Neutrino interactions in dense matter and implications for astrophysics

Sanjay Reddy Univ. of Washington, Seattle

- Motivation
- Preliminaries: linear response & sum rules
- Neutrino scattering at:
 - 10¹² g/cm³ (neutrino-sphere)
 - 10¹³ g/cm³ (role of nuclei and pasta)
 - 10¹⁴ g/cm³ (spin response of nuclear matter)
- Conclusions.

Energy radiated, mostly in neutrinos : $E_{\rm SN} \sim \frac{3GM_{\rm pns}^2}{5r_{\rm NS}} \approx 3 \times 10^{53} \, {\rm erg} \left(\frac{M_{\rm pns}}{M_{\odot}}\right)^2 \left(\frac{r_{NS}}{12 \, {\rm km}}\right)^{-1}$ Lepton number radiated, also in neutrinos : $N_L \approx 3.4 \times 10^{56} \left(\frac{M_{\rm pns}}{1.4 \, M_{\odot}}\right)$

Timescale and energy spectrum of neutrinos is set by neutrino interactions in the hot newly born neutron star

 3×10^{53} ergs = $10^{58} \times 20$ MeV Neutrinos

SN 1987a: ~ 20 neutrinos in support of supernova theory

 3×10^{53} ergs = $10^{58} \times 20$ MeV Neutrinos

SN 1987a: ~ 20 neutrinos in support of supernova theory

 3×10^{53} ergs = $10^{58} \times 20$ MeV Neutrinos

SN 1987a: ~ 20 neutrinos in support of supernova theory

 3×10^{53} ergs = $10^{58} \times 20$ MeV Neutrinos

SN 1987a: ~ 20 neutrinos in support of supernova theory

 3×10^{53} ergs = $10^{58} \times 20$ MeV Neutrinos

SN 1987a: ~ 20 neutrinos in support of supernova theory

Phase Diagram of Hot and Dense Matter

Neutrino Scattering in Hot Neutron Stars

Neutrino Interactions in Dense Matter

Low energy Lagrangian:
$$\mathcal{L} = \frac{G_F}{\sqrt{2}} l_\mu j^\mu$$

Absorption: $l_\mu^{cc} = \bar{l}\gamma_\mu (1 - \gamma_5)\nu_l$ $j_{cc}^\mu = \bar{\Psi}_p \left(\gamma^\mu (g_V - g_A\gamma_5) + F_2 \frac{i\sigma^{\mu\alpha}q_\alpha}{2M}\right) \Psi_n$
Scattering: $l_\mu^{nc} = \bar{\nu}\gamma_\mu (1 - \gamma_5)\nu$ $j_{nc}^\mu = \bar{\Psi}_i \left(\gamma^\mu (C_V^i - C_A^i\gamma_5) + F_2 \frac{i\sigma^{\mu\alpha}q_\alpha}{2M}\right) \Psi_i$

Rate:
$$\frac{d\Gamma(E_1)}{dE_3 d\mu_{13}} = \frac{G_F^2}{32\pi^2} \frac{p_3}{E_1} (1 - f_3(E_3)) L_{\mu\nu} \mathcal{S}^{\mu\nu}(q_0, q)$$

Dynamic structure function: $S^{\mu\nu}(q_0,q) = \frac{-2 \operatorname{Im} \Pi^{\mu\nu}(q_0,q)}{1 - \exp\left(-(q_0 + \Delta \mu)/T\right)}$

Current-current correlations functions: $\Pi^{\mu\nu}(q_0,q) = -i \int dt \ d^3x \ \theta(t) \ e^{i(q_0t - \vec{q} \cdot \vec{x})} \langle |[j_{\mu} \ (\vec{x},t), j_{\nu}(\vec{0},0)]| \rangle$

difficult to calculate in general due to the non-perturbative nature of strong interactions.

Sawyer (1970s), Iwamoto & Pethick (1980s), Burrows & Sawyer, Horowitz & Wehrberger, Raffelt et al., Reddy et al. (1990s), Benhar, Carlson, Gandolfi, Horowitz, Lavato, Pethick, Reddy, Roberts, Schwenk, Shen, and others (2000s)

Correlations in Neutrino Interactions in Nuclear Matter & Nuclei

- At small ω response is governed by hydrodynamic.
- Single-pair response dominates for $|\omega \tau_{coll}| > 1$ and $|\omega| < qv$.
- Multi-particle response dominates for $|\omega| > qv$.
- Collective modes arise due to phase transitions or repulsive interactions.

