# Neutrino-nucleus reaction cross sections and e-capture rates based on recent advances in shell-model interactions

Toshio Suzuki Nihon University, NAOJ, Tokyo





INT, Seattle March 9, 2018 New shell-model Hamiltonians obtained due to the advances of studies of exotic nuclei and describe well the spin modes in nuclei

SFO (p-shell: p-sd); CK-MK-KB+monopole correction: GT in <sup>12</sup>C, <sup>14</sup>C Suzuki, Fujimoto, Otsuka, PR C69 (2003)

USDB (sd-shell); Brown, Richter, PR C74 (2006)

SDPF-M (sd-shell:sd- $f_{7/2}p_{3/2}$ ); USD+mon. cor.: Utsuno et al, PR C60 (1999)

GXPF1J (fp-shell): GT in Fe and Ni isotopes, M1 strengths Honma, Otsuka, Mizusaki, Brown, PR C65 (2002); C69 (2004)

VMU (monopole-based universal interaction)

Otsuka, Suzuki, Honma, Utsuno et al., PRL 104 (2010) 012501

Systematic improvements in energies, magnetic moments, GT strengths \* important roles of tensor force

Monopole terms of  $V_{NN}$ 

$$\mathbf{V}_{\mathbf{M}}^{\mathbf{T}}(\mathbf{j}_{1}\mathbf{j}_{2}) = \frac{\sum_{\mathbf{J}} (2\mathbf{J}+1) < \mathbf{j}_{1}\mathbf{j}_{2}; \mathbf{J}\mathbf{T} | \mathbf{V} | \mathbf{j}_{1}\mathbf{j}_{2}; \mathbf{J}\mathbf{T} >}{\sum_{\mathbf{J}} (2\mathbf{J}+1)}$$



$$j_{>}(=\ell + 1/2) - j_{<}(=\ell - 1/2)$$
: attractive

 $j_> - j_>$ ,  $j_< - j_<$ : repulsive

Otsuka, Suzuki, Fujimoto, Grawe, Akaishi, PRL 69 (2005)

Tensor forces due to  $\pi + \rho$  meson exchanges



#### tensor force



**Tensor component: renormalized** ≈ **bare** 

tensor =  $\pi$ + $\rho$  meson exchange with short- range correlation

VMU: monopole-based universal interaction

Otsuka, Suzuki, Honma, Utsuno, Tsunoda, Tsukiyama, Hjorth-Jensen, RL 104 (2010) 012501

Monopole terms: New SM interactions vs. microscopic G matrix



## **v-nucleus reactions**: $E_v \le 100 \text{ MeV}$

- $v^{-12}C$ ,  $v^{-13}C$ ,  $v^{-16}O$ ,  $v^{-56}Fe$ ,  $v^{-56}Ni$ ,  $v^{-40}Ar$
- low-energy v-detection
   Scintillator (CH, ...), H<sub>2</sub>O, Liquid-Ar, Fe
- nucleosynthesis of light elements in supernova explosion
  v-oscillation effects

## e-capture rates in stellar environments

- sd-shell: cooling of O-Ne-Mg core in stars by nuclear URCA processes
  - USDB vs ab initio interactions (chiral effective int.)
- pf-shell: Type-Ia SNe and nucleosynthesis of iron-group elements
- sd-pf shell nuclei in the island of inversion EKK (extended Kuo-Krenciglowa method)





HT: Hayes-Towner, PR C62, 015501 (2000) CRPA: Kolb-Langanke-Vogel, NP A652, 91 (1999)

## <sup>12</sup>C Neutral current reactions <sup>12</sup>C



#### Nucleosynthesis processes of light elements in SNe





• v- <sup>40</sup>Ar reactions

Liquid argon = powerful target for SNv detection

## VMU= Monopole-based universal interaction



#### **Important roles of tensor force**

Otsuka, Suzuki, Honma, Utsuno, Tsunoda, Tsukiyama, Hjorth-Jensen PRL 104 (2010) 012501 tensor force: bare≈renormalized



