

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

EW QE

Light-nuclei spectra and electroweak response: a status report

R. Schiavilla

Theory Center, Jefferson Lab, Newport News, VA 23606, USA Physics Department, Old Dominion University, Norfolk, VA 23529, USA

March 5, 2018

KEL KALEY KEY E NAG

Few-nucleon systems from LQCD

Beane *et al.* (2013); Chang *et al.* (2015); Savage *et al.* (2017)

• NPLQCD spectra calculations (m_π = 806 MeV)

[Nuclear](#page-10-0) x EFT

EW QE

• NPLQCD calculations of magnetic moments and weak transitions in few-nucleon syste[ms](#page-0-0) [a](#page-2-0)[ls](#page-0-0)[o](#page-1-0) [a](#page-2-0)[va](#page-0-0)[i](#page-3-0)[la](#page-4-0)[bl](#page-0-0)[e](#page-3-0) QQ

 $2N$ potential from LQCD and nuclear spectra

Aoki *et al.* (2012); McIlroy *et al.* (2017)

• LQCD calculation of 2N potential by HAL collaboration

[Basic model](#page-4-0)

EW QE

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ 2990 Þ

[Basic model](#page-4-0)

Chiral 2N

EW QE

- The basic model of nuclear theory
- \bullet Chiral 2N and 3N potentials and nuclear spectra
- Electroweak currents and (mostly weak) transitions
- Nuclear electroweak response in quasi-elastic regime

KEL KALEY KEY E NAG

The basic model

- Effective potentials:
	- $H=\sum$ A $\frac{i=1}{i}$ \mathbf{p}_i^2 $rac{\mathbf{p}_i}{2 m_i} + \sum_{i \leq i-1}$ A $i < j = 1$ v_{ij} |{z} th+exp + X A $i < j < k=1$ th+exp $\widehat{V_{ijk}} + \cdots$
- **•** Assumptions:
	- *Quarks in nuclei are in color singlet states close to those of* N*'s (and low-lying excitations:* ∆*'s, . . .)*
	- *Series of potentials converges rapidly*
	- **•** Dominant terms in v_{ij} and V_{ijk} are due to π exchange

leading
$$
\pi N
$$
 coupling $= \frac{g_A}{2 f_\pi} \tau_a \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} \phi_a(\mathbf{r})$

Effective electroweak currents:

$$
j^{EW} = \sum_{i=1}^{A} j_i + \sum_{i < j=1}^{A} j_{ij} + \sum_{i < j < k=1}^{A} j_{ijk} + \cdots
$$

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

EW QE

Yukawa potential in classical mechanics

- Connection between meson-exchange interactions and their representation in terms of v_{ij}
- A simple model: a classical scalar field $\phi(\mathbf{r},t)$ interacting with static particles:

$$
\mathcal{L} = \frac{1}{2} \left[\dot{\phi}^2 - |\mathbf{\nabla}\phi|^2 - \mu^2 \phi^2 \right] - g \phi \sum_{i=1}^A \delta(\mathbf{r} - \mathbf{r}_i)
$$

Lowest-energy configuration occurs in the static limit $\phi(\mathbf{r},t) \rightarrow \phi(\mathbf{r})$ (Poisson-like equation of electrostatics)

$$
\nabla^2 \phi - \mu^2 \phi = g \sum_{i=1}^{A} \delta (\mathbf{r} - \mathbf{r}_i)
$$

Energy of the field (up to self energies) in this limit

$$
E_{\phi} = \frac{1}{2} \int d\mathbf{r} \, \phi(\mathbf{r}) \, g \sum_{i=1}^{A} \delta(\mathbf{r} - \mathbf{r}_i) = -\frac{g^2}{4\pi} \sum_{i \in \mathbb{J}^+}^A \frac{e^{-\mu r_{ij}}}{r_{ij_{\pm}}} \, \mathbb{E}_{\phi, \phi}.
$$

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

EW QE

Yukawa potential in quantum mechanics

Scalar-field Hamiltonian is

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

[potentials](#page-13-0)

EW QE

[Outlook](#page-28-0)

