NuWro and search for 2p2h events

Jan T. Sobczyk

(in collaboration with K. Niewczas, T. Golan, C. Juszczak) (many discussions with Rik Gran)

Wrocław University

INT Workshop, March 5, 2018

Outline:

- Motivations.
- Attempts to estimate a size of 2p2h contributions from CC0π and CC inclusive data.
 - MINERvA/GENIE (ω , q) study.
 - **...**
- NuWro CC0π studies
 - The main goals:
 - How large is 2p2h contribution?
 - Is it possible to build a phenomenological model?
- NuWro muon+proton studies.
- NuWro nuclear transparency study.
 - Proton FSI uncertainty.
- Conclusions.

NuWro version 17.09 is used (the most recent version is 18.02).

Motivations

NuWro (using Nieves et al 2p2h model) is systematically below all recent $\rm CC0\pi$ experimental data.

 Before a new round of theoretical computations are available try to use the existing data to build a phenomenological model.

There is an increasing number of CC0 π muon+proton measurements.

- They can be used for testing phenomenological models
- In order to explore the new data in a search for 2p2h signal it is necessary to have good control over nucleon FSI effects.

MINERvA (ω, q) measurement

PRL 116 (2016) 071802

There is need to enhance 2p2h wrt Nieves et al model in GENIE (FG+RPA) (because a strength in missing in the dip region).

Scale factors are applied to both reconstructed data and MC in a consistent way.

Green lines: QE and Δ peak.

2D Gaussian function is used.

Contour: enhancement by a factor 2 (inside the ellipsoid it is larger).

Phil Rodrigues, Rik Gran

Try to repeat the analysis based on $CC0\pi$ data only.

NuWro team

T. Golan

K. Graczyk

C. Juszczak K. Niewczas

J. Nowak

J.T. Sobczyk

J. Żmuda

Notable supporters Warsaw

D. Kiełczewska (passed away in 2016) General,

many discussions

8

P. Przewłocki NuWro at T2K VA, U.S.

A. Ankowski Spectral function U.K.

L. Pickering P. Stowell

Reweightning tools

(some info should by updated...)

NuWro 17.09

CCQE

- LFG
- RPA based on к. Graczyk, JTS, Eur.Phys.J. C31 (2003) 177-185
- *M_A* = 1.03 GeV

RES

- W < 1.6 GeV
- Smooth (linear) transition to DIS at $W \in (1.3, 1.6)$ GeV
- LFG
- Explicit Δ plus BKGR added incoherently

C. Juszczak, J. Nowak, JTS, Nucl. Phys. Proc. Suppl. 159 (2006) 211-216

 For nuclear target reactions a fraction of events is subtracted motivated by Oset et al studies

JTS, J. Żmuda, Phys.Rev. C87 (2013) 065503

• π angular distribution from ANL and BNL papers.

NuWro 17.09

2p2h (called on figures MEC)

- Nieves et al model
- Implementation by J. Żmuda with five tabularized response function.
- Nucleons modeled with phase space model JTS, Phys. Rev. C86 (2012) 015504
 - 85% initial p-n pairs
 - Uniform distribution in nucleon CMF.

Cascade model

- Pions, nucleons.
- 0.2 fm steps.
- For pions Oset et al model T. Golan, C. Juszczak, JTS, Phys.Rev. C86 (2012) 015505.
- For nucleons in-medium modification of NN cross sections

V.R. Pandharipande, S.C. Pieper, Phys.Rev. C45 (1992) 791-798

DIS is mostly irrelevant for CC0 π studies.

Experimental data

T2K

- CC0π ν_μ muon double differential cross section on CH target [PRC93].
- CC0 $\pi \nu_{\mu}$ muon double differential cross section on water target [PRD97].
- CC0π differential cross section in transverse kinematics variables (one muon and ≥ one proton sample) [arXiv:1802.05078 [hep-ex]].
- Proton inferred kinematics [arXiv:1802.05078 [hep-ex]].
- CC0 π without and with reconstructed proton [arXiv:1802.05078].
- CC0 $\pi \overline{\nu_{\mu}}$ coming soon!