- At small ω response is governed by hydrodynamic.
- Single-pair response dominates for $|\omega \tau_{coll}| > 1$ and $|\omega| < qv$.
- Multi-particle response dominates for $|\omega| > qv$.
- Collective modes arise due to phase transitions or repulsive interactions.

- At small ω response is governed by hydrodynamic.
- Single-pair response dominates for $|\omega \tau_{coll}| > 1$ and $|\omega| < qv$.
- Multi-particle response dominates for $|\omega| > qv$.
- Collective modes arise due to phase transitions or repulsive interactions.

- At small ω response is governed by hydrodynamic.
- Single-pair response dominates for $|\omega \tau_{coll}| > 1$ and $|\omega| < qv$.
- Multi-particle response dominates for $|\omega| > qv$.
- Collective modes arise due to phase transitions or repulsive interactions.

Linear Response

Perturbation:

Response:

 $\mathcal{H}_{int} = \int d^3x \ \mathcal{O}(x) \ \phi_{ext}(x,t) \qquad \qquad \delta\rho(\vec{q},\omega) = \Pi^R(\vec{q},\omega) \ \phi_{ext}(\vec{q},\omega)$

Response function:
Polarization function $\Pi^R(\vec{q},\omega) = \frac{-i}{\hbar} \int dt \ e^{i\omega t} \ \theta(t) \ \langle [\mathcal{O}(-\vec{q},t),\mathcal{O}(\vec{q},0)] \rangle$ or Generalized Susceptibility

Response to static and uniform perturbations is related to thermodynamic derivatives.

 $\phi_{ext}(\vec{q} \to 0, \omega = 0) = \delta\mu$

Linear Response

Perturbation:

Response:

 $\mathcal{H}_{int} = \int d^3x \ \mathcal{O}(x) \ \phi_{ext}(x,t) \qquad \qquad \delta\rho(\vec{q},\omega) = \Pi^R(\vec{q},\omega) \ \phi_{ext}(\vec{q},\omega)$

Response function:
Polarization function $\Pi^R(\vec{q},\omega) = \frac{-i}{\hbar} \int dt \ e^{i\omega t} \ \theta(t) \ \langle [\mathcal{O}(-\vec{q},t),\mathcal{O}(\vec{q},0)] \rangle$ or Generalized Susceptibility

Response to static and uniform perturbations is related to thermodynamic derivatives. $\phi_{ext}(\vec{q} \to 0, \omega = 0) = \delta \mu$

perturbation can be viewed as a change in the chemical potential

Linear Response

Perturbation:

Response:

 $\mathcal{H}_{int} = \int d^3x \ \mathcal{O}(x) \ \phi_{ext}(x,t) \qquad \qquad \delta\rho(\vec{q},\omega) = \Pi^R(\vec{q},\omega) \ \phi_{ext}(\vec{q},\omega)$

Response function:
Polarization function $\Pi^R(\vec{q},\omega) = \frac{-i}{\hbar} \int dt \ e^{i\omega t} \ \theta(t) \ \langle [\mathcal{O}(-\vec{q},t),\mathcal{O}(\vec{q},0)] \rangle$ or Generalized Susceptibility

Response to static and uniform perturbations is related to thermodynamic derivatives. $\phi_{ext}(\vec{q} \to 0, \omega = 0) = \delta \mu$

perturbation can be viewed as a change in the chemical potential

Compressibility sum-rule:

 $\Pi^R(0,0) = \left(\frac{\partial n}{\partial \mu}\right)_T$ where $n = \langle \mathcal{O}(0,0) \rangle$ is the associated density.

