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Lepton-nucleus scattering 
The inclusive cross section of the process in which 
a lepton scatters off a nucleus can be written in 
terms of five response functions

• The response functions contain all the information on target structure and dynamics
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• They account for initial state correlations, final state correlations and two-body currents
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Motivations 
• Atomic nuclei are fascinating many-body systems of strongly interacting fermions.

• Developing a coherent picture of the electroweak response is also critical for the interpretation of 
neutrino scattering experiments, such as the Deep Underground Neutrino Experiment

• In electron- scattering experiments the nucleus is 
mostly seen as a target, as the kinematic of the 
probe is completely known.

• This allows to unveil detailed features of the nuclear 
wave function, including its high-momentum 
components.  

E07-006 : Short Range Correlation Experiment



• In neutrino-oscillation experiments the use of nuclear target as detectors allows for a substantial 
increase of the event rate.

Motivations 

• Understanding neutrino-nucleus interactions in the broad kinematical region relevant to neutrino-
oscillation experiments requires an accurate description of both nuclear dynamics and of the 
interaction vertex 

can be added to form the total error matrix. For the neutrino
flux and background cross section uncertainties, a re-
weighting method is employed which removes the diffi-
culty of requiring hundreds of simulations with adequate
statistics. In this method, each neutrino interaction event is
given a new weight calculated with a particular parameter
excursion. This is performed considering correlations be-
tween parameters and allows each generated event to be
reused many times saving significant CPU time. The nature
of the detector uncertainties does not allow for this method
of error evaluation as parameter uncertainties can only be
applied as each particle or optical photon propagates
through the detector. Approximately 100 different simu-
lated data sets are generated with the detector parameters
varied according to the estimated 1! errors including
correlations. Equation (4) is then used to calculate the
detector error matrix. The error on the unfolding procedure
is calculated from the difference in final results when using
different input model assumptions (Sec. IVD). The statis-
tical error on data is not added explicitly but is included via
the statistical fluctuations of the simulated data sets (which
have the same number of events as the data).

The final uncertainties are reported in the following
sections. The breakdown among the various contributions
are summarized and discussed in Sec. VD. For simplicity,
the full error matrices are not reported for all distributions.
Instead, the errors are separated into a total normalization
error, which is an error on the overall scale of the cross
section, and a ‘‘shape error’’ which contains the uncer-
tainty that does not factor out into a scale error. This allows
for a distribution of data to be used (e.g. in a model fit) with
an overall scale error for uncertainties that are completely
correlated between bins, together with the remaining bin-
dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential
cross section

The flux-integrated, double differential cross section per
neutron, d2!

dT"d cos#"
, for the $" CCQE process is extracted as

described in Sec. IVD and is shown in Fig. 13 for the
kinematic range, !1< cos#" <þ1, 0:2< T"ðGeVÞ<
2:0. The errors, for T" outside of this range, are too large
to allow a measurement. Also, bins with low event popu-
lation near or outside of the kinematic edge of the distri-
bution (corresponding to large E$) do not allow for a
measurement and are shown as zero in the plot. The
numerical values for this double differential cross section
are provided in Table VI in the appendix.

The flux-integrated CCQE total cross section, obtained
by integrating the double differential cross section (over
!1< cos#" <þ1, 0< T"ðGeVÞ<1), is measured to be
9:429% 10!39 cm2. The total normalization error on this
measurement is 10.7%.

The kinematic quantities, T" and cos#", have been
corrected for detector resolution effects only (Sec. IVD).
Thus, this result is the most model-independent measure-
ment of this process possible with the MiniBooNE detec-
tor. No requirements on the nucleonic final state are used to
define this process. The neutrino flux is an absolute pre-
diction [19] and has not been adjusted based on measured
processes in the MiniBooNE detector.
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FIG. 13 (color online). Flux-integrated double differential
cross section per target neutron for the $" CCQE process. The

dark bars indicate the measured values and the surrounding
lighter bands show the shape error. The overall normalization
(scale) error is 10.7%. Numerical values are provided in Table VI
in the Appendix.
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FIG. 14 (color online). Flux-integrated single differential cross
section per target neutron for the $" CCQE process. The

measured values are shown as points with the shape error as
shaded bars. Calculations from the NUANCE RFG model with
different assumptions for the model parameters are shown as
histograms. Numerical values are provided in Table IX in the
appendix.

FIRST MEASUREMENT OF THE MUON NEUTRINO . . . PHYSICAL REVIEW D 81, 092005 (2010)

092005-15

• Oversimplified independent particle 
model of nuclear structure largely fail 
to reproduce neutrino scattering data 
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I. INTRODUCTION

The energy spectrum of high-energy leptons !elec-
trons in particular" scattered from a nuclear target dis-
plays a number of features. At low energy loss !"",

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
nuclear !transition" densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger ", peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large ", a structureless continuum due to deep in-
elastic scattering !DIS" on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.

*benhar@roma1.infn.it
†dbd@virginia.edu
‡ingo.sick@unibas.ch

FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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Schematic representation of the inclusive cross section as a function of the energy loss.

• Broad peak due to quasi-
elastic electron-nucleon 
scattering.

• Excitation of the nucleon to 
distinct resonances (like the Δ) 
and pion production.