MINERvA

- CC0 π , Q^2 estimated using proton and not muon [PRD91]
- CC0 π ratios C, Fe, Pb wrt CH [PRL119].
- $CC0\pi d^2\sigma/dp_L dp_T$ for $\overline{\nu_{\mu}}$ [arXiv:1801.01197[hep-ex]]
- CC0 $\pi d^2\sigma/dp_L dp_T$ for ν_{μ} [Daniel Ruterbories, NuInt17]
- CC $d^2\sigma/dqdE_{avail}$ (inclusive but useful) [ν_{μ} Phil Rodrigues et al. PRL 116 and $\overline{\nu_{\mu}}$ Rik Gran, talk at NuInt17]
- CC0π differential cross section in transverse kinematics variables and reconstructed neutron momentum [Xianguo Lu, last Friday].

$CC0\pi/CCQE$ -like

T2K CC0 π double differential cross section on CH (analysis I)

Data/MC overall normalization 4.58/3.91. In $\cos \theta_{\mu}$ bins: 1.04/0.75, 1.34/1.13, 0.37/0.32, 0.42/0.39, 0.24/0.23, 0.26/0.26, 0.23/0.24, 0.37/0.31, 0.31/0.28 (units 10^{-39} /nucleon).

T2K CC0 π double differential cross section on water

Data/MC overall normalization 9.51/6.77. In $\cos \theta_{\mu}$ bins: 4.59/2.46, 1.11/0.69, 0.92/0.86, 0.58/0.50, 0.60/0.57, 0.38/0.32, 0.84/0.77, 0.52/0.60. (units 10^{-39} /neutron).

°utrino

MINERvA CC0 π p_T , p_L on CH $\overline{\nu_{\mu}}$

MINERvA CC0 π p_T , p_L on CH ν_μ

13/43

0.26/0.24, 0.17/0.14, 0.23/0.20, 0.11/0.083 (units 10^{-39} /nucleon).

Basic hypothesis: data/MC disagreement originates mostly from a poor understanding of 2p2h contribution.

Basic hypothesis: data/MC disagreement originates mostly from a poor understanding of 2p2h contribution.

Limitations:

- NuWro 17.09 1p1h (CCQE) model is not perfect.
- There is also some uncertainty in RES.

Basic hypothesis: data/MC disagreement originates mostly from a poor understanding of 2p2h contribution.

Limitations:

- NuWro 17.09 1p1h (CCQE) model is not perfect.
- There is also some uncertainty in RES.

But:

 No doubt that 2p2h is most uncertain (e.g. a big difference between Nieves et al and Martini et al predictions).

Basic hypothesis: data/MC disagreement originates mostly from a poor understanding of 2p2h contribution.

Limitations:

- NuWro 17.09 1p1h (CCQE) model is not perfect.
- There is also some uncertainty in RES.

But:

No doubt that 2p2h is most uncertain (e.g. a big difference between Nieves et al and Martini et al predictions).

Question: how to improve (rescale?) 2p2h in order to have better agreement with the data?

A study similar in the spirit to what Phil Rodrigues and Rik Gran did for GENIE and what Patrick Stowell was doing for T2K.

We do not include MINERvA (ω, q) data as the error band includes a mode uncertainty. Here we rely on the observed muon quantities only.

"trino

Basic hypothesis: data/MC disagreement originates from a poor understanding of 2p2h contribution.

Strategy: look at all the bins if MC prediction is above/below/within error bars. Example:

Basic hypothesis: data/MC disagreement originates from a poor understanding of 2p2h contribution.

Strategy: look at values of energy and momentum transfer of 2p2h events in particular bins:

Example:

Go through all four (for a moment) data samples.

Lines: QE and Δ peak.

Blue: data/MC agreement; not much room for significant 2p2h increase. Red: MC below the data Black: MC above the data Light blue: data/MC agreement; there is a room for significant 2p2h increase (by a factor of 2.5).

Why for MINERvA the points lie mostly near Δ line?!

- Maybe larger energies and forward direction privilage Δ mechanism in the Nieves model?
- Rik Gran: there is a strong correlation between p_L and E_ν, and between p_T and q; we see that extra strength is needed at given q but ω remains poorly constrained.

Lines: QE and Δ peak.

Blue: data/MC agreement; not much room for significant 2p2h increase. Red: MC below the data Black: MC above the data Light blue: data/MC agreement; there is a room for significant 2p2h increase (by a factor of 2.5).

Combining everything together?! Little risky...

- Combination of neutrino and antineutrino data.
- MINERvA energies are larger and extra kinematical factors may play a role.
- Rik Gran: extra kinematic factors and energy dependence plays a larger role at T2K energies.
- It is likely that more sophisticated approach is necessary.