- $H=\sum$ k $\omega_k\,a_{\mathbf{k}}^\dagger$ $\frac{1}{k}a_k+g\sum$ ${\gamma}$ _{H₀} A $i=1$ \sum k 1 $\sqrt{2\,\omega_k\,V}$ $\int a_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}_i} + a_{\mathbf{k}}^{\dagger}$ $\frac{1}{k}e^{-i\mathbf{k}\cdot\mathbf{r}_i}$ $\sum_{H'}$ $H¹$
	- Set of shifted harmonic oscillators; exact eigenenergies of field given by

$$
E_{\{n_{\mathbf{k}}\}} = \sum_{\mathbf{k}} \omega_k n_{\mathbf{k}} - g^2 \sum_{i < j = 1}^{A} \overbrace{\int \frac{d\mathbf{k}}{(2\pi)^3} \frac{e^{i\mathbf{k} \cdot (\mathbf{r}_i - \mathbf{r}_j)}}{\omega_k^2}}^{\frac{1}{4\pi} \frac{e^{-\mu r_{ij}}}{r_{ij}}}
$$
\n
$$
= \sum_{\text{energy shift}}
$$

• In CM and QM the scalar field energy in the presence of static particles can be replac[ed](#page-5-0) [by](#page-7-0)[a](#page-6-0) [s](#page-7-0)[u](#page-3-0)[m](#page-4-0) [o](#page-10-0)[f](#page-3-0) $v_Y(r_{ij})$ $v_Y(r_{ij})$ $v_Y(r_{ij})$ $v_Y(r_{ij})$ $v_Y(r_{ij})$ $v_Y(r_{ij})$ $v_Y(r_{ij})$ $v_Y(r_{ij})$

Scattering between slow-moving particles

• In potential theory to leading order

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

EW QE

[Outlook](#page-28-0)

$$
T_{fi}^{Y1} = \int d\mathbf{r} e^{-i\mathbf{p}' \cdot \mathbf{r}} v_Y(r) e^{i\mathbf{p} \cdot \mathbf{r}} = -\frac{g^2}{\omega_q^2} \qquad (\mathbf{q} = \mathbf{p} - \mathbf{p}')
$$

$$
\sum_{\tilde{v}_Y(q)} \mathbf{r}
$$

• In meson-exchange theory (to leading order)

 Ω

Beyond leading order

[Basic model](#page-4-0)

Chiral 2N

Chiral 3N

Earlier developers of the basic model . . .

- [Basic model](#page-4-0)
-
- Chiral 2N
- Chiral 3N
-
- EW QE
-

 χ EFT formulation of the basic model

- [Basic model](#page-4-0)
- [Nuclear](#page-10-0) x EFT
-
-
-
- EW QE
-
- \bullet χ EFT is a low-energy approximation of QCD
- Lagrangians describing the interactions of π , N , ... are expanded in powers of Q/Λ_{χ} ($\Lambda_{\chi} \sim 1$ GeV)
- Their construction has been codified in a number of papers¹

$$
\mathcal{L} = \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \dots \n+ \mathcal{L}_{\pi \pi}^{(2)} + \mathcal{L}_{\pi \pi}^{(4)} + \dots
$$

- $\mathcal{L}^{(n)}$ also include contact $\left(\overline{N}N\right) \left(\overline{N}N\right)$ type interactions parametrized by low-energy constants (LECs)
- Initial impetus to the development of χ EFT for nuclei in the early nineties $2,3$

¹ Gasser and Leutwyler (1984); Gasser, Sainio, and Švarc (1988); Bernard *et al.* (1992); Fettes *et al.* (2000) 2 Weinberg (1990[\)](#page-9-0)–(1992); 3 Park, Min, and Rho (1993) and (1996) (ロ 》 (③ 》 (③) 《 国 》 《 国 》 《 国 》 《 国 》 《

General considerations

• Time-ordered perturbation theory (TOPT):

$$
\langle f\mid T\mid i\rangle = \langle f\mid H_1\sum_{n=1}^{\infty}\left(\frac{1}{E_i-H_0+i\,\eta}H_1\right)^{n-1}\mid i\rangle
$$