• v- <sup>40</sup>Ar reactions

Liquid argon = powerful target for SNv detection

sd-pf shell:  ${}^{40}$ Ar (v, e<sup>-</sup>)  ${}^{40}$ K (sd)<sup>-2</sup> (fp)<sup>2</sup> : 2hw SDPF-VMU-LS sd: SDPF-M (Utsuno et al.) fp: GXPF1 (Honma et al.) sd-pf: VMU + 2-body LS



Ormand et al. PL B345, 343 (1995): B-decay of <sup>40</sup>Ti

#### Various roles of v's in SN-nucleosynthesis



# Spectrum with v-oscillations

#### With collective oscillation effects



With collective and MSW effects

 $F_{\nu_e}(E) = p(E)F_{\nu_e}^0(E) + [1 - p(E)]F_{\nu_x}^0(E),$ 

Survival probabilities including collective effects for the scenario described in the text,

| Scenario | Hierarchy | $\sin^2 \Theta_{13}$ | $p(E < E_{split})$      | $p(E > E_{split})$  | <b>ρ</b> (Ε)            | Earth effects              |
|----------|-----------|----------------------|-------------------------|---------------------|-------------------------|----------------------------|
| A        | Normal    | $\gtrsim 10^{-3}$    | 0                       | 0                   | $\cos^2 \Theta_{\odot}$ | $\overline{v}_e$           |
| B        | Inverted  | $\gtrsim 10^{-3}$    | $\sin^2 \Theta_{\odot}$ | 0                   | $\cos^2 \Theta_{\odot}$ | $\overline{v}_e$           |
| C        | Normal    | $\lesssim 10^{-5}$   | $\sin^2 \Theta_{\odot}$ | sin² ⊖ <sub>⊙</sub> | $\cos^2 \Theta_{\odot}$ | $v_e$ and $\overline{v}_e$ |
| D        | Inverted  | $\lesssim 10^{-5}$   | $\sin^2 \Theta_{\odot}$ | 0                   | 0                       | -                          |

| Cross sections folded over                                                                                     | er the spectra                              |                                                                                |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------|
| • Target = ${}^{13}C$                                                                                          | $\langle E_{v_{e}} \rangle = 10, \langle E$ | $\langle E_{\mu_{k}} \rangle = 14$ and $\langle E_{\mu_{k}} \rangle = 18$ MeV. |
| $E_v \leq 10 MeV  E_v^{th}(^{12}C) \approx 13 MeV$                                                             |                                             | · · · · · · · · · · · · · · · · · · ·                                          |
| Natural isotope abund. = 1.07%                                                                                 | A (normal)                                  | B (inverted)                                                                   |
| no oscillation                                                                                                 | 8.01                                        | 8.01 $(10^{-42} \text{cm}^2)$                                                  |
| collective osc.                                                                                                | 8.01                                        | 39.44 (39.93)                                                                  |
| collective +MSW                                                                                                | 39.31                                       | 39.35 (39.53)                                                                  |
| $-\mathbf{T}_{\text{advect}} = \frac{48}{2} \mathbf{C}_{\text{a}} = \mathbf{O}(48\mathbf{C}_{\text{a}})^{1/2}$ |                                             | 7(1+480) OFNIX                                                                 |

| • Target = $4^{\circ}$ Ca | $Q(^{48}Ca-^{48}Sc)=2.8 \text{ MeV}$ | $E(1^+; {}^{48}Sc) = 2.5 \text{ MeV}$ |
|---------------------------|--------------------------------------|---------------------------------------|
|                           | A (normal)                           | B (inverted)                          |
| no oscillation            | 73.56                                | $73.56 (10^{-42} \text{cm}^2)$        |
| collective osc.           | 73.56                                | 303.4                                 |
| collective +MS            | W 302.6                              | 302.8                                 |