O. Benhar, et al. RMP 80, 189 (2008) 

• Deep Inelastic Scattering 
region, productions of hadrons 
other than protons and 
neutrons

The different reaction mechanisms can be easily identified



Neutrino-nucleus scattering
The measured double differential CCQE cross section is averaged over the neutrino flux 


• Energy distribution of the MiniBooNE 
neutrino flux

• Different reaction mechanisms contribute to 
the cross section for a fixed value of the 
kinetic energy and scattering angle of the 
final lepton 

• Processes leading to two-nucleon emission  
must be taken into account to reproduce the 
scattering data in the quasi-elastic region

A description of neutrino-nucleus interactions, has to be validated through extensive comparison to 
the large body of electron-nucleus scattering data. 




Electron-nucleus scattering

The inclusive cross section of the process in which 
a lepton scatters off a nucleus and the hadronic 
final state is undetected can be written as

• The Hadronic tensor contains all the information on target response

• The Leptonic tensor is fully specified by the lepton kinematic variables. For instance, in the electron-
nucleus scattering case

d2�

d⌦`dE`0
= Lµ⌫W

µ⌫

LEM
µ⌫ = 2[kµk

0
⌫ + k⌫k

0
µ � gµ⌫(kk

0)]

Wµ⌫ =
X

f

h0|Jµ†(q)|fihf |J⌫(q)|0i�(4)(p0 + q � pf )

Non relativistic nuclear many-body theory (NMBT) provides a fully consistent theoretical approach 
allowing for an accurate description of |0>, independent of momentum transfer.



Non relativistic Nuclear Many Body Theory
• Within the NMBT the nucleus is described as a collection of A point-like nucleons, the dynamics 
of which are described by the non relativistic Hamiltonian 

H =
X

i

p2
i

2m
+

X

i<j

vij +
X

i<j<k

Vijk + . . .

Argonne v18 UIX, IL7

 The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

r · JEM + i[H, J0
EM] = 0

• The above equation implies that JEM involves two-
nucleon contributions. ⇡ ⇡⇡

H |0i = E0 |0i , H |fi = Ef |fi can be accurately determined for A  12

• Non relativistic expansion of JEM, powers |q|/m



The Green’s Function Monte Carlo approach

• Green’s function Monte Carlo combined with a realistic nuclear hamiltonian reproduces the spectrum of     
ground and excited states of light nuclei 

Quantum Monte Carlo
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GFMC Calculations
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• Green’s function Monte Carlo combined with a realistic nuclear hamiltonian reproduces the spectrum of ground- and excited 
states of light nuclei (including spin-orbit splitting and the emerging alpha clustering structures) 



The Green’s Function Monte Carlo approach

 Using the completeness relation for the final states, we are left with ground-state expectations value

• Accurate calculations of the electromagnetic responses of 4He and 12C have been recently performed 
within GFMC

• Valuable information on the energy dependence of the response functions can be inferred from the 
their Laplace transforms 

R↵�(!,q) =
X

f

h0|J†
↵(q)|fihf |J�(q)|0i�(! � Ef + E0)

Limitations of the original method:

★ It is a nonrelativistic method, can not be safely applied in the whole kinematical region relevant for 
neutrino experiments

★ The computational effort required by the inversion of           makes the direct calculation of inclusive 
cross sections unfeasible

E↵�

E↵�(q, ⌧) =

Z
d! e�!⌧R↵�(q,!) = h0|J†

↵(q)e
�(H�E0)⌧J�(q)|0i



Relativistic effects in a correlated system

• The importance of relativity emerges in the frame dependence of non relativistic calculations at high 
values of q

• In a generic reference frame the longitudinal non relativistic response reads

Rfr
L =

X

f

���h i|
X

j

⇢j(q
fr,!fr)| f i

���
2
�(Efr

f � Efr
i � !fr)

�(Efr
f � Efr

i � !fr) ⇡ �[efrf + (P fr
f )2/(2MT )� efri � (P fr

i )2/(2MT )� !fr] ⌘ �[efrf � enrf (qfr,!fr)]

• The response in the LAB frame is given by the Lorentz transformation 

 where 

RL(q,!) =
q2

(qfr)2
Efr

i

M0
Rfr

L (qfr,!fr) RT (q,!) =
Efr

i

M0
Rfr

T (qfr,!fr)

qfr = �(q � �!), !fr = �(! � �q), P fr
i = ���M0, Efr

i = �M0

• We extend the applicability of GFMC in the quasielastic region to intermediate momentum transfers 
by performing the calculations in a reference frame that minimizes nucleon momenta. 



• Longitudinal responses of 4He for |q|=700 MeV in the four different reference frames. 

  The curves show differences in both peak positions and heights. 

He4

Relativistic effects in a correlated system



pfr = µ
⇣ pfrN
mN

� pfrX
MX

⌘

P fr
f = pfrN + pfrX

µ =
mNMX

mN +MX

• The relative momentum is derived in a relativistic fashion

!fr = Efr
f � Efr

i

Efr
f =

q
m2

N + [pfr + µ/MXPfr
f ]2 +

q
M2

X + [pfr � µ/mNPfr
f ]2

• And it is used as input in the non relativistic kinetic energy

efrf = (pfr)2/(2µ)

• The energy-conserving delta function reads 

�(Efr
f � Efr

i � !fr) = �(F (efrf )� !fr) =
⇣@F fr

@efrf

⌘�1
�[efrf � erelf (qfr,!f )]

• The frame dependence can be drastically reduced if one assumes a two-body breakup model with 
relativistic kinematics to determine the input to the non relativistic dynamics calculation

Relativistic effects in a correlated system



• Longitudinal responses of 4He for |q|=700 MeV in the four different reference frames. 

  The different curves are almost identical. 

