Ab initio computations of the nuclear spectral function

Vittorio Somà CEA Saclay, France

Neutrino detection and interactions: challenges and opportunities for ab initio nuclear theory

INT Seattle 5 March 2018

Collaborators:

Carlo Barbieri, Francesco Raimondi, Arnau Rios (University of Surrey), Thomas Duguet (CEA Saclay), Petr Navrátil (TRIUMF)

Outline

• Introduction

• Self-consistent Green's function approach

Applications

- Ground-state properties
- Spectral function
- Response function

Conclusions

Evolution of ab initio nuclear chart

- Approximate approaches for closed-shell nuclei
 Since 2000's
 SCGF, CC, IMSRG
 - Polynomial scaling

- Approximate approaches for open-shells
 Since 2010's
 - GGF, BCC, MR-IMSRG
 - Polynomial scaling

Evolution of ab initio nuclear chart

Chiral effective field theory & nuclear interactions

□ Ideally: apply to the many-nucleon system (and propagate the theoretical error)

Self-consistent Green's function approach

• Solution of the A-body Schrödinger equation $H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$ achieved by

- 1) Rewriting it in terms of 1-, 2-, A-body objects $G_1=G$, G_2 , ... G_A (Green's functions)
- 2) Expanding these objects in perturbation (in practise **G** → **one-body observables**, etc..)
- **Self-consistent** schemes resum (infinite) subsets of perturbation-theory contributions

• Access a variety of quantities

- \circ One-body GF \rightarrow Ground-state properties of even-even *A* + spectra of odd-even neighbours
- \circ Two-body GF \rightarrow Excited spectrum of even-even *A*
- Self-energy → Optical potential for nucleon-nucleus scattering

Gorkov-Green's functions for open-shell systems

• Standard expansion schemes fail to account for superfluidity

• Gorkov scheme generalises GF theory to superfluid systems

• Use **symmetry breaking** (particle number) to effectively include pairing correlations

• Start expansion from symmetry-breaking reference $|\Psi_0\rangle \equiv \sum_{A}^{even} c_A |\psi_0^A\rangle$

○ 4 one-body Gorkov propagators

erence
$$|\Psi_0\rangle \equiv \sum_{A}^{\text{even}} c_A |\psi_0^A\rangle$$

 $\mathbf{G}_{ab} = \begin{pmatrix} G_{ab}^{11} & G_{ab}^{12} \\ G_{ab}^{21} & G_{ab}^{22} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \end{pmatrix}$

[Gorkov 1958]

• Symmetry must be eventually restored

Systematics of medium-mass nuclei

• Calculation of complete mid-mass isotopic chains possible

• Chiral N3LO 2N (500) + N2LO 3N (400 local/non-local) interaction, further SRG-ed to 2.0 fm⁻¹

• Total energies

- Missing correlation energy from higher-order diagrams
- \circ Overall trends reasonable

Systematics of medium-mass nuclei

• Calculation of complete mid-mass isotopic chains possible

• Chiral N3LO 2N (500) + N2LO 3N (400 local/non-local) interaction, further SRG-ed to 2.0 fm⁻¹

• Total energies

- Missing correlation energy from higher-order diagrams
- Overall trends reasonable
- Energy differences (2N separation energies)
 - *N*=20 gap overestimated
 - \circ *N*=28 gap OK, pf shell well reproduced

\circ Drip lines?

Systematics of medium-mass nuclei

• Charge radii along calcium and nickel chains

Large sensitivity on the employed nuclear Hamiltonian

○ Discrepancies between different Hamiltonians depend on the observable
 ○ Good reproduction of nuclear radii with NNLOsat ↔ saturation properties

Charge density distribution of ³⁴Si

• **Unconventional depletion** ("bubble") in the centre of ρ_{ch} conjectured for ³⁴Si

- \circ Purely quantum mechanical effect (vacancy of $\ell = 0$ states embedded in larger- ℓ orbitals)
- Conjectured associated effect on spin-orbit splitting (reduction for low-ℓ spin-orbit partners)
- **Charge density** computed through folding with the finite charge of the proton [Duguet *et al.* 2017]

$$\rho_{\rm ch}(r) = \sum_{i=1}^{3} \frac{\theta_i}{r_i \sqrt{\pi}} \int_{0}^{+\infty} dr' \frac{r'}{r} \rho_{\rm p}(r') \left[e^{-\left(\frac{r-r'}{r_i}\right)^2 - e^{-\left(\frac{r+r'}{r_i}\right)^2} \right]$$

- → Good agreement with experiment for ³⁶S [Rychel *et al.* 1983]

• Charge form factor measured in (e,e) experiments sensitive to bubble structure?

On convergence

• Calculations performed within different many-body truncations

 \circ ADC(1) = HF, ADC(2) & ADC(3)

• Model space convergence

• Many-body convergence

Binding energies

$E [{\rm MeV}]$	ADC(1)	ADC(2)	ADC(3)	Experiment
³⁴ Si	-84.481	-274.626	-282.938	-283.427
^{36}S	-90.007	-296.060	-305.767	-308.714

ADC(3) brings only $\sim 5\%$ additional binding

Charge radii

$\langle r_{ m ch}^2 angle^{1/2}$	ADC(1)	ADC(2)	ADC(3)	Experiment
³⁴ Si	3.270	3.189	3.187	-
^{36}S	3.395	3.291	3.285	3.2985 ± 0.0024

Radii converged already at ADC(2) level

Spectral representation

Combining numerator and denominator result in the spectral function

Rindina anaran

Spectral strength in experiments

• Clean connection to (e,e'p) experiments

○ Measuring q and p gives information on p_m
○ Similarly for missing energy E_m
○ Spectral strength distribution ↔ P(p_m, E_m)

• Spectroscopy via knockout/transfer exp.

