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Few-nucleon systems from LQCD
Beane et al. (2013); Chang et al. (2015); Savage et al. (2017)

NPLQCD spectra calculations (mπ = 806 MeV)

NPLQCD calculations of magnetic moments and weak
transitions in few-nucleon systems also available
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2N potential from LQCD and nuclear spectra
Aoki et al. (2012); McIlroy et al. (2017)

LQCD calculation of 2N potential by HAL collaboration
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Outline

The basic model of nuclear theory

Chiral 2N and 3N potentials and nuclear spectra

Electroweak currents and (mostly weak) transitions

Nuclear electroweak response in quasi-elastic regime

Outlook
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The basic model

Effective potentials:

H =

A∑
i=1

p2
i

2mi
+

A∑
i<j=1

vij︸︷︷︸
th+exp

+

A∑
i<j<k=1

th+exp︷︸︸︷
Vijk + · · ·

Assumptions:
Quarks in nuclei are in color singlet states close to
those of N ’s (and low-lying excitations: ∆’s, . . . )
Series of potentials converges rapidly
Dominant terms in vij and Vijk are due to π exchange

leading πN coupling =
gA

2 fπ
τa σ ·∇φa(r)

Effective electroweak currents:

jEW =

A∑
i=1

ji +

A∑
i<j=1

jij +

A∑
i<j<k=1

jijk + · · ·
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Yukawa potential in classical mechanics

Connection between meson-exchange interactions and
their representation in terms of vij
A simple model: a classical scalar field φ(r, t)
interacting with static particles:

L =
1

2

[
φ̇2 − |∇φ|2 − µ2 φ2

]
− g φ

A∑
i=1

δ (r− ri)

Lowest-energy configuration occurs in the static limit
φ(r, t)→ φ(r) (Poisson-like equation of electrostatics)

∇2 φ− µ2 φ = g

A∑
i=1

δ (r− ri)

Energy of the field (up to self energies) in this limit

Eφ =
1

2

∫
drφ(r) g

A∑
i=1

δ(r− ri) = − g
2

4π

A∑
i<j=1

e−µrij

rij
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Yukawa potential in quantum mechanics

Scalar-field Hamiltonian is

H =
∑
k

ωk a
†
kak︸ ︷︷ ︸

H0

+ g

A∑
i=1

∑
k

1√
2ωk V

(
ak eik·ri + a†k e−ik·ri

)
︸ ︷︷ ︸

H′

Set of shifted harmonic oscillators; exact eigenenergies
of field given by

E{nk} =
∑
k

ωk nk−g2
A∑

i<j=1

1
4π

e
−µrij
rij︷ ︸︸ ︷∫

dk

(2π)3

eik·(ri−rj)

ω2
k︸ ︷︷ ︸

energy shift

In CM and QM the scalar field energy in the presence
of static particles can be replaced by a sum of vY (rij)
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Scattering between slow-moving particles

In potential theory to leading order

T Y 1
fi =

∫
dr e−ip

′·r vY (r) eip·r = − g
2

ω2
q︸ ︷︷ ︸

ṽY (q)

(q = p− p′)

In meson-exchange theory (to leading order)

TM1
fi =

∑
I

final state︷ ︸︸ ︷
〈p′,−p′; 0|H ′|I〉〈I|H ′

initial state︷ ︸︸ ︷
|p,−p; 0〉

Ei − EI
= − g

2

ω2
q

= +
p −p

p’ −p’

p −p

p’ −p’

p −p

p’ −p
−qq
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Beyond leading order

(a3)(a2)(a1) (a4)

(b2)(b1) (b3) (b4)

(c2) (c4)(c1) (c3)

(Y2)

p’

p

−p’

−p

q

q1

2p−q q1 −p1

TM2
fi = T Y 2

fi + correction

Obtain from TM2
fi − T Y 2

fi correction term ṽ(2)(q,

p′+p︷︸︸︷
Q )

such that ṽY (q) + ṽ(2)(q,Q) reproduces TM2
fi
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Earlier developers of the basic model . . .
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χEFT formulation of the basic model

χEFT is a low-energy approximation of QCD
Lagrangians describing the interactions of π, N , . . . are
expanded in powers of Q/Λχ (Λχ ∼ 1 GeV)
Their construction has been codified in a number of
papers 1

L = L(1)
πN + L(2)

πN + L(3)
πN + . . .

