

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

Light-nuclei spectra and electroweak response: a status report

R. Schiavilla

Theory Center, Jefferson Lab, Newport News, VA 23606, USA Physics Department, Old Dominion University, Norfolk, VA 23529, USA

March 5, 2018

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Few-nucleon systems from LQCD

Beane et al. (2013); Chang et al. (2015); Savage et al. (2017)

• NPLQCD spectra calculations ($m_{\pi} = 806 \text{ MeV}$)

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

 NPLQCD calculations of magnetic moments and weak transitions in few-nucleon systems also available

2N potential from LQCD and nuclear spectra

Aoki et al. (2012); McIlroy et al. (2017)

• LQCD calculation of 2N potential by HAL collaboration

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Basic mode

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

- The basic model of nuclear theory
- Chiral 2N and 3N potentials and nuclear spectra
- Electroweak currents and (mostly weak) transitions
- Nuclear electroweak response in quasi-elastic regime

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The basic model

- Effective potentials:
 - $H = \sum_{i=1}^{A} \frac{\mathbf{p}_i^2}{2m_i} + \sum_{i < j=1}^{A} \underbrace{v_{ij}}_{\mathsf{th}+\mathsf{exp}} + \sum_{i < j < k=1}^{A} \underbrace{v_{ijk}}_{V_{ijk}} + \cdots$
- Assumptions:
 - Quarks in nuclei are in color singlet states close to those of N's (and low-lying excitations: Δ's, ...)
 - Series of potentials converges rapidly
 - Dominant terms in v_{ij} and V_{ijk} are due to π exchange

leading
$$\pi N$$
 coupling $= \frac{g_A}{2f_\pi} \tau_a \,\boldsymbol{\sigma} \cdot \boldsymbol{\nabla} \phi_a(\mathbf{r})$

• Effective electroweak currents:

$$j^{EW} = \sum_{i=1}^{A} j_i + \sum_{i < j=1}^{A} j_{ij} + \sum_{i < j < k=1}^{A} j_{ijk} + \cdots$$

Basic mode

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Yukawa potential in classical mechanics

- Connection between meson-exchange interactions and their representation in terms of v_{ij}
- A simple model: a classical scalar field $\phi(\mathbf{r},t)$ interacting with static particles:

$$\mathcal{L} = \frac{1}{2} \left[\dot{\phi}^2 - |\nabla \phi|^2 - \mu^2 \phi^2 \right] - g \phi \sum_{i=1}^A \delta\left(\mathbf{r} - \mathbf{r}_i\right)$$

• Lowest-energy configuration occurs in the static limit $\phi(\mathbf{r},t) \rightarrow \phi(\mathbf{r})$ (Poisson-like equation of electrostatics)

$$\nabla^2 \phi - \mu^2 \phi = g \sum_{i=1}^A \delta(\mathbf{r} - \mathbf{r}_i)$$

• Energy of the field (up to self energies) in this limit

$$E_{\phi} = \frac{1}{2} \int d\mathbf{r} \,\phi(\mathbf{r}) \,g \sum_{i=1}^{A} \delta(\mathbf{r} - \mathbf{r}_{i}) = -\frac{g^{2}}{4\pi} \sum_{i < j=1}^{A} \frac{\mathrm{e}^{-\mu r_{ij}}}{r_{ij}}$$

Basic model

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Yukawa potential in quantum mechanics

Scalar-field Hamiltonian is

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

$$H = \underbrace{\sum_{\mathbf{k}} \omega_k a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}}_{H_0} + \underbrace{g \sum_{i=1}^{A} \sum_{\mathbf{k}} \frac{1}{\sqrt{2 \,\omega_k \, V}} \left(a_{\mathbf{k}} \, \mathrm{e}^{i\mathbf{k} \cdot \mathbf{r}_i} + a_{\mathbf{k}}^{\dagger} \, \mathrm{e}^{-i\mathbf{k} \cdot \mathbf{r}_i} \right)}_{H'}$$

 Set of shifted harmonic oscillators; exact eigenenergies of field given by

$$E_{\{n_{\mathbf{k}}\}} = \sum_{\mathbf{k}} \omega_k \, n_{\mathbf{k}} \underbrace{-g^2 \sum_{i < j=1}^{A} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{e^{-\mu r_{ij}}}{\omega_k^2}}_{\text{energy shift}}$$