Dynamic Structure Factor

A simpler correlation function $S(\vec{q},\omega) = \int dt \ e^{i\omega t} \ \langle \mathcal{O}(-\vec{q},t)\mathcal{O}(\vec{q},0) \rangle$

$$= 2\pi\hbar \sum_{m,n} \frac{e^{\beta K_n}}{\mathcal{Z}} |\langle n|\mathcal{O}_q|m\rangle|^2 \,\delta(K_n - K_m - \hbar\omega)$$

where K_n are eigenvalues of $K = \mathcal{H} - \mu N$ (grand canonical Hamiltonian)

Fluctuation-dissipation theorem:
$$S(\vec{q}, \omega) = \frac{-2\hbar \operatorname{Im} \Pi^R(\vec{q}, \omega)}{1 - e^{-\beta\hbar\omega}}$$

The dynamic structure factor incorporates all of the many-body effects into the neutrino scattering and absorption rates.

Sum Rules

Static structure factor: $S_q = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} S(q, \omega')$

F-sum rule:
$$\int_{-\infty}^{\infty} d\omega' \, \omega' \, \operatorname{Im} \, \Pi^{R}(q, \omega') = \langle [[\mathcal{H}, \mathcal{O}_{q}], \mathcal{O}_{q}] \rangle$$

Compressibility sum-rule: -

$$\int_{-\infty}^{\infty} \frac{d\omega'}{\pi} \frac{\operatorname{Im} \Pi^{R}(0, \omega')}{\omega'} = \operatorname{Re} \Pi^{R}(0, 0) = \left(\frac{\partial n}{\partial \mu}\right)_{T}$$

At T=0:

$$\int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{(1 - e^{-\beta\hbar\omega'})\mathcal{S}(q \to 0, \omega')}{\hbar\omega'} = \left[\int_{0}^{\infty} \frac{d\omega'}{2\pi} \frac{\mathcal{S}(q \to 0, \omega')}{\hbar\omega'} = \left(\frac{\partial n}{\partial\mu}\right)_{T=0}\right]$$

At high temperature: $(1 - e^{-\beta\hbar\omega'}) \simeq \beta\hbar\omega'$

$$\mathcal{S}_{q=0} = \operatorname{lt}_{q\to 0} \int_{-\infty}^{\infty} d\omega' \ \mathcal{S}(q,\omega) = T \ \left(\frac{\partial n}{\partial \mu}\right)_T$$

Neutrino-nucleon scattering

Nucleon currents simplify in the non-relativistic limit:

$$\begin{aligned} j_{nc}^{\mu} &= \Psi^{\dagger} \Psi \ \delta_{0}^{\mu} + \Psi^{\dagger} \sigma_{k} \Psi \ \delta_{k}^{\mu} + \mathcal{O}[\frac{p}{M}] \\ & \uparrow & \uparrow \\ & \text{density} & \text{spin-density} \end{aligned}$$

$$\frac{d\Gamma(E_1)}{d\Omega dE_3} = \frac{G_F^2}{4\pi^2} E_3^2 \left[C_V^2 (1 + \cos\theta_{13}) S_\rho(\omega, q) + C_A^2 (3 - \cos\theta_{13}) S_\sigma(\omega, q) \right]$$

Neutrino-nucleon scattering

Neutrino-nucleon scattering

In general
$$\tilde{S}_{\alpha}(q) = \int_{-q}^{\omega_{max}} d\omega \ S_{\alpha}(\omega, q) < S_{\alpha}(q) = \int_{-\infty}^{\infty} d\omega \ S_{\alpha}(\omega, q)$$

In practice for conserved currents at long-wavelengths:

At high temperature recall that

$$\tilde{S}_{\rho}(q \to 0) = S_{\rho}(q \to 0)$$
$$\tilde{S}_{\rho}(q) \simeq S_{\rho}(q)$$
$$S_{\rho}(q \to 0) = T \left(\frac{\partial n}{\partial \mu}\right)_{T}$$

In general
$$\tilde{S}_{\alpha}(q) = \int_{-q}^{\omega_{max}} d\omega \ S_{\alpha}(\omega, q) < S_{\alpha}(q) = \int_{-\infty}^{\infty} d\omega \ S_{\alpha}(\omega, q)$$

In practice for conserved currents at long-wavelengths:

At high temperature recall that

$$\tilde{S}_{\rho}(q \to 0) = S_{\rho}(q \to 0)$$
$$\tilde{S}_{\rho}(q) \simeq S_{\rho}(q)$$
$$S_{\rho}(q \to 0) = T \left(\frac{\partial n}{\partial \mu}\right)_{T}$$