+L(2)
ππ + L(4)

ππ + . . .

L(n) also include contact
(
NN

)(
NN

)
-type interactions

parametrized by low-energy constants (LECs)
Initial impetus to the development of χEFT for nuclei in
the early nineties 2,3

1Gasser and Leutwyler (1984); Gasser, Sainio, and S̆varc (1988); Bernard et al. (1992); Fettes et al. (2000)

2Weinberg (1990)–(1992); 3Park, Min, and Rho (1993) and (1996)
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General considerations

Time-ordered perturbation theory (TOPT):

〈f | T | i〉 = 〈f | H1

∞∑
n=1

(
1

Ei −H0 + i η
H1

)n−1

| i〉

Momentum scaling of contribution N∏
i=1

Q
αi−βi/2


︸ ︷︷ ︸

H1 scaling

×Q−(N−NK−1)
Q
−2NK︸ ︷︷ ︸

denominators

× Q
3L︸ ︷︷ ︸

loop integrations

Each of the NK energy denominators involving only
nucleons is of order Q−2

Each of the other N −NK − 1 energy denominators
involving also pion energies is expanded as

1

Ei − EI − ωπ
= −

1

ωπ

[
1 +

Ei − EI
ωπ

+
(Ei − EI )2

ω2
π

+ . . .

]

Power counting:

T = T
LO

+ T
NLO

+ T
N2LO

+ . . . , and T
NnLO ∼ (Q/Λχ)

n
T
LO
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From amplitudes to potentials
Pastore et al. (2009); Pastore et al. (2011)

Construct v such that when inserted in LS equation

v + v G0 v + v G0 v G0 v + . . . G0 = 1/(Ei − EI + i η)

leads to T -matrix order by order in the power counting

Assume

v = v
(0)

+ v
(1)

+ v
(2)

+ . . . v
(n) ∼ (Q/Λχ)

n
v
(0)

Determine v(n) from

v
(0)

= T
(0)

v
(1)

= T
(1) −

[
v
(0)

G0 v
(0)
]

v
(2)

= T
(2) −

[
v
(0)

G0 v
(0)

G0 v
(0)
]
−
[
v
(1)

G0 v
(0)

+ v
(0)

G0 v
(1)
]

and so on, where

v
(m)

G0 v
(n) ∼ (Q/Λχ)

m+n+1
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Chiral 2N potentials with ∆’s
Piarulli et al. (2015); Piarulli et al. (2016)

Two-nucleon potential: v = vEM + vLR + vSR

EM component vEM including corrections up to α2

Chiral OPE and TPE component vLR with ∆’s

Short-range contact component vSR up to order Q4

parametrized by (2+7+11) IC and (2+4) IB LECs
vSR functional form taken as CRS (r) ∝ e−(r/RS)2

with
RS=0.8 (0.7) fm for a (b) models
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np (T = 0 and 1) and pp phase shifts

Ia-Ib: Elab = 125 MeV IIa-IIb: Elab = 200 MeV
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Ab initio methods utilized by our group

Hyperspherical harmonics (HH) expansions for A= 3
and 4 bound and continuum states

|ψV 〉 =
∑
µ

cµ |φµ〉︸︷︷︸
HH basis

and cµ from EV =
〈ψV |H|ψV 〉
〈ψV |ψV 〉

Quantum Monte Carlo for A > 4 bound states

Figure by Lonardoni
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Chiral 3N potentials with ∆’s
Piarulli et al. (2018)