He4

Relativistic effects in a correlated system



Scaling in the Fermi gas model

• Scaling of the first kind: the nuclear electromagnetic responses divided by an appropriate function 
describing the single-nucleon physics no longer depend on the two variables      and q, but only upon !  (q,!)

� = !/2m

 = |q|/2m
⌧ = 2 � �2

⌘F = pF /m

⇠F =
q
p2F +m2/m� 1

 =
1

⇠F

�� ⌧q
(1 + �)⌧ + 

p
⌧(1 + ⌧)

RL,T = (1�  2)✓(1�  2)⇥GL,T

Adimensional variables: Scaling function:

In the FG the L and T responses 
have the same functional form :

Scaling in the Fermi Gas model

Scaling of the first kind: the nuclear responses divided by an appropriate
function describing the single-nucleon physics no longer depend on the two
variables q and !, but only upon  (q,!).

L/T scaling responses:

fL,T ( ) = pF ⇥
RL,T

GL,T

Within the GRFG model we obtain

f ( ) = fL,T ( ) =
3⇠F
2⌘2

F

�
1 �  2)✓(1 �  2) .

Noemi Rocco ⌫-nucleus interactions March 2, 2017 27 / 45



Scaling as a tool to interpolate the responses

He4 • In order to obtain the GFMC inclusive 
electron-nucleus cross sections we developed 
a novel interpolation algorithm based on the 
scaling of the nuclear responses. 


• For a fixed value of        and 


Q2 = 4Ee(Ee � !) sin2
✓e
2

, |q| =
p

Q2 + !2

• We first compute        then the set of              
is interpolated in |q|. 


 0
nr RL,T ( 

0
nr,q)

Ee ✓e

• For a given value of           the curves 
corresponding to different values of |q| are 
almost perfectly aligned and monotonic 
functions of |q|. Using the concept of scaling, 
largely improves the accuracy of the 
interpolation procedure and reduces the 
computational cost

 0
nr

4

spectrum for the initial and final states. In this work, we
introduce a constant shift in the energy transfer in the
definition of the scaling variable

 0
nr = pF

⇣! � Es

|q| � |q|
2m

⌘
. (7)

In the above equation, pF is the Fermi momentum, and
Es is empirically chosen to account for binding e↵ects in
both the initial and final states. In the present analysis
of the 4He nucleus, we use pF=180 MeV and Es = 15
MeV. However the results are quite insensitive to small
variations of these parameters.

FIG. 5. One-body longitudinal (upper panel) and transverse
(bottom panel) electromagnetic response functions of 4He for
|q| = 300, 400, 500, 600, and 700 MeV as a function  0

nr given
in Eq.(7) .

Figure 5 shows the longitudinal and transverse re-
sponse functions 4He divided by the proton electric form
factor squared for |qi| = 300, 400, 500, 600, and 700 MeV
as a function  0

nr. In both channels the curves corre-
sponding to di↵erent values of the momentum transfer
peak around  0

nr=0 and the height of the quasielastic
peaks is a monotonic function of |q|. In the longitudinal
case, shown in the upper panel, the highest and the lowest
peak correspond to |q| = 300 and 700 MeV, respectively.
On the other hand, in the transverse channel, displayed
in the bottom panel, the response functions are smaller as
|q| decreases. In Fig. 6 both one- and two-body terms in
the electromagnetic current have been included. Meson-
exchange current contributions only a↵ect the transverse

FIG. 6. Same as in Fig. 5 including one- and two-body terms
in the electromagnetic current.

channel, leading to a sizable enhancement of the response
functions. Nevertheless, the behavior of the curves in
both the upper and lower panels is analogous to that of
Fig. 5.
In order to evaluate Eq. (1) we fix Ee and ✓e, the initial

electron beam energy and scattering angle, respectively,
and use Ee0 = Ee � ! for the energy of the outgoing
electron. The four-momentum transfer is then written as

Q2 = �q2 = 4Ee(Ee � !) sin2
✓e0

2
, (8)

For a given value of !, the response functions have to
be evaluated at |q| =

p
!2 +Q2. To this aim, we first

compute  0
nr as in Eq.(7). Then, the set of RL,T ( 0

nr, qi)
is interpolated at |q|. By looking at Figs. 5 and 6, it
becomes evident why it is more convenient to interpolate
the di↵erent response functions when the latter are given
as a function of  0

nr and |q| rather than ! and |q|. For
a given value of  0

nr the curves corresponding to the dif-
ferent |qi| are indeed almost perfectly aligned and mono-
tonic functions of |q|, largely improving the accuracy of
the interpolation procedure.
In Fig. 7 we compare with experimental data the

electron-4He inclusive double-di↵erential cross sections
obtained from the GFMC responses for various kinemat-
ical setups, corresponding to di↵erent values of Ee and
✓e. The green and blue curve corresponds to retaining
only one-body terms or both one- and two-body terms in



Scaling as a tool to interpolate the responses 6

FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].
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Ref. [14].
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The Impulse Approximation 

• The matrix element of the current can be written in the factorized form 

• For sufficiently large values of |q|, the IA can be applied under the assumptions

• The nuclear cross section is given in terms of the one describing the interaction with individual bound 
nucleons 

|fi �! |pi ⌦ |fiA�1 J↵ =
X

i

ji↵

h0|J↵|fi !
X

k

h0|[|ki ⌦ |fiA�1]hk|
X

i

ji↵|pi

d�A =

Z
dE d3kd�NP (k, E)

• The intrinsic properties of the nucleus are described by the hole spectral function



• The Spectral Function gives the probability distribution of removing a nucleon with momentum k, 
leaving the spectator system with an excitation energy E

• The two points Green’s Function describes nucleon propagation in the nuclear medium 

The one-body hole Spectral Function

Ph(k, E) =
X

f

|h A
0 |[|ki ⌦ | A�1

f i]|2�(E + EA�1
f � EA

0 )

=
1

⇡

X

↵�

�̃⇤
�(k)�̃↵(k)Imh A

0 |a
†
�

1

E + (H � EA
0 )� i✏

a↵| A
0 i .

