
Small bits of cold, dense matter

Alessandro Roggero (LANL)
with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT)

ArXiv:1712.10236

Nuclear ab initio Theories and Neutrino Physics
INT - Seattle - 12 March, 2018



The (conjectured) QCD phase diagram
figure from Fukushima & Hatsuda (2011)
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Where to find cold dense QCD matter
Optical + X-ray images from NASA/ESA

Neutron Stars
born in the aftermath of core-collapse supernovae
massive and compact objects: R ≈ 10 km M ≈ 1− 2 M�
central densities can be several times nuclear density ρ0 ≈ 1014gr/cm3
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Can measurements of neutron stars help?

Masses and radii
Demorest et al. (2010)
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pure quark stars disfavored
hybrid stars still compatible

Alford et al. (2004)
Zdunik & Hansel (2013)
Lastowiecki et al. (2015)

Alford & Han (2016)
Baym et al. (2017)

Neutrino cooling
direct URCA produce fast cooling in the core (Iwamoto (1980))

d→ u+ e− + ν̄e u+ e− → d+ νe

quark pairing can drastically reduce emissivity (Page et al. (2000))
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Ab initio calculations with Lattice QCD
figure from Fukushima & Hatsuda (2011)
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Using Lattice QCD at fixed A and T = 0

NPLQCD,PACS,HAL,CalLat
Fukushima & Hatsuda (2011)

Sign problem in LQCD

ELQCDG = EG +O
(
e−(E1−EG)τ

)
∆E/E ∼ eA(MN− 3

2
mπ)τ

Systems in small volumes with low A
are becoming possible

What can we learn from these small systems?

nucleon interactions by matching to EFT (eg. P.Klos et al. (2016) )
signatures of high-density phase transitions (this talk)
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Detecting change in degrees of freedom in small boxes
IDEA

perform simulations in both nucleonic and quark models
study energy spectrum as a function of A
reduce box size L to reach higher densities (few times n0)

Features in the spectra determined by the high momenta (short distances)
arising in small periodic volumes. In particular we look for:

shell closures (large gaps in single-particle energies)
pairing effects in open-shell systems

CAVEATS
large corrections from long-range physics for small box size L

qualitatively similar to those in LQCD if pions are consistently included
can study effect by using calculations for larger mπ (easier)

small systems won’t capture critical behavior (only qualitative)
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Nucleonic models

for now limited to systems of non-relativistic neutrons only

HN = − ~2

2MN

∑
i

∇2
i +

∑
i<j

Vij

We choose 3 different realistic NN interactions (match exp. phase-shifts)
Argonne AV18 ( R.Wiringa, V.Stoks and R.Schiavilla (1995) )
Argonne AV8’ ( R.Wiringa & S.Pieper (2002) )
local chiral EFT at N2LO ( A.Gezerlis et al. (2014) )

Many-body forces will play a role but:
the features we identify depend predominantly on the single-particle
states and some of them are present even for non-interacting nucleons
the structure of 3-,4- and many-body forces will be very different
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Quark models
we consider both free and interacting SU(2)f quarks

Hq =
∑
i

Ti +
∑
i<j

Vij + Vc

for free quarks we use both relativistic and non-relativistic dispersion
for interacting quarks we assume χ-symmetry is not restored and use
mq = 0.3GeV with non-relativistic dispersion

pair interaction is color antisymmetric and tuned to large a to
maximize pairing: ∆q ∼ 20− 100MeV ( Rajagopal & Wilczek (2000))
average confining interaction per baryon Vc depending on nB only

we impose baryon number and color, charge and spin neutrality

DISCLAMER: model is not intended to give realistic description of QCD in
this regime but to be qualitatively correct: ie. to reproduce
the 2SC color superconducting state (M.Alford et al. (2008))
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Pairing in quark matter

Attractive one-gluon interaction destabilize Fermi surface ⇒ Cooper pairs

intermediate densities: 2SC
Rapp et al. (1998), Alford et al. (1998)

2-flavor pairing

large densities: CFL
Alford et al. (1999)

9 quark pairing: µ�M2
s /∆

figures from Reddy (2004)

structure of 2SC ground state: |Ψ2SC〉 =|Ψfree
B 〉⊗|ΨSF

RG〉
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Quantum Monte Carlo calculations
for reviews see Foulkes et al. (2001), Carlson et al. (2015)

BASIC IDEA
any quantum system relaxes to its ground-state at low-enough temperature

Given hamiltonian H: E(β) =
Tr[He−βH ]
Tr[e−βH ]

β�1−−−→ E0 +O
(
e−β(E1−E0)

)
map quantum problem to a classical one with more degrees of freedom
use classical Monte Carlo to evaluate E(β) with statistical uncertainty

problem: direct evaluation usually comes with large noise
solution: modify expectation value using good reference state |Φr〉

Ẽ(β) =
Tr
[
He−βH |Φr〉〈Φr|

]
Tr [e−βH |Φr〉〈Φr|]

NOTE: traces are in a restricted space now

β�1−−−→
〈Ψ0|Φr〉〈Φr|H|Ψ0〉+O

(
e−β(E1−E0)

)
|〈Φr|Ψ0〉|2 +O

(
e−β(E1−E0)