3N potential up to N2LO1:

cD and cE fixed by fitting Eexp
0 (3H) = –8.482 MeV and nd

doublet scattering length aexp
nd = (0.645± 0.010) fm

without 3N with 3N

Model cD cE E0(3H) E0(3He) E0(4He) 2and E0(3He) E0(4He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31
Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31
IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17
IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

Alternate strategy: fix cD and cE by reproducing
Eexp

0 (3H) and the GTexp matrix element in 3H β-decay

1Epelbaum et al. (2002)



Basic model

Nuclear χEFT

Chiral 2N
potentials

Chiral 3N
potentials

EW
interactions

EW QE
response

Outlook

Spectra of light nuclei
Piarulli et al. (2018)
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Neutron matter equation of state
Piarulli et al., private communication
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Sensitivity to 3N contact term:
cE < 0 repulsive in A ≤ 4
but attractive in PNM

Cutoff sensitivity:
modest in NV2 models
large in NV2+3 models
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Nuclear weak interactions: low energy regime

Shell model in agreement with exp if geff
A ' 0.7 gA

Understanding “quenching” of gA in nuclear β decays
Relevant for neutrinoless 2β-decay since rate ∝ g4

A

Martinez-Pinedo et al. (1996)
0ν–2β amplitude
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Including electroweak (ew) interactions
Pastore et al. (2009,2011); Piarulli et al. (2013); Baroni et al. (2017)

Power counting of ew interactions (treated in first order)

Tew = T
(−3)
ew + T

(−2)
ew + T

(−1)
ew + . . . T

(n)
ew ∼ (Q/Λχ)

n
T

(−3)
ew

For v(n)
ew = A0 ρ

(n)
ew −A · j(n)

ew to match Tew order by order

v
(−3)
ew = T

(−3)
ew

v
(−2)
ew = T

(−2)
ew −

[
v
(−3)
ew G0 v

(0)
+ v

(0)
G0 v

(−3)
ew

]
v
(−1)
ew = T

(−1)
ew −

[
v
(−3)
ew G0 v

(0)
G0 v

(0)
+ permutations

]
−
[
v
(−2)
ew G0 v

(0)
+ v

(0)
G0 v

(−2)
ew

]

and so on up to n = 1

ρ
(n)
ew and j

(n)
ew (generally) depend on off-the-energy shell

prescriptions adopted for v(≤n) and v(≤n)
ew
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Nuclear axial currents at one loop
Park et al. (1993,2003); Baroni et al. (2016); Krebs et al. (2017)

Some of the contributions—panels (m) and (s)—differ
in the Baroni et al. and Krebs et al. derivations
1 unknown LEC in j5 (4 unknown LECs in ρ5)
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β decays in light nuclei
Pastore et al. (2017)

Correct relation between cD and dR

dR = − m

4 gA Λχ
cD +

m

3
(c3 + 2 c4) +

1

6

GT m.e.’s in A= 6–10 nuclei (AV18/IL7 potential with
χEFT axial current)

(3
+
,0)

(1
+
,0)

(0
+
,1)

(1
+
,0)

10
B

10
C

98.54(14)%
< 0.08 %

(0
+
,1)

E ~ 0.72 MeV

E ~ 2.15 MeV

1 1.1 1.2

Ratio to EXPT

10
C

10
B

7
Be

7
Li(gs)

6
He

6
Li

3
H

3
He

7
Be

7
Li(ex)

gfmc 1b
gfmc 1b+2b(N4LO)
Chou et al. 1993 - Shell Model - 1b
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Low-energy neutrinos

SNO experiment

CC from d + νe −→ p + p + e−

ES from (mostly) e− + νe −→ e− + νe

NC from d + νx −→ p + n + νx
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Low-energy inclusive ν-d scattering in χEFT
Baroni and Schiavilla (2017)

0 50 100 150
Eν(MeV)

0

4

8

12

16

σ(
10

-1
4  fm

2 )

This paper
Nakamura et al. (2002)

0 50 100 150
Eν(MeV)