Cross sections are enhanced by oscillations.  $E_{split}$  is too small to distinguish the v-mass hierarchy in case of Collect.+MSW oscillations ():  $E_{split}$ =15 MeV



## Weak Rates in sd-shell and Nuclear URCA process in O-Ne-Mg cores

 $M=8M_{\odot} \sim 10M_{\odot}$ 

C burning  $\rightarrow$  O-Ne-Mg core

 $\rightarrow$  (1) O-Ne-Mg white dwarf (WD)

- $\rightarrow$  (2) e-capture supernova explosion ( collapse of O-Ne-Mg core induced by e-capture) with neutron star (NS) remnant
- → (3) core-collapse (iron-core collapse) supernova explosion with NS (neon burning shell propagates to the center)

Fate of the star is sensitive to its mass and nuclear e-capture and  $\beta$ -decay rates; Cooling of O-Ne-Mg core by nuclear URCA processes determines (2) or (3).

Nomoto and Hashimoto, Phys. Rep. 163, 13 (1988) Miyaji, Nomoto, Yokoi, and Sugimoto, Pub. Astron. Soc. Jpn. 32, 303 (1980) Nomoto, Astrophys. J. 277, 791 (1984); ibid. 322, 206 (1987) •URCA processes in sd-shell nuclei

 $\rightarrow$  Cooling of O-Ne-Mg core in 8-10 M<sub> $\odot$ </sub> stars e-capture:  ${}^{A}_{Z}X + e^{-} \rightarrow {}^{A}_{Z-1}Y + v$ 

 $\beta$ -decay:  ${}_{Z-1}^{A}Y \rightarrow {}_{Z}^{A}X + e^{-} + \overline{\nu}$ 

They occur simultaneously at certain stellar conditions and energy is lost from stars by emissions of v and  $\overline{v} \rightarrow$  Cooling of stars How much star is cooled  $\rightarrow$  fate of the star after neon flash:  $^{23}Na + e^- \rightarrow ^{23}Ne + \nu$  A=23: Q=4.376 MeV

| •Beta-d | lecav | $\mathbf{O}$ | )-va] | lues |
|---------|-------|--------------|-------|------|
| Deta d  | iccay | X            | y u   | luco |

| Odd-A sd-shell Nuclei (A=17-31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $^{23}Ne \rightarrow ^{23}Na$<br>$^{25}Mg + e^{-} \rightarrow$                                                                 | $e + e^{25}Na$           | -<br>+<br>1 + 1                                       | $\overline{v}$             | A<br>A                   | =25<br>=27               | 5: Q<br>7: Q             | )=3.<br>)=2.                               | .835<br>.61(                   | 5 M<br>) M               | eV<br>eV                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------------|--------------------------------|--------------------------|--------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $^{25}Na \rightarrow ^{25}Mg$ $^{27}Al + e^{-} \rightarrow ^{27}Al$ $^{27}Mg \rightarrow ^{27}Al$ $TABL$ $T_{J \times 10^{9}}$ | $+e^{-7}Mg$<br>$+e^{-7}$ | $\bar{r} + i$<br>$\bar{r} + i$<br>$+ \bar{i}$<br>lect | ntial $\mu_{\epsilon}$ (in | units of Me              | /) at high d<br>emi      | ensities, ργ.<br>cal     | = 10 <sup>7</sup> -10 <sup>10</sup><br>pot | g/cm <sup>3</sup> , and<br>ent | high tempera<br>ial      | atures, T =              |
| $\stackrel{\text{rs}}{\succ} \stackrel{10}{\longrightarrow} \stackrel{\text{Na}}{\longrightarrow} \stackrel{\text{Na}$ | $\rho Y_{\epsilon}$ (g/cr                                                                                                      | 1 <sup>3</sup> )         |                                                       |                            |                          |                          | <i>T</i> 9               |                                            |                                |                          |                          |
| $\mathcal{O}_{5} = \begin{bmatrix} \mathbf{N} \\ \mathbf{F} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                | 1                        | 2                                                     | 3                          | 4                        | 5                        | 6                        | 7                                          | 8                              | 9                        | 10                       |
| O Ne Na Mg Al Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>7</sup>                                                                                                                | 1.200                    | 1.133                                                 | 1.021                      | 0.870                    | 0.698                    | 0.534                    | 0.404                                      | 0.310                          | 0.244                    | 0.196                    |
| $0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  \mathbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>9</sup><br>10 <sup>10</sup>                                                                                            | 2.437<br>5.176<br>11.116 | 2.400<br>5.162<br>11.109                              | 2.555<br>5.138<br>11.098   | 2.283<br>5.105<br>11.083 | 2.192<br>5.062<br>11.063 | 2.081<br>5.010<br>11.039 | 4.948<br>11.011                            | 1.808<br>4.877<br>10.978       | 1.055<br>4.797<br>10.940 | 1.493<br>4.708<br>10.898 |

