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Ab Initio CALCULATIONS OF NUCLEI AND NUCLEON MATTER

GOALS

Understand nuclei & matter at level of elementary interactions between individual nucleons:

• Binding energies, excitation spectra, relative stability, matter saturation

• Densities, electroweak properties, transitions, neutronstar mass & radii

• Low-energyNA &AA′ scattering, asymptotic normalizations, astrophysical reactions

REQUIREMENTS

• Two-nucleon potentials that accurately describe elasticNN scattering data

• Consistent three-nucleon potentials and electroweak current operators

• Accurate methods for solving the many-nucleon Schrödinger equation

RESULTS

• Quantum Monte Carlo methods evaluate realistic Hamiltonians accurate to∼1–2%

• About 100 states calculated forA ≤ 12 nuclei in good agreement with experiment

• Electromagnetic moments,M1,E2, F, GT transitions, electroweak response

• Nucleon matter evaluated with Variational Chain Summationmethods and/or AFDMC



NUCLEAR HAMILTONIAN

H =
X

i

Ki +
X

i<j

vij +
X

i<j<k

Vijk

Ki: Non-relativistic kinetic energy,mn-mp effects included

Argonne v18: vij = vγ
ij + vπ

ij + vI
ij + vS

ij =
P

vp(rij)O
p
ij

• 18 spin, tensor, spin-orbit, isospin, etc., operators
• full EM and strong CD and CSB terms included
• predominantly local operator structure
• fits Nijmegen PWA93 data withχ2/d.o.f.=1.1

Wiringa, Stoks, & Schiavilla, PRC51, 38 (1995) 0 100 200 300 400 500 600
E

lab
 (MeV)

-40

-20

0

20

40

60

δ 
(d

eg
)

1
S

0

Argonne v
18

 np

Argonne v
18

 pp

Argonne v
18

 nn

SAID 7/06 np

∆

π

ππ

π ∆
∆

∆

π

π

π

π
π π

Urbana & Illinois:Vijk = V 2π
ijk + V 3π

ijk + V R
ijk

• Urbana has standard2π P -wave +
one central short-short range repulsive
term for nuclear matter saturation

• Illinois adds2π S-wave +3π rings
to provide extraT=3/2 interaction

• Illinois-7 has four parameters fit to 23 levels inA ≤10 nuclei

Pieper, Pandharipande, Wiringa, & Carlson, PRC64, 014001 (2001)
Pieper, AIP CP1011, 143 (2008)



Norfolk NV2: vij = vγ
ij + vπ

ij + v2π
ij + vCT

ij =
P

vp(rij)O
p
ij

• derived in chiral effective field theory with∆-intermediate states
• 16 spin, tensor, spin-orbit, isospin, etc., operators
• full EM and strong CD and CSB terms included
• predominantly local operator structure suitable for quantum Monte Carlo
• multiple models with different regularization fit to Granada PWA2013 data
• Ia,b fit toElab = 125 MeV withχ2/d.o.f.∼1.1
• IIa,b fit to Elab = 200 MeV withχ2/d.o.f.∼1.4

Piarulli, Girlanda, Schiavilla, Kievsky, Lovato, Marcucci, Pieper, Viviani, & Wiringa PRC94, 054007 (2016)

Norfolk NV3: Vijk = V 2π
ijk + V CT

ijk

• standard2π S-wave and2π P -wave terms consistent with chiralNN potential
• contact terms ofcD (π-short range) andcE (short-short rangeτi · τk) type
• two parameters fit to3H binding andnd scattering length

Piarulli, Baroni, Girlanda, Kievsky, Lovato, Marcucci, Pieper, Schiavilla, Viviani, & Wiringa PRL120, 052503 (2018)



VARIATIONAL MONTE CARLO

Minimize expectation value ofH

EV =
〈ΨV |H|ΨV 〉

〈ΨV |ΨV 〉
≥ E0

using Metropolis Monte Carlo and trial function

|ΨV 〉 =

2

4S
Y

i<j

(1 + Uij +
X

k 6=i,j

Uijk)

3

5

"

Y

i<j

fc(rij)

#

|ΦA(JMTT3)〉

• single-particleΦA(JMTT3) is fully antisymmetric and translationally invariant
• central pair correlationsfc(r) keep nucleons at favorable pair separation
• pair correlation operatorsUij =

P

p up(rij)O
p
ij reflect influence ofvij

• triple correlation operatorUijk added whenVijk is present
• multipleJπ states constructed and diagonalized for p-shell nuclei
• ability to construct clusterized or asymptotically correct trial functions
• optimization codeCOBYLA used to search parameters