Gh,↵�(E) = h A
0 |a

†
�

1

E + (H � EA
0 )� i✏

a↵| A
0 i

• The nuclear matrix element can be rewritten in terms of the transition amplitude
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The Self Consistent Green’s Function approach

• The one-body Green’s function is completely determined by solving the Dyson equation 

initial reference state, HF

Correlated propagator

Self energy: encoding nuclear 
medium effects on the 

particle propagation

⌃⇤ = ⌃⇤[G(E)]•                              , an iterative procedure is required to solve the Dyson equation self-consistently

• The self-energy is systematically calculated in a non-perturbative fashion within the Algebraic 
Diagrammatic Construction (ADC).

• Chiral NNLOsat two and three nucleon forces are used in the calculation

• Two- and three-nucleon force contributions are included up to the third order               ADC(3) 



The Self Consistent Green’s Function approach
• To reduce the number of Feynman diagrams entering the calculation of the Green’s Function, only 

interaction irreducible diagrams are considered. The effective one- and two- body interactions are 
introduced:

Ũ↵� = U↵� +
X

��

V↵�,��⇢�� +
1

4

X

µ⌫��

W↵µ⌫,���⇢�µ⇢⌫� ,

Ṽ↵�,�� = V↵�,�� +
X

µ⌫

W↵�µ,��⌫⇢⌫µ .

the one body density matrix reads ⇢�� = h A
0 |a†�a�| A

0 i .

• Within the ADC(3) these diagrams are takes as ‘seeds’ for the infinite order re-summation that 
eventually generates the self-energy

2nd and 3rd order 
diagrams with 2h1p 
(and 2p1h) 
intermediate 
configurations



The Self Consistent Green’s Function approach
• Operators are expanded on an harmonic oscillator basis with a given oscillator frequency       , 
and size of the single-particle model space Nmax 

~!
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0 |a

†
�a↵| 

A
0 i⇢p(r) =

X

↵�

�⇤
�(r)�↵(r)⇢↵�

• One-body density matrix• Point-proton density distribution

He4

• Optimized Reference State (OpRS) curve is 
obtained defining an independent particle 
model propagator:

GOpRS
↵� (E) = +

X

k2F

�k
↵(�

k
�)

⇤

E � ✏OpRS
k � i⌘

where F represents the set of occupied 
states,            and     are the single particle 
energies and wave functions. 


✏OpRS �

•             and     are obtained by requiring that

the OpRS lowest momenta of the spectral 
distribution reproduce those of the full 
calculation 

✏OpRS �
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The 4He  SGFC charge density distribution
• The nuclear charge density distribution is written in terms of the elastic form factor and the Fourier 
transform of the point proton density distribution

• The cOm issue: The subtraction of the cOm contribution from the wave function is a long standing 
problem affecting a number of many-body approaches relying on single nucleon basis

To estimate the error due to residual 
cOm contribution in 4He we developed 
Metropolis Monte Carlo calculation 


• Trial wave function: | V i = | OpRS
0 i

• A sequence of points in the 3A-
dimensional space are generated by 
sampling from P (R) = | OpRS

0 (R)|2

• The intrinsic coordinates are given by

r̃i = ri �Rcm , Rcm =
1

A

X

i

ri

He4



The 4He  SGFC nucleon momentum distribution

n(k) =
X

↵�

�̃⇤
�(k)�̃↵(k)⇢↵�

• The nucleon momentum distribution can be 
defined in terms of the one-body density matrix 

• The nucleon momentum distribution is 
normalized as

Z
d3k

(2⇡)3
n(k) =

Z
d3k

(2⇡)3
dE P (k, E) = A

He4



The SGFC results for 16O

• Nice agreement between the SCGF and QMC calculations

• SCGF results agree with experiments (corroborates the goodness of NNLOsat)

• Nuclear charge density distribution of 16O



The SGFC results for 16O

• The momentum distribution reflects the fact that NNLOsat is softer the AV18+UIX.

• QMC accurately treats the high momentum components of the wave function

• Single particle momentum distribution of 16O



The SGFC results for 16O

• The momentum distribution reflects the fact that NNLOsat is softer the AV18+UIX.

• QMC accurately treats the high momentum components of the wave function

• Single particle momentum distribution of 16O, log scale



The Impulse Approximation and convolution scheme

• In the kinematical region in which the interactions between the struck particle and the spectator system can 
not be neglected, the IA results have to be modified to include the effect of final state interactions (FSI). 