0.96

0.98

1.00

νe-CC

0 50 100 150
Eν(MeV)

0

2

4

6

σ(
10

-1
4  fm

2 )

This paper
Nakamura et al. (2002)

0 50 100 150
Eν(MeV)

0.96

0.98

1.00

νe-NC

convergence pattern

Eν (MeV)



Basic model

Nuclear χEFT

Chiral 2N
potentials

Chiral 3N
potentials

EW
interactions

EW QE
response

Outlook

CC and NC ν-A scattering

Large program in accelerator ν physics (MicroBooNE,
NOνA, T2K, Minerνa, DUNE, . . . )

rate ∝
∫
dE Φα(E)P (να → νβ;E)σβ(E,E ′)

Determination of oscillation parameters depends
crucially on our understanding of

ν flux Φα(E)
ν-A cross section σβ(E,E ′)
DUNE νµ flux MiniBooNE
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GFMC calculation of EM response in 12C
Carlson and Schiavilla (1992,1994); Lovato et al. (2013–2016)∫ ∞

0
dω e−τω Rαβ(q, ω)=〈i | j†α(q) e−τ(H−Ei) jβ(q) | i〉

Inversion back to Rαβ(q, ω) by maximum entropy
methods

longitudinal transverse
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NC responses and cross sections in 12C
Lovato et al. (2018)

Inclusive ν/ν (−/+) cross section given in terms of five
response functions

dσ

dε′ldΩl
∝
[
v00R00 + vzz Rzz − v0z R0z +

dominant︷ ︸︸ ︷
vxxRxx ∓ vxy Rxy

]
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Outlook

Slide by Lonardoni
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Leading and subleading 3N potentials
Girlanda et al. (2011) and private communication

Fix cD by reproducing measured 3H GT matrix element
Possible strategies for constraining cE and the (10 in
principle) LECs in subleading contact 3N potential:

Nd scattering observables at low energies
Spectra of light- and medium-weight nuclei and
properties of nuclear/neutron matter
pd scattering at 3 MeV

AFDMC for A = 16 and 40

Piarulli et al. (2017) Lynn et al. (2016); Lonardoni et al. (2017)
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Weak transitions with χEFT in A ≥ 3 nuclei

Simple at tree level (and calculations are in progress);
still a single LEC in the axial current
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VMC with NV2+3-Ia interactions and LO current

A major task at N4LO as there are a great many two-
and three-body contributions at that order
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Approximate methods for ν-A scattering
Pastore et al. private communication; Rocco et al. private communication

Beyond PWIA: including two-body physics in the
short-time approximation (STA)

R(q, ω) ∼
∫
dt 〈0| O†(q)

expand P (t)︷ ︸︸ ︷
e
−i(ω−H)t

O(q)︸ ︷︷ ︸
keep up to 2b terms in O

|0〉

O
†
iP (t)Oi + O

†
iP (t)Oj + O

†
iP (t)Oij + O

†
ijP (t)Oij

q
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∼ | f >
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GFMC Longitudinal, Lovato et al. (2015)

STA Longitudinal, PRELIMINARY

GFMC Transverse, Lovato et al. (2015)

STA Transverse, PRELIMINARY

4
He

AV18+UIX

STA applicable to heavier targets (16O and 40Ar) and
can accommodate relativity and pion production
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The HH/QMC team

The ANL/JLAB/LANL/Pisa collaboration members:

A. Baroni (USC)
J. Carlson (LANL)
S. Gandolfi (LANL)
L. Girlanda (U-Salento)
A. Kievsky (INFN-Pisa)
D. Lonardoni (LANL)
A. Lovato (ANL)

L.E. Marcucci (U-Pisa)
S. Pastore (LANL)
M. Piarulli (ANL)
S.C. Pieper (ANL)
R. Schiavilla (ODU/JLab)
M. Viviani (INFN-Pisa)
R.B. Wiringa (ANL)

Computational resources from ANL LCRC, LANL Open
Supercomputing, and NERSC
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