Combining everything together?! Little risky...

- Combination of neutrino and antineutrino data.
- MINERvA energies are larger and extra kinematical factors may play a role.
- Rik Gran: extra kinematic factors and energy dependence plays a larger role at T2K energies.
- It is likely that more sophisticated approach is necessary.

Putting everything together?! Little risky ...

- Combination of neutrino and antineutrino data.
- MINERvA energies are larger and extra kinematical factors may play a role.
- Rik Gran: extra kinematic factors and energy dependence plays a larger role at T2K energies.
- It is likely that more sophisticated approach is necessary.

Interesting to see a region of 2p2h enhancement found in the MINERvA (ω, q) paper (based on GENIE but the results should be universal?!).

It is not an apples to apples comparison. A deficit of events is found in the context of a particular set of models.

In the context of NuWro 17.09 the answer would look something like:

A possible strategy for the future:

A possible strategy for the future:

It may take time before complete theoretical computations are available.

relativistic, including Δ region

A possible strategy for the future:

- It may take time before complete theoretical computations are available.
 relativistic, including Δ region
- One can use large (and increasing) samples of CC0π data with a significant 2p2h contribution.

A possible strategy for the future:

It may take time before complete theoretical computations are available.

 \blacksquare relativistic, including Δ region

 One can use large (and increasing) samples of CC0π data with a significant 2p2h contribution.

Improve statistics!

It is preferable to start with better 1p1h (CCQE) model (by looking at the electron scattering data)

SF+FSI

- Effective potential.
- Find a region of 2p2h enhancement using statistical tools.
- Double check self-consistency of the phenomenological model using the proton data (the next topic).

"trino E

Including protons in the game ...

T2K proton data

The first CCQE-like measurement with protons was done by MINERvA (Q^2 evaluated based on proton and not muon) Tammy Walton et al. [MINERvA] PRD91

 $\mathsf{T2K}$ reported very detail cross section measurements using information from muon and proton.

[arXiv:1802.05078 [hep-ex]]

- Single transverse variables.
- Proton inferred kinematics.
- No proton cross section in muon momentum and angle.
- Multidimensional differential cross section in muon and proton momenta.
- Proton multiplicity.
- A lot of physics:
 - Possibility to separate contributions from CCQE, RES and MEC.
 - Possibility to investigate proton final state interactions.

Xianguo Lu [for MINERvA]: Neutrino shadow play, Fermilab *Wine and Cheese* seminar, March 2, 2018.

T2K proton data - no proton (above 450 MeV/c) cross section

arXiv:1802.05078 [hep-ex]

- A general agreement is good.
- A very little contribution from RES (low average ν_{μ} energy).
- A lot of sensitivity to proton FSI (magenta and blue colors).

"trino

$\rm CC0\pi$ differential cross section in transverse variables

Definition of transverse (wrt neutrino flux) variables.

Transverse kinematic imbalances – a neutrino shadow play

from Xianguo Lu Fermilab Wine and Cheese seminar, March 2, 2018 Transverse kinematics imbalances [XL, L. Pickering, S. Dolan et al., Phys.Rev. C94 (2016) no.1, 015503 $\delta\phi_{T}$ presented in Tammy Walton et al. [MINERvA] PRD 91 071301 (2015) $\mathsf{CC0}\pi$ differential cross section in transverse variables (STV)

 $\mathsf{T}2\mathsf{K}$ selection:

- CC0π
- muon momentum > 250 MeV/c
- cosine of muon angle > -0.6
- leading proton momentum \in (450, 1000) MeV/c
- cosine of leading proton angle > 0.4.

MINERvA selection

- muon momentum \in (1.5, 10) GeV/c
- muon angle \leq 20 deg
- proton momentum \in (0.45, 1.2) GeV/c
- proton angle \leq 70 deg.

T2K CC0 π STV

- MEC events populate large $\delta \alpha \tau$ and $\delta p \tau$.
- Large δp_T region sensitive to proton FSI, 2p2h, RES.

Inferred kinematics

- Final state muon is measured
- 2 Assuming that target nucleon was at rest and reaction was CCQE one reconstructs neutrino energy.
- 3 Using energy and momentum conservation and neglecting FSI one reconstructs final state proton momentum $\vec{p}_{measured}$
- 4 Final state proton is measured with momentum $\vec{p}_{measured}$.