● ³⁴Si neutron addition & removal strength

ADC(1)

 \circ Independent-particle picture

● ³⁴Si neutron addition & removal strength

ADC(2)

• Second-order dynamical correlations fragment IP peaks

● ³⁴Si neutron addition & removal strength

ADC(3)

Third-order compresses the spectrum (main peaks) Further fragmentation is generated

Third-order correlations compress the spectrum Further fragmentation is generated

Reduction of $E_{1/2}$ - $E_{3/2}$ spin-orbit splitting (unique in the nuclear chart) well reproduced

Spectral function of ⁴⁰Ar

Neutrons

Protons

Spectral function of ⁴⁰Ar

Protons

● ADC(2) truncation, NNLO_{sat} interaction

Neutrons

³⁹Ar ³⁹Cl ⁴¹Ar ⁴¹K 0.1 0.1 0.01 0.01 <u>1/2</u> 0.1 0.1 0.01 0.01 3/2 0.1 0.1 0.01 0.01 ${SF_k}^{\pm}$ 0.1 0.01 0.1 0.1 0.01 0.01 0.1 0.1 7/2 0.01 0.01 -30 -20 -10 0 10 20 -30 -20 -10 0 10 20 -40 -40 E_k^{\pm} [MeV] E_k^{\pm} [MeV]

Spectral function of ⁴⁰Ar

• ADC(2) truncation, NNLO_{sat} interaction

Fragmentation of single-particle strength in infinite matter

• Spectral function depicts correlations

- Broad peak signals depart from mean-field/independent particle picture
- \circ Well-defined (long-lived) quasiparticles at the Fermi surface
- \circ Long mean free path for E < E_F

• Nuclear response produced by an isovector dipole operator

• Total photoabsorption cross section

$$\sigma_{\gamma}(E) = 4\pi^2 \alpha \, ER(E)$$

• Dipole polarisability

$$\alpha_D = 2\alpha \int dE \, \frac{R(E)}{E}$$

 \odot Computed σ from RPA response vs. σ from photoabsorption and Coulomb excitation

120 160 SCGF SCGF 140 Leistneschneider (2001) Ishkhanov (2002) 100 Ahrens 120 120DysADC3_RPA, NNLOsat_bare DysADC3_RPA, NI • Leistneschneider (Ahrens 1 (1975) $\sigma(\mathbf{E}_X)$ [mb] 140 100 16**(** 100• • Ahrens 2 (1975) 120 80 160 $\sigma(\mathbf{E}_X) \ [\mathbf{mb}]$ $N_{max}=13, \hbar\omega=20$ $\sigma(\mathbf{E}_X)$ [mb] $\alpha_D = 0.7242$ $N_{max}=13, \hbar\omega=20 \text{ MeV}$ 60 $\alpha_D = 0.499596 fm^3$ 40 20 0 3 \mathbf{E}_{X}^{30} [MeV] 70 \mathbf{E}_X [MeV] 20 30 60 10 40 50 \mathbf{E}_X [IMIE V] \mathbf{E}_{X} [MeV]

[Raimondi et al. in preparation]

 \circ GDR position of ^{16}O well reproduced

- \circ Hint of a soft dipole mode in $^{22}\mathrm{O}$
- \circ Comparison with CC LIT results for α_D

Dipol	le polariz	ability α_D	(fm^3)
Nucleus	SCGF	CC/LIT	Exp
¹⁶ O	0.50	0.57(1)	0.585(9)
^{22}O	0.72	0.86(4)	0.43(4)

 \odot Computed σ from RPA response vs. σ from photoabsorption and Coulomb excitation

 \circ GDR positions reproduced

- Total sum rule OK but poor strength distribution
- \circ Comparison with CC LIT results for α_D

Dipole polarizability α_D (fm ³)				
Nucleus	SCGF	$\rm CC/LIT$	Exp	
40 Ca	1.79	$1.47 \ (1.87)_{thresh}$	1.87(3)	
⁴⁸ Ca	2.08	2.45	2.07(22)	

• Comparison with coupled-cluster Lorentz integral transform (CC-LIT)

[Raimondi et al. in preparation]

Different ways of including correlations

- $GF \rightarrow RPA$ (first-order 2-body correlator) on top of fully correlated reference state
- $CC \rightarrow SD$ (analogous to second RPA) on top of HF reference state

Conclusions

● Ab initio calculations routinely access mid-mass nuclei

- Many-body formalism well grounded
- Interactions currently represent largest source of uncertainty
- Pragmatic choices lead to successful applications
- Thorough assessment of theoretical error?

● Self-consistent Green's function approach gives access to a variety of observables

- Ground-state properties along isotopic chains, spectral functions, response functions
- Case of ⁴⁰Ar to be investigated in ADC(3) scheme (work in progress...)