In general
$$\tilde{S}_{\alpha}(q) = \int_{-q}^{\omega_{max}} d\omega \ S_{\alpha}(\omega, q) < S_{\alpha}(q) = \int_{-\infty}^{\infty} d\omega \ S_{\alpha}(\omega, q)$$

In practice for conserved currents at long-wavelengths:

At high temperature recall that

$$\tilde{S}_{\rho}(q \to 0) = S_{\rho}(q \to 0)$$
$$\tilde{S}_{\rho}(q) \simeq S_{\rho}(q)$$
$$S_{\rho}(q \to 0) = T \left(\frac{\partial n}{\partial u}\right)$$

 $\setminus \partial \mu$ / $_T$

In general
$$\tilde{S}_{\alpha}(q) = \int_{-q}^{\omega_{max}} d\omega \ S_{\alpha}(\omega, q) < S_{\alpha}(q) = \int_{-\infty}^{\infty} d\omega \ S_{\alpha}(\omega, q)$$

In practice for conserved currents at long-wavelengths:

At high temperature recall that

$$\tilde{S}_{\rho}(q \to 0) = S_{\rho}(q \to 0)$$
$$\tilde{S}_{\rho}(q) \simeq S_{\rho}(q)$$
$$S_{\rho}(q \to 0) = T \left(\frac{\partial n}{\partial u}\right)$$

 $\setminus \partial \mu$ / $_T$

Spin is not conserved by strong interactions

F-sum Rule:
$$F_{\alpha}(q) = \int d\omega \ \omega S_{\alpha}(\omega, q) = \frac{1}{2} \langle [\mathcal{O}_{\alpha}^{\dagger}, [\mathcal{O}_{\alpha}, H]] \rangle$$

 $F_{\rho}(q) = n \ \frac{q^2}{2m} \qquad \qquad F_{\sigma}(q) = C + \tilde{n} \ \frac{q^2}{2m}$

- Thermodynamic derivates may not be adequate to accurately describe the long wavelength spin response.
- Some dynamical information is needed to calculate neutrino scattering rates in the medium.

Spin is not conserved by strong interactions

F-sum Rule:
$$F_{\alpha}(q) = \int d\omega \ \omega S_{\alpha}(\omega, q) = \frac{1}{2} \langle [\mathcal{O}_{\alpha}^{\dagger}, [\mathcal{O}_{\alpha}, H]] \rangle$$

 $F_{\rho}(q) = n \frac{q^2}{2m} \qquad F_{\sigma}(q) = C + \tilde{n} \frac{q^2}{2m}$

1p-1h contribution dominates. No time-like response.

$$\tilde{S}_{\rho}(q) = \int_{-q}^{\omega_{max}} d\omega \ S_{\rho}(\omega, q) \simeq S_{\rho}(q)$$

- Thermodynamic derivates may not be adequate to accurately describe the long wavelength spin response.
- Some dynamical information is needed to calculate neutrino scattering rates in the medium.

Spin is not conserved by strong interactions

1p-1h contribution dominates. No time-like response.

$$\tilde{S}_{\rho}(q) = \int_{-q}^{\omega_{max}} d\omega \ S_{\rho}(\omega, q) \simeq S_{\rho}(q) \qquad \qquad \tilde{S}_{\sigma}(q) = \int_{-q}^{\omega_{max}} d\omega \ S_{\sigma}(\omega, q) < S_{\sigma}(q)$$

- Thermodynamic derivates may not be adequate to accurately describe the long wavelength spin response.
- Some dynamical information is needed to calculate neutrino scattering rates in the medium.

Supernova Neutrino Spectra and Nucleosynthesis

Electron and anti-electron neutrinos play a crucial role in supernova. Their energy spectrum impacts:

- 1. Explosion mechanism
- 2. Nucleosynthesis
- 3. Detection

 $\overline{\nu}_{e} + p \rightarrow n + e^{+}$ $\nu_{e} + n \rightarrow p + e^{-}$

PNS

- Neutrino-sphere at high density. Neutron-rich matter at moderate entropy. R ~ 10-20 km
- Neutrino driven wind at low density and high entropy. R ~ 10³-10⁴ km

- Matter is dilute, but interactions are strong and non-perturbative.
- Nucleon-nucleon scattering length is large ~ 20 fm.
- Small expansion parameter is the fugacity $z=e^{\mu/T}$ virial expansion.
- Horowitz & Schwenk developed a virial EoS in this regime.