Three observables are defined:

$$\begin{split} \Delta p_p &\equiv |\vec{p}_{measured}| - |\vec{p}_{inferred}|, \\ \Delta \theta_p &\equiv \theta_{measured} - \theta_{inferred}, \\ |\Delta p_p| &\equiv |\vec{p}_{measured} - \vec{p}_{inferred}|. \end{split}$$

Inferred kinematics Δp_p

- Given a complexity of physics, a general agreement is good.
- Some selections are dominated by RES and 2p2h!
- Some bins (large Δp_p) are dominated by 2p2h!
 - Details like proton angular distribution after rescattering may pla role.

MINERvA transverse variables (very recent results!)

Xianguo Lu "Wine and Cheese" seminar, Fermilab, March 2, 2018.

Reconstructed neutron momentum variable proposed in A. ${\tt Furmanski}, {\tt JTS}, {\tt PRC}$ (2017) 065501

Transverse variables use information about transverse components of muon and proton, while reconstructed neutron momentum uses also information about their longitudinal components.

It is not a shadow variable :(...

The main message from the PRC95 paper: reconstructed neutron momentum can be used to select a high purity CCQE sample of events by imposing a cut $p_n <\sim 200$ MeV/c.

Computations done with < B >= 27.13 MeV.

MINERvA transverse variables (very recent results!)

Xianguo Lu "Wine and Cheese" seminar, Fermilab, March 2, 2018.

Reconstructed neutron momentum variable A. Furmanski, JTS, PRC (2017) 065501

SF reproduces very well a shape of neutron momentum distribution. GENIE model is Bodek-Ritchie modification of Fermi gas model.

MINERvA transverse variables (very recent results!) Xianguo Lu "Wine and Cheese" seminar, Fermilab, March 2, 2018.

Proton final state interactions.

Nuclear transparency

Definition

Nuclear transparency is the average **probability** for a knocked-out **proton** to **escape** the nucleus **without significant reinteraction**.

e.g. measured for Carbon: $T\simeq$ 0.60 [D. Abbott et al., PRL 80 (1998), 5072]

Strategy: reproduce electron scattering experiments.

How it is measured? (1)

Data from (e, e'p) experiments

Exclusive QE proton knockout at **fixed kinematics**:

- beam: Ee
- electron: $E_{\theta'}, \theta_{\theta'}, \phi_{\theta'}$
- proton: E_p, θ_p, ϕ_p

With provided: $\frac{\Delta p}{p}$, $\Delta \theta$, $\Delta \phi$

- energy: $E_m = \omega T_{p'} T_{A-1}$
- momentum: $\vec{p}_m = \vec{p}_{p'} \vec{q}$

 $\textit{E}_m < 80 \; \mathrm{MeV}, \ |\vec{\pmb{\rho}}_m| < 300 \; \mathrm{MeV/c}$

There has been a lot of debate on c_A .

Transparency:

$$\langle T
angle_{ heta_{
m p}} = rac{\sigma_{
m exp}}{\sigma_{
m PWIA}} rac{1}{c_{
m A}}$$

 $\sigma_{\rm PWIA}$ - expected value without FSI (model dependent) c_A - spectroscopic factor

How it is measured? (2)

The shapes on the top are measured/obtained in MC simulation. Normalization (scaling factor) defines transparency.

NuWro nucleon-nucleon in-medium cross sections

Pandharipande-Pieper in-medium cross sections are implemented.

Pandharipande, Pieper, Phys.Rev. C45 (1992) 791

Final comparison to the data

Shadow region is experimental uncertainty.

Experimental points do not contain shell model "correction factors":

Frankfurt, Strikman, Zhalov, PLB 503 (2001) 73

Dutta, Hafidi, Strikman, Prog. Part. Nucl. Phys. 69 (2013) 1

Hen et al [CLAS], PLB 722 (2013) 63

Lava, Martinez et al, PLB 595 (2004) 177

Cosyn, Ryckebusch, PRC87 (2013) 064608.

Estimation of FSI uncertainty in NuWro

Impact on proton observables T2K, arXiv:1802.05078 [hep-ex]

- SF is doing better job.
- Uncertainty is small enough to study other nuclear effects.

Conclusions

- A lot of experimental data from T2K and MINERvA to study 2p2h dynamics.
- Two kind of data:
 - CC0 π (only muon is observed)
 - Both muon and proton are observed.
- What we would like to know?
 - Does Nieves et al (or Martini) model need a data based enhancement?
 - How is energy and momentum transfer shared among both nucleons?