• Momentum scaling of contribution

- Each of the N_K energy denominators involving only nucleons is of order Q^{-2}
- Each of the other $N N_K 1$ energy denominators involving also pion energies is expanded as

$$
\frac{1}{E_i - E_I - \omega_{\pi}} = -\frac{1}{\omega_{\pi}} \left[1 + \frac{E_i - E_I}{\omega_{\pi}} + \frac{(E_i - E_I)^2}{\omega_{\pi}^2} + \dots \right]
$$

• Power counting:

$$
T = T^{LO} + T^{NLO} + T^{N^2LO} + \dots, \text{ and } T^{N^nLO} \sim (Q/\Lambda_\chi)^n T^{LO}
$$

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

From amplitudes to potentials

Pastore *et al.* (2009); Pastore *et al.* (2011)

[Basic model](#page-4-0)

EW QE

• Construct v such that when inserted in LS equation

 $v + v G_0 v + v G_0 v G_0 v + \ldots$ $G_0 = 1/(E_i - E_I + i \eta)$

leads to T -matrix order by order in the power counting

Assume

$$
v = v^{(0)} + v^{(1)} + v^{(2)} + \dots \qquad v^{(n)} \sim (Q/\Lambda_{\chi})^n v^{(0)}
$$

Determine $v^{(n)}$ from

$$
v^{(0)} = T^{(0)}
$$

\n
$$
v^{(1)} = T^{(1)} - [v^{(0)} G_0 v^{(0)}]
$$

\n
$$
v^{(2)} = T^{(2)} - [v^{(0)} G_0 v^{(0)} G_0 v^{(0)}] - [v^{(1)} G_0 v^{(0)} + v^{(0)} G_0 v^{(1)}]
$$

and so on, where

 $v^{(m)} G_0 v^{(n)} \sim (Q/\Lambda_\chi)^{m+n+1}$

KORK ERKER ADAM ADA

Chiral 2N potentials with Δ 's

Piarulli *et al.* (2015); Piarulli *et al.* (2016)

- Two-nucleon potential: $v=v^\mathrm{EM}+v^\mathrm{LR}+v^\mathrm{SR}$
- EM component v^EM including corrections up to α^2
- Chiral OPE and TPE component v^{LR} with Δ 's

LO : Q^0 $\begin{vmatrix} \mathbf{k} \\ \mathbf{k} \end{vmatrix}$ = \mathbf{p} $\mathbb{E}[\mathbb{$ N2LO : Q^3 $\left[\mathcal{F}^2\right]\left[\mathcal{F}^2\right]$ $\left[\mathcal{F}^2\right]\left[\mathcal{F}^2\right]$ $\left[\mathcal{F}^2\right]$

- Short-range contact component $v^{\rm SR}$ up to order Q^4 parametrized by $(2+7+11)$ IC and $(2+4)$ IB LECs
- v^{SR} functional form taken as $C_{R_S}(r) \propto \mathrm{e}^{-(r/R_S)^2}$ with $R_S=0.8$ $R_S=0.8$ $R_S=0.8$ (0.7) fm for a (b) models **KORKAR KERKER E VOOR**

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

$np(T=0$ and 1) and pp phase shifts

Basic model

Chiral $2N$

Chiral $3N$

EW QE

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Ab initio methods utilized by our group

• Hyperspherical harmonics (HH) expansions for $A = 3$ and 4 bound and continuum states

$$
|\psi_V\rangle = \sum_{\mu} c_{\mu} \underbrace{|\phi_{\mu}\rangle}_{HH \text{ basis}} \text{ and } c_{\mu} \text{ from } E_V = \frac{\langle \psi_V | H | \psi_V \rangle}{\langle \psi_V | \psi_V \rangle}
$$

• Quantum Monte Carlo for $A > 4$ bound states

Figure by Lonardoni

K ロ ト K 何 ト K ヨ ト K ヨ ト \equiv ΩQ

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

EW QE

Chiral 3N potentials with Δ 's

Piarulli *et al.* (2018)

 $3N$ potential up to N2LO $^{\mathbf{1}}$:

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

EW QE

 c_D and c_E fixed by fitting $E_0^{\rm exp}$ $_{0}^{\rm exp}(^{3}$ H) = -8.482 MeV and nd doublet scattering length $a_{nd}^{\text{exp}} = (0.645 \pm 0.010)$ fm