• In CM and QM the scalar field energy in the presence of static particles can be replaced by a sum of $v_Y(r_{ij})$

Scattering between slow-moving particles

In potential theory to leading order

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

$$T_{fi}^{Y1} = \int d\mathbf{r} \, \mathrm{e}^{-i\mathbf{p}' \cdot \mathbf{r}} \, v_Y(r) \, \mathrm{e}^{i\mathbf{p} \cdot \mathbf{r}} = -\frac{g^2}{\omega_q^2} \qquad (\mathbf{q} = \mathbf{p} - \mathbf{p}')$$

In meson-exchange theory (to leading order)

996

Beyond leading order

Basic model

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Earlier developers of the basic model ...

- Basic mode
- Nuclear χ EFT
- Chiral 2N potentials
- Chiral 3N potentials
- EW interactions
- EW QE response
- Outlook

χ EFT formulation of the basic model

- χEFT is a low-energy approximation of QCD
- Lagrangians describing the interactions of π , N, ... are expanded in powers of Q/Λ_{χ} ($\Lambda_{\chi} \sim 1$ GeV)
- Their construction has been codified in a number of papers¹

$$\mathcal{L} = \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \dots \\ + \mathcal{L}_{\pi \pi}^{(2)} + \mathcal{L}_{\pi \pi}^{(4)} + \dots$$

- $\mathcal{L}^{(n)}$ also include contact $(\overline{N}N)(\overline{N}N)$ -type interactions parametrized by low-energy constants (LECs)
- Initial impetus to the development of χEFT for nuclei in the early nineties^{2,3}

Basic model

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

General considerations

• Time-ordered perturbation theory (TOPT):

$$\langle f \mid T \mid i \rangle = \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} \mid i \rangle$$

Momentum scaling of contribution

- Each of the N_K energy denominators involving only nucleons is of order Q^{-2}
- Each of the other $N N_K 1$ energy denominators involving also pion energies is expanded as

$$\frac{1}{E_i - E_I - \omega_{\pi}} = -\frac{1}{\omega_{\pi}} \left[1 + \frac{E_i - E_I}{\omega_{\pi}} + \frac{(E_i - E_I)^2}{\omega_{\pi}^2} + \dots \right]$$

• Power counting:

$$T = T^{LO} + T^{NLO} + T^{N^2LO} + \dots, \text{ and } T^{N^nLO} \sim (Q/\Lambda_{\chi})^n T^{LO}$$

Basic model

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

From amplitudes to potentials

Pastore et al. (2009); Pastore et al. (2011)

Basic model

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

Construct v such that when inserted in LS equation

 $v + v G_0 v + v G_0 v G_0 v + \dots$ $G_0 = 1/(E_i - E_I + i \eta)$

leads to T-matrix order by order in the power counting

Assume

$$v = v^{(0)} + v^{(1)} + v^{(2)} + \dots \qquad v^{(n)} \sim (Q/\Lambda_{\chi})^n v^{(0)}$$

• Determine $v^{(n)}$ from

 $\begin{aligned} & v^{(0)} &= T^{(0)} \\ & v^{(1)} &= T^{(1)} - \left[v^{(0)} G_0 v^{(0)} \right] \\ & v^{(2)} &= T^{(2)} - \left[v^{(0)} G_0 v^{(0)} G_0 v^{(0)} \right] - \left[v^{(1)} G_0 v^{(0)} + v^{(0)} G_0 v^{(1)} \right] \end{aligned}$

and so on, where

 $v^{(m)} G_0 v^{(n)} \sim \left(Q/\Lambda_{\chi}\right)^{m+n+1}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Chiral 2N potentials with Δ 's

Piarulli et al. (2015); Piarulli et al. (2016)

- Two-nucleon potential: $v = v^{\text{EM}} + v^{\text{LR}} + v^{\text{SR}}$
- EM component $v^{\rm EM}$ including corrections up to α^2
- Chiral OPE and TPE component $v^{\rm LR}$ with Δ 's

 $LO: Q^{0} \begin{array}{|c|c|}{p} & k & p \\ \hline & & p \end{array}$ $NLO: Q^{2} \begin{array}{|c|}{r} & p \end{array}$ $NLO: Q^{2} \begin{array}{|c|}{r} & p \end{array}$ $N2LO: Q^{3} \begin{array}{|c|}{r} & p \end{array}$