ΨV are spin-isospin vectors in3A dimensions with∼ 2A
`

A
Z

´

components

Lomnitz-Adler, Pandharipande, & Smith, NPA361, 399 (1981)
Wiringa, PRC43, 1585 (1991)



GREEN’ S FUNCTION MONTE CARLO

Projects out lowest energy state from variational trial function

Ψ(τ) = exp[−(H − E0)τ ]ΨV =
X

n

exp[−(En − E0)τ ]anψn

Ψ(τ → ∞) = a0ψ0

Evaluation ofΨ(τ) done stochastically in small time steps∆τ

Ψ(Rn, τ) =

Z

G(Rn,Rn−1) · · ·G(R1,R0)ΨV (R0)dRn−1 · · · dR0

Mixed estimatesused for expectation values;Ψ(τ) = ΨV + δψ(τ) and neglectO(δψ(τ)2)

〈O(τ)〉 =
〈Ψ(τ)|O|Ψ(τ)〉

〈Ψ(τ)|Ψ(τ)〉
≈ 〈O(τ)〉Mixed + [〈O(τ)〉Mixed − 〈O〉V ]

〈O(τ)〉Mixed =
〈ΨV |O|Ψ(τ)〉

〈ΨV |Ψ(τ)〉
; 〈H(τ)〉Mixed =

〈Ψ(τ/2)|H|Ψ(τ/2)〉

〈Ψ(τ/2)|Ψ(τ/2)〉
≥ E0

• Cannot propagatep2, L2, or (L · S)2 operators⇒ useH ′ = AV8′ + Ṽijk

• Fermion sign problem would limit maximumτ , but ...
• Constrained-path propagationremoves steps that haveΨ†(τ,R)ΨV (R) = 0

• Multiple excited states of sameJπ stay orthogonal

Carlson, PRC38, 1879 (1988)
Pudliner, Pandharipande, Carlson, Pieper, & Wiringa, PRC56, 1720 (1997)
Wiringa, Pieper, Carlson, & Pandharipande, PRC62, 014001 (2000)
Pieper, Wiringa, & Carlson, PRC70, 054325 (2004)



EXAMPLES OF GFMC PROPAGATION
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•  IL7: 4 parameters fit to 23 states
•  600 keV rms error, 51 states
•  ~60 isobaric analogs also computed
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Including IL7 gives
•  correct s.-o. splitting & 10B g.s.
 



RMS∆E for 36 states:AV18+IL7 = 0.80 MeV; NV2+3-Ia = 0.72 MeV

with signed average deviation:-0.23 MeVand+0.15 MeV



VMC ENERGY EXPECTATION VALUES

4He Ti + Vij V
2π
ijk

V
cD
ijk

V
cE
ijk

NV2+3-Ia −23.15 − 4.70 −3.77 4.28

NV2+3-Ib −21.44 −10.10 2.64 1.90

NV2+3-IIa −24.12 − 4.56 −1.29 2.89

NV2+3-IIb −23.57 −10.49 6.06 0.90

AV18+UX −22.56 − 8.79 3.79

AV18+UXI −22.64 − 8.90 1.80 1.98

6Li Ti + Vij V
2π
ijk

V
cD
ijk

V
cE
ijk

NV2+3-Ia −24.18 − 5.15 −4.50 4.48

NV2+3-Ib −21.83 −10.66 2.99 2.06

NV2+3-IIa −25.27 − 4.91 −1.58 3.21

NV2+3-IIb −24.46 −11.12 6.72 0.90

AV18+UX −23.80 − 9.11 4.29

AV18+UXI −23.39 − 9.40 2.03 2.28



OBSERVATIONS FROM LIGHT NUCLEI RESULTS

• TheTi + vij for all models underbind the light nuclei so need net attraction fromVijk

• TheV 2π
ijk is attractive in all cases

• The net short-rangeVijk is usually repulsive
• The sign of NV3cD term is not well determined by binding energy alone
• The〈τi · τk〉 in NV3 cE term is negative in light nuclei; will change sign in neutronmatter
• The corresponding central term in Urbana models is repulsive in light nuclei & matter
• This short-short range term in UrbanaVijk gets most of its contribution by connecting

S = 1

2
to S = 1

2
andS = 3

2
to S = 3

2
triples

• Theπ-short range term in UXI gets most of its contribution by connectingS = 1

2
to S = 3

2

triples so is sensitive to tensor correlations



VARIATIONAL CHAIN SUMMATION

Variational energy expectation value of infinite many-bodysystem can be written as:

EV =

R

A(
Q

i
Φ∗

i ) S(
Q

i<j
F †

ij) H S(
Q

i<j
Fij) (

Q

i
Φi) dτ

R

A(
Q

i Φ∗
i ) S(

Q

i<j F
†
ij) S(

Q

i<j Fij) (
Q

i Φi) dτ

whereFij =
P

p f
p
ijO

p
ij are correlation operators andΦi = exp[iki · ri] are plane-wave states

and for convenience only the l.h.s.Ψ∗ is antisymmetrized.