- Nuclear weak rates in sd-shell
- (1) New shell-model Hamiltonian: USDB cf. Oda et al., USD
- (2) Fine meshes in both density and temperature

 $(\Delta \log_{10}(\rho Ye)=0.02, \Delta \log_{10}T=0.05)$ 

- cf. Interpolation problem in FFN (Fuller-Fowler-Newman) grids FFN grids are rather scarce, especially for the density
- (3) Effects of screening Suzuki, Toki and Nomoto, ApJ. 817, 163 (2016)





# Ab-initio effective sd-shell interactions from chiral NN (N<sup>3</sup>LO) and 3N (N<sup>2</sup>LO)

#### •IM-SRG (in-medium similarity renormalization group)

Stroberg et al., PRC 93 (2016); Tsukiyama, Bogner and Schwenk, PRL 106 (2011)

Hamiltonian *H*, which is normal ordered with respect to a finite-density reference state  $|\Phi\rangle$  (e.g., the Hartree-Fock ground state) is given as

$$H = E_0 + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{2!^2} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{3!^2} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\},$$

$$H(s) = U(s)HU^{\dagger}(s) \equiv H^{d}(s) + H^{od}(s).$$
 (2)

Here,  $H^{d}(s)$  is the diagonal part and  $H^{od}(s)$  is the offiagonal part of the Hamiltonian. As  $s \to \infty$ , the off-diagonal natrix elements become zero.

$$\frac{dH(s)}{ds} = [\eta(s), H(s)], \quad \eta(s) \equiv \frac{dU(s)}{ds} U^{\dagger}(s).$$

where  $E_0$ ,  $f_{ij}$ ,  $\Gamma_{ijkl}$ , and  $W_{ijklmn}$  are the normal-ordered zero-, one-, two-, and three-body terms, respectively [44]. The • CCEI (coupled-cluster effective interaction) Jansen et al, PRC 94 (2016)

$$\hat{H}_{A} = \sum_{i < j} \left( \frac{\left(\mathbf{p}_{i} - \mathbf{p}_{j}\right)^{2}}{2mA} + \hat{V}_{NN}^{(i,j)} \right) + \sum_{i < j < k} \hat{V}_{3N}^{(i,j,k)}.$$

$$H_{\text{CCEI}}^{A} = H_{0}^{A_{c}} + H_{1}^{A_{c}+1} + H_{2}^{A_{c}+2} + \cdots .$$
 (6)

Here the first term  $H_0^{A_c}$  stands for the core, the second term  $H_1^{A_c+1}$  for the valence one-body, and  $H_2^{A_c+2}$  for the two-body Hamiltonian. The two-body term is derived from

$$[S^{\dagger}S]^{1/2}\hat{H}^{A}_{\text{CCEI}}[S^{\dagger}S]^{-1/2}.$$

GT strtength with ab initio interactions IM-SRG & CCEI vs USDB Saxena, Srivastava and Suzuki, PRC97, 024310 (2018)