• The theoretical approach to calculate the folding function consists on a generalization of Glauber theory of 
high energy proton-nucleus scattering 

fq(!) = �(!)
p

Tq +

Z
dt

2⇡
ei!t

h
ŪFSI
q (t)�

p
Tq

i

= �(!)
p

Tq + (1�
p
Tq)Fq(!),

 Glauber Factor

Nuclear Transparency 

O.Benhar, Phys. Rev. C87, 024606 (2013) A.Ankowski et al,Phys. Rev. D91, 033005 (2015)

d�FSI =

Z
d!0fq(! � !0)d�̃IA , ẽ(p) = ẽ(p) + U(tkin(p))

Optical Potential



4He-e- cross sections within the SCGF approach
• ADC(3) and OpRS results:  IA • Including FSI in the OpRS intrinsic results



16O-e- cross sections within the SCGF approach



The CBF one-body Spectral Function of finite nuclei
• 16O Spectral Function obtained within CBF 

and using the Local Density Approximation

136 Many-body theory exposed!

Fig. 7.6 Spectroscopic factors from the (e, e'p) reaction as a function of target mass.
The dotted line with a height of 1, illustrates the prediction of the independent-particle
model. Data have been obtained at the NIKHEF accelerator in Amsterdam [Lapikas
(1993)].

momentum can also have negative values when it is directed opposite to the
momentum transferred to the target. A correct description of the reaction
requires a good fit at all values of this quantity.

Figure 7.5 demonstrates that the shapes of the valence nucleon wave
functions accurately describe the observed cross sections. Such wave func-
tions have been employed for years in nuclear-structure calculations, which
have relied on the independent-particle model. The description of the data
in Fig. 7.5, however, requires a significant departure of the independent-
particle model, with regard to the integral of the square of these wave
functions. Indeed, the spectroscopic factors, necessary to obtain the solid
curves, are substantially less than 1. Similar spectroscopic factors are
extracted for nuclei all over the periodic table4. A compilation for the
spectroscopic factor of the last valence orbit for different nuclei, adapted
from [Lapikas (1993)], is shown in Fig. 7.6. The results in Fig. 7.6 indicate
that there is an essentially global reduction of the sp strength of about
35% for these valence holes in most nuclei. Such a substantial deviation
from the prediction of the independent-particle model, requires a detailed

4Most experiments have been performed on closed-shell nuclei.

P
LDA

(k, E) = P
MF

(k, E) + P
corr

(k, E)

X

n

Zn|�n(k)|2Fn(E � En)

    40Ar: JLab E 12-14-012



The CBF one-body Spectral Function of finite nuclei
• 16O Spectral Function obtained within CBF 

and using the Local Density Approximation
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• High energy and momentum correlated pairs• The Correlated Basis Function approach accounts for 
correlations induced by the nuclear interactions
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• The correlation operator reflects the spin-isospin 
dependence of the nuclear interaction
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• The one-body Spectral function of nuclear matter:
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The CBF one-body Spectral Function of finite nuclei
• 16O Spectral Function obtained within CBF 

and using the Local Density Approximation

136 Many-body theory exposed!

Fig. 7.6 Spectroscopic factors from the (e, e'p) reaction as a function of target mass.
The dotted line with a height of 1, illustrates the prediction of the independent-particle
model. Data have been obtained at the NIKHEF accelerator in Amsterdam [Lapikas
(1993)].

momentum can also have negative values when it is directed opposite to the
momentum transferred to the target. A correct description of the reaction
requires a good fit at all values of this quantity.

Figure 7.5 demonstrates that the shapes of the valence nucleon wave
functions accurately describe the observed cross sections. Such wave func-
tions have been employed for years in nuclear-structure calculations, which
have relied on the independent-particle model. The description of the data
in Fig. 7.5, however, requires a significant departure of the independent-
particle model, with regard to the integral of the square of these wave
functions. Indeed, the spectroscopic factors, necessary to obtain the solid
curves, are substantially less than 1. Similar spectroscopic factors are
extracted for nuclei all over the periodic table4. A compilation for the
spectroscopic factor of the last valence orbit for different nuclei, adapted
from [Lapikas (1993)], is shown in Fig. 7.6. The results in Fig. 7.6 indicate
that there is an essentially global reduction of the sp strength of about
35% for these valence holes in most nuclei. Such a substantial deviation
from the prediction of the independent-particle model, requires a detailed

4Most experiments have been performed on closed-shell nuclei.
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• High energy and momentum correlated pairs
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Production of two particle-two hole (2p2h) states
• Meson Exchange currents • Initial State Correlations

5

and momentum. Its leading term, corresponding to 2h1p
states of the residual (A�1)-particle system in which one

nucleon is excited to a state outside the Fermi sea, can
be written in the form

P2h1p(k, E) =

Z
d

3
hd

3
h

0
d

3
p

0|�hh0p0

k |2✓(kF � |h|)✓(kF � |h0|)✓(|p0|� kF )�(E + eh + eh0 � ep0) , (19)

where the integration includes a sum over the indices
associated with discrete degrees of freedom, and

�hh0p0

k = h0|{|ki ⌦ |hh0
p

0i} . (20)

Note that momentum conservation requires that the ex-

pression of �hh0p0

k involve a �(h+ h

0 � p

0 � k).
As pointed out above, in the presence of ground state

correlations both parts of the spectral function pro-
vide non vanishing contributions to the cross section of
Eq. (18).

FIG. 3. (color online) Cross section of the process e+12 C !
e0+X at beam energy Ee = 961 MeV and electron scattering
angle ✓e = 37.5 deg, computed using Eq. (18) with the spec-
tral function of Ref. [20]. The solid line shows the results of
the full calculation, while the breakdown into 1p1h and 2p2h
contributions is illustrated by the dot-dash and dashed lines,
respectively.