) = E0 +O
(
e−β(E1−E0)

)
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Quantum Monte Carlo calculations: fermions and pairing

Fermionic states have non trivial phases (entanglement)
sign problem: statistical noise grows exponentially with β (cf. LQCD)

Ẽ(β)→ E0 +O
(
e−β(E1−E0)

)
∆Ẽ(β)→ O

(
eβ(E

F
0 −EB0 )

)

phase constrained Quantum Monte Carlo (Ortiz et al. (1993))

Ẽ(β) =
Tr
[
He−βH |Φr〉〈Φr|

]
Tr [e−βH |Φr〉〈Φr|]

→ ẼC(β) =
TrC

[
He−βH |Φr〉〈Φr|

]
TrC [e−βH |Φr〉〈Φr|]

Restricted traces over states |ψ〉 such that: 〈ψ|Φr〉 > 0⇒|ψ〉 fermionic
Systems with superfluid pairing can be described by appropriate |Ψr〉

|ΦSF
r 〉 = A|ΨA

12〉⊗|ΨB
34〉⊗|ΨC

56〉 ⊗ · · · (eg. Carlson et al. (2003))

By choosing the same (s–wave) state for every pair |ΦSF
r 〉 =|ΦBCS

r 〉
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4 neutrons in a box: free case
Gandolfi, Carlson, Roggero, Lynn, Reddy (2017)

Particle mass (GeV) N ρ (fm−3) E (k=1, GeV)
Nucleon 0.94 4 0.16 0.096
rel q 0.0 4 0.16 0.424
rel q 0.3 4 0.16 0.219
non-rel q 0.3 4 0.16 0.299
Nucleon 0.94 4 0.32 0.152
rel q 0.0 4 0.32 0.534
rel q 0.3 4 0.32 0.313
non-rel q 0.3 4 0.32 0.476

nuclear case: two nucleons in the k = 0 shell and two in |k| = 1 shell
quark case: all quarks in k = 0 shell costs twice MN −M∆ (≈ 300MeV )

at low density (large volumes) 4 neutron system is favored
at large density (small volume) all quarks in k = 0 shell preferable
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4 neutrons in a box: surprise in the interacting case
ref. states with different symmetry: |Φ4N

r 〉 = A|ψS,k=0
12 〉⊗|ψX,|k|=1

34 〉

NN interaction favor d-wave pairing for the 2 neutrons in |k| = 1 state

Gandolfi, Carlson, Roggero, Lynn, Reddy (2017)
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4 neutrons in a box: interacting case (phase shifts)
Gandolfi, Carlson, Roggero, Lynn, Reddy (2017)
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s-wave interaction turns repulsive at large momenta (small volumes)
d-wave state favored over p-wave due to spatial symmetry of wf

d-wave state is symmetric across periodic boundaries → attractive
interference between periodic images for p-wave state
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4 neutrons in a box: comparison with quarks models
Gandolfi, Carlson, Roggero, Lynn, Reddy (2017)
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nuclear case: at ρ = 2ρ0 s-d gap is ' 75 MeV for both interactions
quark case: at ρ = 2− 3ρ0 s-wave is still ≈ 30− 40 MeV lower in energy

conclusions are not altered by inclusion of spin dependent gluon
exchange interactions (Carlson, Kogut and Pandharipande (1983))
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Evolution of the spectrum with particle number
Gandolfi, Carlson, Roggero, Lynn, Reddy (2017)
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N = 14 corresponds to closed neutron shell with |k| = 0, 1

maximum at N = 6 always present
at high density large ≈ 10 MeV differences among neighboring N
very large gap of ≈ 50 MeV between N = 6 and N = 14
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Spectra for nucleons and quarks at ρ = 2ρ0

full energies
containing the
rest mass
confinement
energy (assumed
constant with ρ)
to match result
for N = 14
neutrons

Gandolfi, Carlson, Roggero, Lynn, Reddy (2017)
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for both quarks and nucleons no qualitative change from interactions
exception: interacting quarks show shell closure at N = 14 (blue-q)

sizable N = 4− 6 gap comes from pairs filling |k| = 1 quark shell
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Spectra for nucleons and quarks at ρ = 3ρ0

Gandolfi, Carlson, Roggero, Lynn, Reddy (2017)
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even larger effect for N = 6 due to larger energy of |k| = 1 states
quarks nucleons

free interacting free interacting
E46(2ρ0) 120 MeV 130 MeV 3 MeV 4 MeV
E46(3ρ0) 170 MeV 310 MeV 2 MeV 15 MeV

Alessandro Roggero Small bits of cold, dense matter INT - 12 Mar, 2018 18 / 19



Summary

Useful signatures to tell apart relevant degrees of freedom
pairing pattern for N = 4: EN (s) > EN (d) vs. Eq(s) ≤ Eq(d)

N = 4− 6 energy gap much larger for quarks (seems robust)
shell closure at N = 14 if quarks are free (difficult for near term)

Future directions
explore effects of heavier pion masses

LQCD can be extended to larger A (much) more easily
nuclear interactions become (much) more controllable with EFT(/π)

add protons and/or hyperons to the system

Thanks for your attention
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