This integral can be approximated by expading the dynamicalcorrelations in powers of

short-ranged functionsF c
ij = F 1

ij = (fc
ij)

2 − 1 andF p>1

ij = 2fc
ijf

p>1

ij andfp>1

ij fq>1

ij , and in

powers of the statistical correlation (Slater function)ℓ(kF r) = 3j1(kF r)/(kF r).

This expansion is conveniently represented by generalizedMayer diagrams and a very general

diagrammatic expansion valid for noncommuting operators has been developed, commonly

referred to as the Fermi hypernetted chain + single-operator chain (FHNC+SOC) method.

Present calculations of central correlations are now beyond the “FHNC/4” level.

Pandharipande & Wiringa, RMP51, 821 (1979)
Wiringa, Fiks & Fabrocini, PRC38, 1010 (1988)
Akmal, Pandharipande & Ravenhall, PRC58, 1804 (1998)



ENERGY IN FHNC CALCULATIONS

The energy can be computed using distribution functionsg andg3 (in Pandharipande-Bethe

form):

EP B = TF +W +WF + U + UF

W =
ρ

2

Z

“

vij −
~

2

m

∇2fij

fij

”

gijd
3rij

U = −
~

2

2m

ρ2

4

Z

“∇ifij · ∇ifik

fijfik

”

g3(rij , rik)d3rijd
3rik

The two-body distribution function can be written as:

gij = f2
h

(1 +Gde + Ede)
2 +Gee + Eee − ν(Gcc + Ecc − ℓ/ν)2

i

exp(Gdd + Edd) .

where the chain functionsGxy are sums of nodal diagrams, with direct (d), exchange (e) or

circular exchange (c) end points andExy are elementary diagrams. A more complicated

expression is available forg3:

g3(rij , rik, rjk) =
X

n

An
ijB

n
ikC

n
jkD

n
ijk

Alternatively one can perform an integration by parts to getthe Jackson-Feenberg form:

EJF =
ρ

2

Z

h

vij −
~

2

2m

“∇2fij

fij

−
(∇ifij)

2

f2
ij

”i

gijd
3rij
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OBSERVATIONS FROM NUCLEAR AND NEUTRON MATTER RESULTS

• Local two-nucleon interactions fit toNN data saturate symmetric nuclear matter (SNM) at

≈ 2ρ0

• V 2π
ijk by itself is attractive in SNM and pushes saturation to even higher density

• Shorter-rangeVijk must provide net repulsion to saturate at empirical density
• For UIX this is allcE-like; for UXI it is split betweencE- andcD-like terms in same ratio

as in light nuclei
• The NV2-II models fit to higher energy are closer to AV18 in both SNM and pure neutron

matter (PNM)
• In PNM theV 2π

ijk is weakly repulsive
• For UIX the dominant repulsion in PNM is centralcE-like term
• For UXI thecD-like term is much reduced relative tocE-like because of weak tesnor

correlations
• A cE term withτi · τk dependence is likely to be problemattic



SUMMARY AND FUTURE WORK

• NV2+3-Ia reproduces nuclear binding and excitation energies forA ≤ 12 extremely well,

comparable to AV18+IL7
• However, neither model looks able to support massive neutron stars
• Energy spectra for other NV2+3 models are being evaluated, but initial cD andcE choices

do not give as promising results
• DeterminingcD andcE from 3H binding andnd scattering fits is not easy because these

data are highly correlated
• Alternate strategy is to include3H β decay information and energies of larger nuclei like

8He,8Be,10B(3+,1+) states; another possibility isnα scattering data
• Many other electroweak transitions are being evaluated andmay help select “best” models
• Nuclear and neutron matter provide additional constraints, even if the calculational methods

are less precise than for light nuclei
• Meeting all these demands may well require including sub-leading terms inV1jk with more

spin-isospin operator dependence