Figure 3 shows the 1p1h and 2p2h components of the
electron-carbon cross section arising from ISC. The cal-
culations have been performed at Ee = 961 MeV and
✓e = 37.5 deg, using Eq. (18) with the spectral func-
tion of Ref. [20] and the parametrisation of the nucleon
form factors of Ref. [22]. The solid line corresponds to
the results of the full calculation, while the dot-dash and
dashed lines have been obtained using the pole and con-
tinuum parts of the spectral function, which amounts to
taking into account only 1p1h or 2p2h final states, re-
spectively. The distinct energy dependence of the 2p2h

contribution, providing ⇠ 10% of the total QE cross sec-
tion, is clearly visible.
The importance of relativistic e↵ects can be gauged

comparing the solid and dashed lines of Fig. 4, repre-
senting the carbon cross sections obtained from Eq. (18)
using relativistic and non relativistic kinematics, respec-
tively. It clearly appears that in a kinematical setup cor-
responding to |q| ⇠ 585 MeV at ! = !QE relativistic
kinematics sizeably a↵ects both position and width of
the quasi elastic peak.

FIG. 4. (color online) Electron-carbon cross section obtained
from Eq. (18) using relativistic (solid line) and non relativistic
(dashed line) kinematics. The experimental data are from
Ref. [23].

The factorisation ansatz of Eq. (16) can be readily
extended to allow for a consistent treatment of the am-
plitudes involving one- and two-nucleon currents. The
resulting expression is

|Ni = |pp0i ⌦ |mA�2,pmi , (21)

where the states |pp0i and |mA�2,pmi describe two non
interacting nucleons of momenta p and p

0 and the (A�2)-
particle residual system, respectively.
Using Eq. (21), the nuclear matrix element of the two-

nucleon current can be written in terms of two-body ma-
trix elements according to

hN |jµij |0i =
Z

d

3
kd

3
k

0
Mm(k,k0)hpp0|jµij |kk

0i , (22)

• Pcorr(k,E) accounts for 
the presence of 
strongly correlated 
pairs. Its contribution 
to the cross section is 
clearly visible: 
appearance of a tail in 
the large energy 
transfer region

Different contributions to 
the relativistic two-body 

currents
• The Spectral Function approach has been generalized:

Wµ⌫
2p2h = Wµ⌫

ISC +Wµ⌫
MEC +Wµ⌫

int

+



3

particle model. As a consequence, the calculation of
Wµ⌫

2p2h,11, describing processes in which the momentum
q is transferred to a single high-momentum nucleon, re-
quires the continuum component of the hole spectral
function [17, 18].

The second term in the right hand side of Eq. (7),

involving the matrix elements of the two-nucleon current,
is written in terms of the two-nucleon spectral function
[19]. The explicit expressions of Wµ⌫

2p2h,11 and Wµ⌫
2p2h,22

are reported in Ref. [16].
Finally, Wµ⌫

2p2h,12, taking into account interference con-
tributions, involves the nuclear overlaps defined in both
Eqs. (4) and (6). The resulting expression is

Wµ⌫
2p2h,12 =

Z
d3k d3⇠ d3⇠0 d3h d3h0d3p d3p0�hh0

⇠⇠0
⇤ h

�hh0p0

k hk|jµ1 |pi + �hh0p
k hk|jµ2 |p0i

i
(8)

⇥ hpp0|j⌫12|⇠, ⇠0i �(h+ h0 + q � p � p0)�(! + eh + eh0 � ep � ep0)✓(|p| � kF )✓(|p0| � kF ) + h.c. .

We have compared the results of our approach to the
measured electron-carbon cross sections in two di↵erent
kinematical setups, corresponding to momentum trans-
fer 300 . |q| . 800 MeV. The calculations have been
carried out following Ref. [16], using the carbon spec-
tral function of Ref. [20] and the 1h contribution to the
spectral function of isospin-symmetric nuclear matter of
Ref. [17]. The 2h1p amplitude, needed to evaluate the
interference term, has been also computed for nuclear
matter at equilibrium density. In the quasi elastic chan-
nel we have adopted the parametrization of the nucleon
form factors of Ref. [21], whereas the inelastic nucleon
structure functions have been taken from Refs. [22, 23].

Figure 2 shows the electron-carbon cross section at
beam energy Ee = 680 MeV and scattering angle ✓e =
36 deg (A) , and Ee = 1300 MeV and ✓e = 37.5 deg
(B) . The solid and dashed lines correspond to the re-
sults of the full calculation and to the one-body current
contribution, respectively. The pure two-body current
contribution and the one arising from interference are
illustrated by the dot-dash and dotted line. In the kine-
matics of panel (A) the two-body currents play an al-
most negligible role. The significant lack of strength in
the �-production region, discussed in Ref. [26], is likely
to be due to the inadequacy of the structure functions of
Refs. [22, 23] to describe the region of Q2 <⇠ 0.2 GeV2,
while the shift in the position of the quasi-elastic peak
has to be ascribed to the e↵ects of FSI, which are not
taken into account.

At the larger beam energy and Q2 corresponding to
panel (B), the agreement between theory and data is
significantly improved, and the contribution of the two-
nucleon currents turns out to substantially increase the
cross section in the dip region and beyond.

In inclusive processes, FSI have two e↵ects: a shift of
the cross section, arising from the interaction between
the struck nucleon and the mean field generated by the
spectator particles, and a redistribution of the strength
from the quasi-elastic peak to the tails. The theoretical
approach for the description of FSI within the spectral
function formalism is discussed in Refs. [12, 13, 15, 27].