• Alternate strategy: fix c_D and c_E by reproducing E_0^{exp} $_0^{\rm exp}(^3{\sf H})$ and the GT $^{\rm exp}$ matrix element in $^3{\sf H}$ β -decay

KORK ERKER ADAM ADA

Spectra of light nuclei

Piarulli *et al.* (2018)

Chiral 2N

Chiral 3N

Neutron matter equation of state

Piarulli *et al.*, private communication

[Basic model](#page-4-0)

- Sensitivity to $3N$ contact term:
	- $c_E < 0$ repulsive in $A < 4$
	- **o** but attractive in PNM
- **Cutoff sensitivity:**
	- *modest in NV2 models*
	- *large in NV2+3 models*

[Basic model](#page-4-0) [Nuclear](#page-10-0) x EFT

EW QE

[Outlook](#page-28-0)

- Shell model in agreement with exp if $g_A^{\text{eff}} \simeq 0.7 \, g_A$
- Understanding "quenching" of g_A in nuclear β decays
- Relevant for neutrinoless 2β -decay since rate $\propto\,g_A^4$

KEL KALEY KEY E NAG

Including electroweak (ew) interactions

Pastore *et al.* (2009,2011); Piarulli *et al.* (2013); Baroni *et al.* (2017)

• Power counting of ew interactions (treated in first order)

$$
T_{\rm ew} = T_{\rm ew}^{(-3)} + T_{\rm ew}^{(-2)} + T_{\rm ew}^{(-1)} + \dots \qquad T_{\rm ew}^{(n)} \sim (Q/\Lambda_{\chi})^n T_{\rm ew}^{(-3)}
$$

For $v^{(n)}_{\rm ew} = A^0\,\rho^{(n)}_{\rm ew}-{\bf A}\cdot {\bf j}^{(n)}_{\rm ew}$ to match $T_{\rm ew}$ order by order

$$
v_{\text{ew}}^{(-3)} = T_{\text{ew}}^{(-3)} \n v_{\text{ew}}^{(-2)} = T_{\text{ew}}^{(-2)} - \left[v_{\text{ew}}^{(-3)} G_0 v^{(0)} + v^{(0)} G_0 v_{\text{ew}}^{(-3)} \right] \n v_{\text{ew}}^{(-1)} = T_{\text{ew}}^{(-1)} - \left[v_{\text{ew}}^{(-3)} G_0 v^{(0)} G_0 v^{(0)} + \text{permutations} \right] \n - \left[v_{\text{ew}}^{(-2)} G_0 v^{(0)} + v^{(0)} G_0 v_{\text{ew}}^{(-2)} \right]
$$

and so on up to $n = 1$

 $\rho_{\rm ew}^{(n)}$ and $\mathbf{j}_{\rm ew}^{(n)}$ (generally) depend on off-the-energy shell prescriptions adopted for $v^{(\leq n)}$ and $v_{\rm ew}^{(\leq n)}$

[Basic model](#page-4-0)

Nuclear axial currents at one loop

Park *et al.* (1993,2003); Baroni *et al.* (2016); Krebs *et al.* (2017)

[Basic model](#page-4-0)

- Some of the contributions—panels (m) and (s)—differ in the Baroni *et al.* and Krebs *et al.* derivations
- **1 u[n](#page-18-0)known [LE](#page-22-0)[C](#page-20-0) [i](#page-22-0)n j**<[s](#page-21-0)ub>[5](#page-25-0)</sub> (4 unknown LECs in ρ_5 [\)](#page-18-0)

 β decays in light nuclei

Pastore *et al.* (2017)

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

EW QE

• Correct relation between c_D and d_R m m

$$
d_R = -\frac{m}{4 g_A \Lambda_{\chi}} c_D + \frac{m}{3} (c_3 + 2 c_4) + \frac{1}{6}
$$

• GT m.e.'s in $A = 6-10$ nuclei (AV18/IL7 potential with x EFT axial current)

Low-energy neutrinos

[Basic model](#page-4-0)