 $B(GT)_{eff}$  vs  $B(GT)_{exp}$  for beta-decays in T=1/2 mirror sd-shell nuclei



#### ESPE (neutron)

CCEI

**USDB** 





•pf-shell: GT strength in <sup>56</sup>Ni: GXPF1J vs KB3G vs KBF



KBF: Table by Langanke and Martinez-Pinedo,

At. Data and Nucle. Data Tables 79, 1 (2001)

- fp-shell nuclei: KBF Caurier et al., NP A653, 439 (1999)
- Experimental data available are taken into account: Experimantal Q-values, energies and B(GT) values available
- Densities and temperatures at FFN (Fuller-Fowler-Newton) grids:



#### Type-Ia SNe and synthesis of iron-group nuclei

Accretion of matter to white-dwarf from binary star

- $\rightarrow$  supernova explosion when white-dwarf mass  $\approx$  Chandrasekhar limit  $\rightarrow$  <sup>56</sup>Ni (N=Z)
- $\rightarrow {}^{56}\text{Ni}(e^-, \nu) {}^{56}\text{Co} \quad Y_e = 0.5 \rightarrow Y_e < 0.5 \text{ (neutron-rich)}$
- $\rightarrow$  production of neutron-rich isotopes; more <sup>58</sup>Ni

Decrease of e-capture rate on  ${}^{56}Ni \rightarrow less$  production of  ${}^{58}Ni$  and larger  $Y_e$ 

Problem of over-production of neutron-excess iron-group isotopes such as <sup>58</sup>Ni, <sup>54</sup>Cr ... compared with solar abundances



Iwamoto et al., ApJ. Suppl, 125, 439 (1999)

e-capture rates with FFN

(Fuller-Fowler-Newman)

Type-Ia SNe W7 model: fast deflagration WDD2: Slow deflagration + delayed detonation

Initial: C-O white dwarf, M=1.0M $_{\odot}$  central;  $\rho_9$ =2.12, T<sub>c</sub>=1x10<sup>7</sup>K

e-capture rates: GXP; GXPF1J ( $21 \le Z \le 32$ ) and KBF (other Z)



GXP: WDD2 (slow deflagration + detonation)



Mori, Famiano, Kajino, Suzuki, Hidaka, Honma, Iwamoto, Nomoto, Otsuka, ApJ. 833, 179 (2016)

#### Weak rates for nuclei in the island of inversion

Nature 505, 65 (2014)

doi:10.1038/nature12/5/

# Strong neutrino cooling by cycles of electron capture and $\beta^-$ decay in neutron star crusts

H. Schatz<sup>1,2,3</sup>, S. Gupta<sup>4</sup>, P. Möller<sup>2,5</sup>, M. Beard<sup>2,6</sup>, E. F. Brown<sup>1,2,3</sup>, A. T. Deibel<sup>2,3</sup>, L. R. Gasques<sup>7</sup>, W. R. Hix<sup>8,9</sup>, L. Keek<sup>1,2,3</sup>, R. Lau<sup>1,2,3</sup>, A. W. Steiner<sup>2,10</sup> & M. Wiescher<sup>2,6</sup>