- Short-range contact component $v^{\rm SR}$ up to order Q^4 parametrized by (2+7+11) IC and (2+4) IB LECs
- $v^{\rm SR}$ functional form taken as $C_{R_S}(r) \propto e^{-(r/R_S)^2}$ with R_S =0.8 (0.7) fm for a (b) models

Basic mode

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

np (T = 0 and 1) and pp phase shifts

Ab initio methods utilized by our group

• Hyperspherical harmonics (HH) expansions for *A* = 3 and 4 bound and continuum states

$$|\psi_V\rangle = \sum_{\mu} c_{\mu} \underbrace{|\phi_{\mu}\rangle}_{\text{HH basis}} \text{ and } c_{\mu} \text{ from } E_V = \frac{\langle\psi_V|H|\psi_V\rangle}{\langle\psi_V|\psi_V\rangle}$$

• Quantum Monte Carlo for A > 4 bound states

Chiral 3N potentials with Δ 's

Piarulli et al. (2018)

• 3N potential up to N2LO¹:

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

• c_D and c_E fixed by fitting $E_0^{\exp}({}^{3}\text{H}) = -8.482 \text{ MeV}$ and nd doublet scattering length $a_{nd}^{\exp} = (0.645 \pm 0.010) \text{ fm}$

	without 3N					with 3N		
Model	c_D	c_E	$E_0({}^{3}\mathrm{H})$	$E_0({}^3\mathrm{He})$	$E_0({}^4\mathrm{He})$	${}^{2}a_{nd}$	$E_0({}^3\mathrm{He})$	$E_0({}^4\mathrm{He})$
la	3.666	-1.638	-7.825	-7.083	-25.15	1.085	-7.728	-28.31
lb	-2.061	-0.982	-7.606	-6.878	-23.99	1.284	-7.730	-28.31
lla	1.278	-1.029	-7.956	-7.206	-25.80	0.993	-7.723	-28.17
llb	-4.480	-0.412	-7.874	-7.126	-25.31	1.073	-7.720	-28.17

• Alternate strategy: fix c_D and c_E by reproducing $E_0^{\exp}({}^{3}\text{H})$ and the GT^{exp} matrix element in ${}^{3}\text{H} \beta$ -decay

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Spectra of light nuclei

Piarulli et al. (2018)

Basic model Nuclear _XEFT −30 4 Chiral 2*N* −40 potentials −50 chiral 3*N* 24

EW interactions

EW QE response

Neutron matter equation of state

Piarulli et al., private communication

Chiral 3N potentials

EW interactions

EW QE response

- Sensitivity to 3N contact term:
 - $c_E < 0$ repulsive in $A \le 4$
 - but attractive in PNM
- Outoff sensitivity:
 - modest in NV2 models
 - large in NV2+3 models

- Shell model in agreement with exp if $g_A^{\rm eff}\simeq 0.7\,g_A$
- Understanding "quenching" of g_A in nuclear β decays
- Relevant for neutrinoless 2β -decay since rate $\propto g_A^4$

Including electroweak (ew) interactions

Pastore et al. (2009,2011); Piarulli et al. (2013); Baroni et al. (2017)

• Power counting of ew interactions (treated in first order)

$$T_{\rm ew} = T_{\rm ew}^{(-3)} + T_{\rm ew}^{(-2)} + T_{\rm ew}^{(-1)} + \dots \qquad T_{\rm ew}^{(n)} \sim (Q/\Lambda_{\chi})^n T_{\rm ew}^{(-3)}$$

• For $v_{\rm ew}^{(n)} = A^0 \, \rho_{\rm ew}^{(n)} - {\bf A} \cdot {\bf j}_{\rm ew}^{(n)}$ to match $T_{\rm ew}$ order by order

$$\begin{aligned} v_{\text{ew}}^{(-3)} &= T_{\text{ew}}^{(-3)} \\ v_{\text{ew}}^{(-2)} &= T_{\text{ew}}^{(-2)} - \left[v_{\text{ew}}^{(-3)} G_0 v^{(0)} + v^{(0)} G_0 v_{\text{ew}}^{(-3)} \right] \\ v_{\text{ew}}^{(-1)} &= T_{\text{ew}}^{(-1)} - \left[v_{\text{ew}}^{(-3)} G_0 v^{(0)} G_0 v^{(0)} + \text{permutations} \right] \\ &- \left[v_{\text{ew}}^{(-2)} G_0 v^{(0)} + v^{(0)} G_0 v_{\text{ew}}^{(-2)} \right] \end{aligned}$$

and so on up to n = 1

• $\rho_{\rm ew}^{(n)}$ and $\mathbf{j}_{\rm ew}^{(n)}$ (generally) depend on off-the-energy shell prescriptions adopted for $v^{(\leq n)}$ and $v_{\rm ew}^{(\leq n)}$