Chiral 2N

Chiral 3N

EW QE

SNO experiment

 2990 イロン 不優 メスミメスミメーミー

Low-energy inclusive ν -d scattering in χ EFT

Baroni and Schiavilla (2017)

CC and NC ν -A scattering

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

EW QE

[Outlook](#page-28-0)

• Large program in accelerator ν physics (MicroBooNE, $NO\nu A$, T2K, Miner νa , DUNE, ...)

rate
$$
\propto \int dE \Phi_{\alpha}(E) P(\nu_{\alpha} \to \nu_{\beta}; E) \sigma_{\beta}(E, E')
$$

- Determination of oscillation parameters depends crucially on our understanding of
	- \bullet *ν flux* $\Phi_{\alpha}(E)$
	- ν *-A cross section* $\sigma_\beta(E,E')$

 Ω

GFMC calculation of EM response in ¹²C

Carlson and Schiavilla (1992,1994); Lovato *et al.* (2013–2016)

$$
\int_0^\infty \mathrm{d}\omega \,\mathrm{e}^{-\tau\omega}\,R_{\alpha\beta}(q,\omega) = \langle i\,|\,j_\alpha^\dagger(\mathbf{q})\,\mathrm{e}^{-\tau(H-E_i)}\,j_\beta(\mathbf{q})\,| \,i \rangle
$$

[Basic model](#page-4-0)

[Nuclear](#page-10-0) x EFT

EW QE

• Inversion back to $R_{\alpha\beta}(q,\omega)$ by maximum entropy methods

NC responses and cross sections in ¹²C

Lovato *et al.* (2018)

Slide by Lonardoni

イロト イ伊 トイヨ トイヨト つへへ

Leading and subleading $3N$ potentials

Girlanda *et al.* (2011) and private communication

[Nuclear](#page-10-0) x EFT

EW QE

- Fix c_D by reproducing measured ³H GT matrix element
- Possible strategies for constraining c_E and the (10 in principle) LECs in subleading contact $3N$ potential:
	- *Nd scattering observables at low energies*
	- *Spectra of light- and medium-weight nuclei and properties of nuclear/neutron matter*

[Outlook](#page-28-0)

Weak transitions with χ EFT in $A > 3$ nuclei

• Simple at tree level (and calculations are in progress); [Basic model](#page-4-0) still a single LEC in the axial current [Nuclear](#page-10-0) x EFT 1.25 VMC with NV2+3-Ia interactions and LO current $\begin{array}{c|c|c|c|c} & & & & & \\ \hline & & & & & \\ (a) & & & & & \\ (b) & & & & & \\ \hline \end{array}$ ة
⊇ 6Li 7Li 3He .
طبی theory/experiment theory/experiment 7Be - .
بر $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 1.00 -
تا 8Li 8He - 0.7 EW QE 2 3 4 5 6 7 8 9 10 11 12 number A

> A major task at N4LO as there are a great many twoand three-body contributions at that order

Approximate methods for ν -A scattering

Pastore *et al.* private communication; Rocco *et al.* private communication

• STA applicable to heavier targets $(^{16}O$ and ^{40}Ar) and can accommodate relativity an[d p](#page-30-0)i[on](#page-32-0)[pr](#page-31-0)[o](#page-32-0)[d](#page-27-0)[u](#page-28-0)[ct](#page-0-1)[io](#page-27-0)[n](#page-0-1)

 Ω

The HH/QMC team

[Basic model](#page-4-0)

EW QE

[Outlook](#page-28-0)

- **The ANL/JLAB/LANL/Pisa collaboration members:**
- A. Baroni (USC)
- J. Carlson (LANL)
- S. Gandolfi (LANL)
- L. Girlanda (U-Salento)
- A. Kievsky (INFN-Pisa)
- D. Lonardoni (LANL)
- A. Lovato (ANL)

L.E. Marcucci (U-Pisa) S. Pastore (LANL) M. Piarulli (ANL) S.C. Pieper (ANL) R. Schiavilla (ODU/JLab) M. Viviani (INFN-Pisa) R.B. Wiringa (ANL)

KEL KALEY KEY E NAG

Computational resources from *ANL LCRC*, *LANL Open Supercomputing*, and *NERSC*