| Electron-capture/β <sup></sup> decay pair<br>Parent Daughter*                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                             | Density†                                                                                                      | Chemical<br>potential†                                                                                     | Luminosity‡                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             | (10 <sup>10</sup> gcm <sup>-3</sup> )                                                                         | (MeV)                                                                                                      | (10 <sup>36</sup> erg s <sup>-1)</sup>                                                                             |  |  |
| <sup>29</sup> Mg<br><sup>55</sup> Ti<br><sup>31</sup> Al<br><sup>33</sup> Al<br>56Ti<br><sup>57</sup> Cr<br><sup>57</sup> V<br><sup>63</sup> Cr<br><sup>105</sup> Zr<br><sup>59</sup> Mn<br><sup>103</sup> Sr<br><sup>96</sup> Kr<br><sup>65</sup> Fe<br><sup>65</sup> Mp | <sup>29</sup> Na<br><sup>55</sup> Sc, <sup>55</sup> Ca<br><sup>31</sup> Mg<br><sup>33</sup> Mg<br>56Sc<br><sup>57</sup> V<br><sup>57</sup> Ti, <sup>57</sup> Sc<br><sup>63</sup> V<br><sup>105</sup> Y<br><sup>59</sup> Cr<br><sup>103</sup> Rb<br><sup>96</sup> Br<br><sup>65</sup> Mn<br><sup>65</sup> Cr | 4.79<br>3.73<br>3.39<br>5.19<br>5.57<br>1.22<br>2.56<br>6.82<br>3.12<br>0.945<br>5.30<br>6.40<br>2.34<br>3.55 | 13.3<br>12.1<br>11.8<br>13.4<br>13.8<br>8.3<br>10.7<br>14.7<br>11.2<br>7.6<br>13.3<br>14.3<br>10.3<br>11.7 | 24<br>11<br>8.8<br>8.3<br>3.5<br>1.6<br>1.6<br>1.6<br>0.97<br>0.92<br>0.88<br>0.65<br>0.65<br>0.65<br>0.60<br>0.46 |  |  |
| IVIII                                                                                                                                                                                                                                                                     | UI                                                                                                                                                                                                                                                                                                          | 5.55                                                                                                          | 11.7                                                                                                       | 0.40                                                                                                               |  |  |

Island of inversion

Z=10-12, N = 20-22

| Table 1   Electron-capture/p -decay pairs with highest cooling rat | Table 1   El | ctron-capture/β <sup>−</sup> -deca | y pairs with highest | cooling rate |
|--------------------------------------------------------------------|--------------|------------------------------------|----------------------|--------------|
|--------------------------------------------------------------------|--------------|------------------------------------|----------------------|--------------|

#### Rates evaluated by QRPA Shell-model evaluations are missing.



Figure 2 [Electron-capture/ $\beta^-$ -decay pairs on a chart of the nuclides. The thick blue lines denote electron-capture/ $\beta^-$ -decay pairs that would generate a strong neutrino luminosity in excess of  $5 \times 10^{16} \text{ erg s}^{-1}$  at T = 0.51 GK for a composition consisting entirely of the respective electron-capture/ $\beta^-$ -decay pair. They largely coincide with regions where allowed electron-capture and  $\beta^-$ -decay transitions are predicted to populate low-bying states and subsequent electron capture is blocked (shaded squares, see also the discussion

in ref. 3). These are mostly regions between the dosed neutron and proton shells (pairs of horizontal and vertical red lines), where nuclei are significantly deformed (see Supplementary Information section 4). Nuclides that are  $\beta^-$ -stable under terrestrial conditions are shown as squares bordered by thicker lines. Nuclear charge numbers are indicated in parentheses next to element symbols.





sd-pf shell

Non-degenerate treatment of sd and pf shells by EKK (extended Kuo-Krenciglowa) method Tsunoda, Takayanagi, Hjorth-Jensen and Otsuka, Phys. Rev. C 89, 024313 (2014)

