Equilibrium momentum distribution is the Boltzmann distribution!
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Equilibration of a heavy quark: Vext = VHO/Coulomb

Time evolution of eigenstate occupation (lowest 3 levels)
▶ Harmonic potential (left), regularized Coulomb potential (right)
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Eigenstate occupation relaxes to a static state
Relaxation time depends on the initial state and rate equation is inapplicable
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Equilibrium distribution of a heavy quark: Vext = VHO/Coulomb

Equilibrium distribution of eigenstates (lowest 10 levels)
▶ Harmonic potential (top), regularized Coulomb potential (bottom)
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We also checked that off-diagonal part is 0 within statistical fluctuation

Eigenstate distribution in the external potential is also the Boltzmann distribution
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QSD simulation without quantum dissipation (= stochastic potential)

Heavy quark is overheated because energy increases without dissipation

▶ Neglect O(T/M) terms in the nonlinear stochastic Schrödinger equation
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Dissipation is more important for smaller bound state because decoherence is ineffective
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Summary and outlook

Quantum State Diffusion simulation for Lindblad equation

▶ Equivalent to nonlinear stochastic Schrödinger equation (integro-differential
equation)

▶ Numerically confirm the equilibration of a heavy quark → Can be shown analytically?

Possible application

▶ Quarkonium evolution in heavy-ion collisions [Akamatsu et al, in progress]

▶ Dark matter bound state in early universe? [Kim-Laine (17)]

▶ Cold atomic gases? [Braaten-Hammer-Lepage (16)]
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Back Up
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Explicit form of gluon correlators in HTL approximation

GR(ω = 0, r) = −e−mDr

4πr
,

∂

∂ω
σab,00(0, r⃗) =

∫
d3k

(2π)3
πm2

Deik⃗·r⃗

k(k2 +m2
D)2

,

m2
D =

g2T 2

3

(
Nc +

Nf

2

)
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Example 1 – Quantum optical master equation

ω0

▶ A two-level atom in a photon gas

i
d

dt
ρA =γ (N(ω0) + 1)︸ ︷︷ ︸

emission

[
σ−ρAσ+ − 1

2
σ+σ−ρA − 1

2
ρAσ+σ−

]

+ γ N(ω0)︸ ︷︷ ︸
absorption

[
σ+ρAσ− − 1

2
σ−σ+ρA − 1

2
ρAσ−σ+

]

▶ Approximations

ρtot(t) ≃ ρA(t)⊗ ρeqB︸ ︷︷ ︸
Born approx. (weak coupling)

, τB ≪ τR ≡ 1/γ︸ ︷︷ ︸
Markov approx.

, τA ≡ 1/ω0 ≪ τR︸ ︷︷ ︸
rotating wave approx.

▶ Environment correlation time τB
▶ System intrinsic time scale τA, system relaxation time τR

Master equation is an effective description at τR ≫ τB for τA ≪ τR
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Example 2 – Quantum Brownian motion

Caldeira-Leggett model [Caldeira-Leggett (83)]

▶ Brownian particle linearly coupled to harmonic oscillators

i
d

dt
ρA = [HA, ρA] + γ[x, {p, ρA}]︸ ︷︷ ︸

drag force

− 2iγmT [x, [x, ρA]]︸ ︷︷ ︸
momentum diffusion

▶ Approximations

ρtot(t) ≃ ρA(t)⊗ ρeqB︸ ︷︷ ︸
Born approx. (weak coupling)

, τB ≪ τR ≡ 1/γ︸ ︷︷ ︸
Markov approx.

, τB ≪ τA︸ ︷︷ ︸
derivative expansion

▶ Environment correlation time τB
▶ System intrinsic time scale τA, system relaxation time τR

Master equation is an effective description at τR ≫ τB for τA ≫ τB
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