FIG. 2. (color online) (A): Double di↵erential cross section
of the process e + 12C ! e0 + X at beam energy Ee = 680
MeV and scattering angle ✓e = 37.5 deg. The solid line shows
the result of the full calculation, while the dashed line has
been obtained including the one-body current only. The con-
tributions arising from two-nucleon currents are illustrated
by the dot-dash and dotted lines, corresponding to the pure
two-body current transition probability and to the interfer-
ence term, respectively. The experimental data are taken
from Ref. [24]. (B) same as (A) but for Ee = 1300 MeV
and ✓e = 37.5 deg. The experimental data are taken from
Ref. [25].

According to Ref. [15, 27], the di↵erential cross section
can be written in the convolution form

d�FSI(!) =

Z
d!0fq(! � !0 � UV )d�(!

0) , (9)

where d� denotes the cross section in the absence of FSI,
the e↵ects of which are accounted for by the folding func-

4

tion

fq(!) =
p
TA�(!) + (1 �

p
TA)Fq(!) . (10)

The above equations show that inclusion of FSI involves
three elements: i) the real part of the optical potential
UV extracted from proton-carbon scattering data [28],
responsible for the shift in !, ii) the nuclear transparency
TA measured in coincidence (e, e0p) reactions [29], and
iii) a function Fq(!), sharply peaked at ! = 0, whose
width is dictated by the in-medium NN scattering cross
section [27].

A comprehensive analysis of FSI e↵ects on the electron-
carbon cross sections has been recently carried out by the
authors of Ref. [15]. In this work we have followed closely
their approach, using the same input.

FIG. 3. (color online) (A): double di↵erential electron-carbon
cross section at beam energy Ee = 680 MeV and scattering
angle ✓e = 36 deg. The dashed line corresponds to the result
obtained neglecting FSI, while the solid line has been obtained
within the approach of Ref. [15]. The experimental data are
taken from Ref. [24]. (B): same as (A) but for Ee = 1300
MeV and ✓e = 37.5 deg. The experimental data are taken
from Ref. [25].

Figure 3 illustrates the e↵ects of FSI on the electron-
carbon cross section in the kinematical setups of Fig. 2.
In panel (A), both the pronounced shift of the quasi
elastic-peak, and the redistribution of the strength are
clearly visible, and significantly improve the agreement
between theory and data. For larger values of Q2, how-
ever, FSI play a less relevant, in fact almost negligible,
role. This feature is illustrated in panel (B), showing
that at beam energy Ee = 1.3 GeV and scattering an-
gle ✓e = 37.5 deg, corresponding to Q2 ⇠ 0.5 GeV2, the

results of calculations carried out with and without in-
clusion of FSI give very similar results, yielding a good
description of the data.
Note that, being transverse in nature, the calculated

two-nucleon current contributions to the cross sections
exhibit a strong angular dependence. At Ee = 1.3 GeV,
we find that the ratio between the integrated strengths
in the 1p1h and 2p2h sectors grows from 4% at electron
scattering angle ✓e=10 deg to 46% at ✓e=60 deg.
The results of our work show that the approach based

on the generalized factorization ansatz and the spectral
function formalism provides a consistent framework for a
unified description of the electron-nucleus cross section,
applicable in the kinematical regime in which relativistic
e↵ects are known to be important.
The extension of our approach to neutrino-nucleus

scattering, which does not involve further conceptual dif-
ficulties, may o↵er new insight on the interpretation of
the cross section measured by the MiniBooNE Collab-
oration in the quasi elastic channel [30, 31]. The ex-
cess strength in the region of the quasi elastic peak is in
fact believed to originate from processes involving two-
nucleon currents [32–34], whose contributions is observed
at lower muon kinetic energy as a result of the average
over the neutrino flux [35]. The strong angular depen-
dence of the two-nucleon current contribution, may also
provide a clue for the understanding of the di↵erences
between the quasi elastic cross sections reported by the
MiniBooNE and NOMAD Collaboration [36], which col-
lected data using neutrino fluxes with very di↵erent mean
energies: 880 MeV and 25 GeV, respectively [35].
As a final remark, it has to be pointed out that a

clear-cut identification of the variety of reaction mech-
anisms contributing to the neutrino-nucleus cross section
will require a careful analysis of the assumptions underly-
ing di↵erent models of nuclear dynamics. All approaches
based on the independent particle model fail to properly
take into account correlation e↵ects, leading to a signif-
icant reduction of the normalization of the shell-model
states [37], as well as to the appearance of sizable in-
terference terms in the 2p2h sector. However, in some
instances these two deficiencies may largely compensate
one another, leading to accidental agreement between
theory and data. For example, the two-body current con-
tributions computed within our approach turn out to be
close to those obtained within the Fermi gas model.
The development of a nuclear model having the predic-
tive power needed for applications to the analysis of fu-
ture experiments—most notably the Deep Underground
Neutrino Experiment (DUNE) [38]—will require that the
degeneracy between di↵erent approaches be resolved. A
systematic comparison between the results of theoreti-
cal calculations and the large body of electron scattering
data, including both inclusive and exclusive cross sec-
tions, will greatly help to achieve this goal.
This research is supported by INFN (Italy) under grant

MANYBODY (NR and OB) and the U.S. Department of
Energy, O�ce of Science, O�ce of Nuclear Physics, under
contract DE-AC02-06CH11357 (AL).