Cf: monopoles with non-degenerate vs degenerate method



K. Takayanagi, Nucl. Phys. A 852, 61 (2011).
 K. Takayanagi, Nucl. Phys. A 864, 91 (2011).





## Summary

#### v- nucleus reactions

- New v –induced cross sections based on new shell-model Hamiltonians with proper tensor forces
   <sup>12</sup>C, <sup>13</sup>C, <sup>16</sup>O, <sup>40</sup>Ar, <sup>56</sup>Fe, <sup>56</sup>Ni
- Detection of low-energy reactor, solar v [<sup>13</sup>C] and SNv [<sup>12</sup>C, <sup>16</sup>O, <sup>40</sup>Ar, <sup>56</sup>Fe]
- Nucleosynthesis elements by v-processes  $v^{-12}C, v^{-4}He \rightarrow {}^{7}Li, {}^{11}B \text{ in CCSNe}$  $v^{-56}Ni \rightarrow {}^{55}Mn \text{ in Pop. III stars}$
- Effects of v-oscillations (MSW) in nucleosynthesis abundance ratio of  $^7\text{Li}/^{11}\text{B} \rightarrow v$  mass hierarchy
- Cross sections are enhanced by oscillations. Distinguishing mass hierarchy by measurement on earth is not easy because of small  $E_{split}$  when both collective and MSW oscillations occur.

#### **Summary**

- 1. e-capture and  $\beta$ -decay rates for one-major shell nuclei
- New weak rates for sd-shell from USDB
   Nuclear URCA processes for A=23 and 25 nuclear pairs
   → Cooling of O-Ne-Mg core of 8-10 solar-mass stars and determines fate of stars with ~9M<sub>☉</sub> whether they end up with
  - e-capture SNe or core-collapse SNe.
  - ab initio interactions vs USDB
- New weak rates for pf-shell from GXPF1J
  - Nucleosynthesis of iron-group elements in Type Ia SNe.
- **Over-production problem in iron-group nuclei with FFN can be solved with smaller rates with GXPF1J**

#### 2. Weak rates for two-major shell nuclei

sd-pf shell nuclei in the island of inversion, important for URCA processes in neutron star crusts, are evaluated with EKK method starting from chiral EFT interaction N3LO +3N (FM).
 e.g. <sup>31</sup>Al (e<sup>-</sup>, v)<sup>31</sup>Mg, <sup>31</sup>Mg(,e<sup>-</sup>v)<sup>31</sup>Al

#### **Collaborators**

T. Otsuka<sup>m</sup>, T. Kajino <sup>b,c</sup>, S. Chiba<sup>d</sup>,

M. Honma<sup>e</sup>, T. Yoshida<sup>c</sup>, K. Nomoto<sup>f</sup>, H. Toki<sup>g</sup>, S. Jones<sup>h</sup>, R. Hirschi<sup>i</sup>, K. Mori<sup>b,c</sup>, M. Famiano<sup>j</sup>, J. Hidaka<sup>k</sup>, K. Iwamoto<sup>l</sup>, N. Tsunoda<sup>n</sup>, N. Shimizu<sup>n</sup>, B. Balantekin<sup>a</sup>,

#### <sup>a</sup>RIKEN

<sup>b</sup>National Astronomical Observatory of Japan <sup>c</sup>Department of Astronomy, University of Tokyo <sup>d</sup>Tokyo Institute of Technology <sup>e</sup>University of Aizu <sup>f</sup>WPI, the University of Tokyo <sup>g</sup>RCNP, Osaka University <sup>h</sup>LANL, <sup>i</sup>Keele University <sup>j</sup>Western Michigan University, <sup>k</sup>Meisei University <sup>1</sup>Department of Physics, Nihon University <sup>n</sup>CNS, University of Tokyo <sup>m</sup>Univ. of Wisconsin

Note added:

Difference between GXPF1J and KB3G

- 1. Shell gap  $f_{5/2}$ - $f_{7/2}$  is larger for GXPF1J
- 2. Isoscalar pairing is larger for GXPF1J
- $\rightarrow$  More spreading of GT strength for GXPF1J

# **Murchison Meteorite**

SiC X-grains



- ${}^{12}C/{}^{13}C > Solar$
- <sup>14</sup>N/<sup>15</sup>N < Solar
- Enhanced <sup>28</sup>Si

- Decay of <sup>26</sup>Al (t<sub>1/2</sub>=7x10<sup>5</sup>yr), <sup>44</sup>Ti (t<sub>1/2</sub>=60yr)