Basic model

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Nuclear axial currents at one loop

Park et al. (1993,2003); Baroni et al. (2016); Krebs et al. (2017)

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

- Some of the contributions—panels (m) and (s)—differ in the Baroni et al. and Krebs et al. derivations
- 1 unknown LEC in \mathbf{j}_5 (4 unknown LECs in ρ_5)

β decays in light nuclei

Pastore et al. (2017)

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

• Correct relation between c_D and d_R

$$d_R = -\frac{m}{4 g_A \Lambda_{\chi}} c_D + \frac{m}{3} (c_3 + 2 c_4) + \frac{1}{6}$$

• GT m.e.'s in A = 6-10 nuclei (AV18/IL7 potential with χ EFT axial current)

1

Low-energy neutrinos

Basic model

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

SNO experiment

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Low-energy inclusive ν -d scattering in χ EFT

Baroni and Schiavilla (2017)

CC and NC ν -A scattering

 Large program in accelerator ν physics (MicroBooNE, NOνA, T2K, Minerνa, DUNE, ...)

rate
$$\propto \int dE \, \Phi_{\alpha}(E) \, P(\nu_{\alpha} \to \nu_{\beta}; E) \, \sigma_{\beta}(E, E')$$

- Determination of oscillation parameters depends crucially on our understanding of
 - ν flux $\Phi_{\alpha}(E)$
 - ν -A cross section $\sigma_{\beta}(E, E')$

Nuclear χ EF I

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

GFMC calculation of EM response in ¹²C

Carlson and Schiavilla (1992,1994); Lovato et al. (2013-2016)

$$\int_0^\infty \mathrm{d}\omega \,\mathrm{e}^{-\tau\omega} \,R_{\alpha\beta}(q,\omega) = \langle i \,|\, j_\alpha^{\dagger}(\mathbf{q}) \,\mathrm{e}^{-\tau(H-E_i)} \,j_\beta(\mathbf{q}) \,|\,i\rangle$$

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

• Inversion back to $R_{\alpha\beta}(q,\omega)$ by maximum entropy methods

NC responses and cross sections in ¹²C

Lovato et al. (2018)

Leading and subleading 3N potentials

Girlanda et al. (2011) and private communication

Basic model

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

- Fix c_D by reproducing measured ³H GT matrix element
- Possible strategies for constraining c_E and the (10 in principle) LECs in subleading contact 3N potential:
 - Nd scattering observables at low energies
 - Spectra of light- and medium-weight nuclei and properties of nuclear/neutron matter

Weak transitions with χEFT in $A \geq 3$ nuclei

Basic model

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interaction:

EW QE response

Outlook

 Simple at tree level (and calculations are in progress); still a single LEC in the axial current

• A major task at N4LO as there are a great many twoand three-body contributions at that order

Approximate methods for ν -A scattering

Pastore et al. private communication; Rocco et al. private communication

 STA applicable to heavier targets (¹⁶O and ⁴⁰Ar) and can accommodate relativity and pion production

The HH/QMC team

Basic mode

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

EW QE response

Outlook

- The ANL/JLAB/LANL/Pisa collaboration members:
- A. Baroni (USC)
- J. Carlson (LANL)
- S. Gandolfi (LANL)
- L. Girlanda (U-Salento)
- A. Kievsky (INFN-Pisa)
- D. Lonardoni (LANL)
- A. Lovato (ANL)

L.E. Marcucci (U-Pisa) S. Pastore (LANL) M. Piarulli (ANL) S.C. Pieper (ANL) R. Schiavilla (ODU/JLab) M. Viviani (INFN-Pisa) R.B. Wiringa (ANL)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Computational resources from ANL LCRC, LANL Open Supercomputing, and NERSC