Results for electron-12C cross sections
• Separate contributions:  IA • Including FSI in the QE region

NR, A.Lovato, O.Benhar, PRL 116, 192501 (2016)



The inclusive cross section of the process in which a neutrino or antineutrino scatters off a 
nucleus can be written in terms of five response functions
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• The two-body diagrams contributing to the axial and vector responses  

(Anti)neutrino -12C scattering cross sections

• In the preliminary results we present we only included:

Wµ⌫
2p2h = Wµ⌫

ISC +Wµ⌫
MEC +Wµ⌫

int



(Anti)neutrino -12C scattering cross sections

• The exchange contribution 
for the 2b is still missing 
(antisymmetrization of the 
final two-nucleon state)

• The 2b contribution affects 
the ‘dip’ region, in analogy          
with the electromagnetic 
case

• Meson exchange currents 
strongly enhance both the 
neutrino and antineutrino 
cross section for large 
values of the scattering 
angle



Summary and conclusions

• The Correlated Basis Function approach :

Accurate calculations are available for symmetric nuclear matter

The extension to both low- and medium-mass nuclei has been performed using the 
Local Density Approximation 

Using the generalized factorization ansatz we are able do describe all the different 
reaction mechanisms contributing to the lepton-nucleus scattering cross sections

Final State Interactions are included in an approximate fashion

• The Green’s Function Monte Carlo approach:

Accurate results for electroweak responses of 4He and 12C

The main limitations of this method comes from its nonrelativistic nature and its 
computational cost 

The two- fragment model, suitable for realistic models of nuclear dynamics, has been 
employed to account for relativistic kinematics. Double-differential cross sections has be

extracted through an accurate interpolation of the response functions.  



Summary and conclusions

• The Self Consistent Green’s Function approach :

The Green’s function calculation completely describes one-body dynamics. Modern two- 
and three- nucleon chiral forces can be fully exploited within this formalism

We obtained the point density, charge density and single-momentum distribution of 4He 
and 16O. 

The SCGF method has recently been reformulated within Gorkov’s theory that allows to 
address open shell nuclei. Next step: extension to the electroweak sector including both 
one- and two-body currents.

The center of mass contribution sizably affects these quantities for light nuclei. It cannot 
be separated cleanly in most ab initio post-Hartree-Fock methods. 

Satisfactory results have been obtained for the electron-16O double differential cross 
section, where the IA calculation has been supplemented by FSI 

To provide an estimate of this effect in the 4He results, we used a Metropolis Monte Carlo 
algorithm where the trial wave function we used is the Slater determinant obtained from 
the OpRS calculation 



Back up slides



Relativistic aspects of nuclear dynamics
LAB:

• In the LAB frame, the momentum of the active 
nucleon is the largest

P fr
i = 0

P fr
f = qfr

pfrNf = q

qfr = q

� =
q

M0 + !

Anti-LAB:

• The momentum of the active nucleon is 

Active nucleon Breit:

•            at the QE peak is 0. This applies both to 
the relativistic and non relativistic case

Breit:

• The Breit frame minimizes the sum of the     
center of mass kinetic energies of the initial    
and final state   
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Extending the factorization scheme

Extension of the factorization scheme to two-nucleon emission amplitude

|X i �! |p p0i ⌦ |n(A�2)i = |n(A�2);p p0i ,

We can introduce the two-nucleon Spectral Function. . .

P(k, k0, E ) =
X

n
|hn(A�2); k k0|0i|2�(E + E0 � En)

probability of removing two nucleons leaving the A-2 system with energy E
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|X i �! |p p0i ⌦ |n(A�2)i = |n(A�2);p p0i ,

We can introduce the 2 nucleon Spectral Function. . .

P(k, k0, E ) =
X
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W µ�
2p2h,22 /

Z
d3kd3k �d3pd3p�

Z
dE P2h(k, k�, E )hkk�|jµ12|pp�ihpp�|j�12|kk�i

W µ�
2p2h,12 /

Z
d3k d3⇠ d3⇠� d3h d3h�d3p d3p��hh�

���
�
hp,p�|j�12|�, ��i

�
�hh�p�

k hk|jµ1 |pi + �hh�p
k hk|jµ2 |p�i

�
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The pure 2-body & the interference contribution to the hadron tensor read 
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MEC: �-isobar exchange

p 1 p 2

p1 ’ p2 ’
q

k 2
p b

p 1 p 2

p1 ’ p2 ’
q

k 1 p d

p 1 p 2

p1 ’ p2 ’

q

k 2

pa

p 1 p 2

p1 ’ p2 ’

q

k 1

pc

(a) (b) (c) (d)

The Rarita-Schwinger (RS) expression for the � propagator reads

S��(p, M�) =
/p + M�

p2 � M2
�

 
g�� � ����

3
� 2p�p�

3M2
�

� ��p� � ��p�

3M�

!

WARNING
If the condition p2

� > (mN + m⇡)2 the real resonance mass has to be
replaced by M� �! M� � i�(s)/2 where �(s) = (4f⇡N�)2

12⇡m2
⇡

k3
p

s (mN + Ek).
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Form factors

Hadronic monopole form factors

F⇡NN(k2) =
⇤2

⇡ � m2
⇡

⇤2
⇡ � k2

F⇡N�(k2) =
⇤2

⇡N�

⇤2
⇡N� � k2

(3)

and the EM ones

F�NN(q2) =
1

(1 � q2/⇤2
D)2

,

F�N�(q2) = F�NN(q2)
⇣
1 � q2

⇤2
2

⌘�1/2⇣
1 � q2

⇤2
3

⌘�1/2
(4)

where ⇤⇡ = 1300 MeV, ⇤⇡N� = 1150 MeV, ⇤2
D = 0.71GeV2,

⇤2 = M + M� and ⇤2
3 = 3.5 GeV2.
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