#### SiC X-grains are made of Supernova Dust !

## W. Fujiya, P. Hoppe, and U. Ott (2011, ApJ 730, L7) discovered <sup>11</sup>B and <sup>7</sup>Li isotopes in 13 SiC X-grains.

| Grain   | Size | ${}^{12}C/{}^{13}C$ | $\delta^{29}Si^a$ | $\delta^{30}Si^{a}$ | <sup>7</sup> Li/ <sup>6</sup> Li | ${}^{11}B/{}^{10}B$ | Li/Si  | B/Si                |
|---------|------|---------------------|-------------------|---------------------|----------------------------------|---------------------|--------|---------------------|
|         | (µm) | ,                   | (‰)               | (‰)                 |                                  | ,                   | (10-5) | (10 <sup>-5</sup> ) |
|         |      |                     |                   | Single X            | grains                           |                     |        |                     |
| X1      | 0.6  | $114 \pm 2$         | $-178 \pm 11$     | $-265 \pm 9$        | $11.87 \pm 0.63$                 | $4.51 \pm 0.77$     | 9.69   | 3.33                |
| X2      | 1.2  | $128 \pm 2$         | $-377 \pm 11$     | $-261 \pm 10$       | $12.06 \pm 0.62$                 | $5.06 \pm 0.58$     | 23.8   | 18.8                |
| X3      | 1.5  | $244 \pm 5$         | $-205 \pm 10$     | $-297 \pm 7$        | $11.48 \pm 0.86$                 | $4.54 \pm 0.63$     | 1.76   | 1.92                |
| X4      | 1.0  | $241 \pm 6$         | $-556 \pm 10$     | $-245 \pm 9$        | $12.00 \pm 0.56$                 | $4.85 \pm 1.19$     | 24.8   | 3.31                |
| X9      | 0.6  | $38 \pm 1$          | $-361 \pm 10$     | $-394 \pm 8$        | $11.20 \pm 1.01$                 | $4.19 \pm 0.70$     | 10.8   | 11.4                |
| X11     | 0.8  | $326 \pm 14$        | $-358 \pm 12$     | $-432 \pm 11$       | $11.78 \pm 2.03$                 | $4.99 \pm 1.88$     | 3.66   | 3.00                |
| X13     | 0.7  | $345 \pm 6$         | $-261 \pm 10$     | $-424 \pm 7$        | $11.59 \pm 0.93$                 | $4.37 \pm 2.04$     | 10.7   | 1.14                |
| Average |      |                     |                   |                     | $11.83 \pm 0.29$                 | $4.68 \pm 0.31$     |        |                     |
|         |      |                     | X grain           | is + other nearby   | /attached SiC grai               | ns                  |        |                     |
| X5      |      | $34 \pm 1$          | $-226 \pm 11$     | $-120 \pm 10$       | $12.21 \pm 0.41$                 | $4.36 \pm 0.40$     | 40.2   | 18.8                |
| X6      |      | $88 \pm 1$          | $-236 \pm 11$     | $-189 \pm 9$        | $13.06 \pm 1.36$                 | $3.83 \pm 0.27$     | 2.15   | 14.2                |
| X7      |      | 78 ± 1              | $-281 \pm 11$     | $-208 \pm 10$       | $11.20 \pm 2.40$                 | $11.47 \pm 6.36$    | 8.28   | 9.48                |
| X8      |      | 76 ± 1              | $-223 \pm 10$     | $-266 \pm 8$        | $11.29 \pm 0.64$                 | $4.27 \pm 0.29$     | 4.80   | 12.4                |
| X12     |      | 83 ± 1              | $-271 \pm 11$     | $-242 \pm 10$       | $11.54 \pm 0.52$                 | $4.13 \pm 0.46$     | 24.3   | 14.2                |
| Average |      |                     |                   |                     | $11.90 \pm 0.28$                 | $4.16 \pm 0.17$     |        |                     |
| Solar   |      | 89                  | 0                 | 0                   | 12.06                            | 4.03                | 5.6    | 1.9                 |