Long-wavelength Response using the Virial EoS

Assumes that scattering is nearly elastic to include all many-body correlations through the static structure factors.

$$\tilde{S}_{\rho}(q) = \int_{-q}^{\omega_{max}} d\omega \ S_{\rho}(\omega, q) \simeq S_{\rho}(q) \qquad \qquad \tilde{S}_{\rho}(q \to 0) = S_{\rho}(q \to 0)$$

Calculate the static structure factors using the compressibility or thermodynamic sum rule

$$S_{\rho}(q \to 0) = T \left(\frac{\partial n}{\partial \mu}\right)_{T}$$

```
Sawyer (1975, 1979)
Horowitz and Schwenk (2005), Horowitz et al. (2017)
```

This is an excellent approximation for the density response relevant to neutral current reactions in the neutrino sphere.

The spin response and charged current reactions require some dynamical input.

Pseudo-potential for Hot & Dilute Nuclear Matter

The dynamic structure factor calculable using standard diagrammatic "perturbation" theory - with a twist. Interactions represented by a pseudo-potential: $\mathcal{V}_{ps} \propto \frac{\delta(p_{rel})}{p_{rel}} M$

Pseudo-potential for Hot & Dilute Nuclear Matter

The dynamic structure factor calculable using standard diagrammatic "perturbation" theory - with a twist. Interactions represented by a pseudo-potential: $V_{ps} \propto \frac{\delta(p_{rel})}{p_{rel}} M$

Bedaque, Reddy, Sen & Warrington (2018)

Bedaque, Reddy, Sen & Warrington (2018)

Back-scattering is suppressed

A reduced axial response implies a reduced scattering at backward angles : Important for transport and spectra.

Bedaque, Reddy, Sen & Warrington (2018)

Charged Current Reactions in Neutron-Rich Matter

Potential energy difference between neutrons and protons is large - and related to the low density symmetry energy.

The pseudo-potential is suitable to calculate the nucleon self-energy.

Dense Medium

$$E_n(p) \approx m_n + \frac{p^2}{2m_n^*} + U_n + i \Gamma_n$$
$$E_p(p+q) \approx m_p + \frac{(p+q)^2}{2m_n^*} + U_p + i \Gamma_p$$

$$\mathbf{Q} = \varepsilon_n(\vec{k}) - \varepsilon_p(\vec{k} - \vec{q})$$

 $= M_n - M_p + \Sigma_n(k) - \Sigma_n(k-q)$

Reddy, Prakash & Lattimer (1998), Martinez-Pinedo et al. (2012), Roberts & Reddy (2012), Rrapaj, Bartl, Holt, Reddy, Schwenk (2015)

Charged Current Reactions in Neutron-Rich Matter

Potential energy difference between neutrons and protons is large - and related to the low density symmetry energy.

The pseudo-potential is suitable to calculate the nucleon self-energy.

Reddy, Prakash & Lattimer (1998), Martinez-Pinedo et al. (2012), Roberts & Reddy (2012), Rrapaj, Bartl, Holt, Reddy, Schwenk (2015)

Mean Field & Collisional Broadening

Ansatz for the spin-isospin charge-exchange response function in hot matter: $S_{n} = \frac{1}{1} \lim_{x \to 0} \left[\frac{\Pi(q_0, q)}{1} \right]$

$$S_{\sigma\tau^{-}}(q_{0},q) = \frac{1}{1 - \exp\left(-\beta(q_{0} + \mu_{n} - \mu_{p})\right)} \operatorname{Im}\left[\frac{\Pi(q_{0},q)}{1 - V_{\sigma\tau}\tilde{\Pi}(q_{0},q)}\right]$$

 $V_{\sigma\tau} \simeq 200 - 220 \text{ MeV/fm}$ G. Bertsch, D. Cha, and H. Toki (1984)

Collisional broadening (finite lifetime) introduced in the relaxation time approximation: $\Gamma = \tau_{\sigma}^{-1}$

Charged Currents at Low Density with the Pseudo-potential

 $\frac{d\Gamma}{\cos\theta dE_e} = \frac{G_F^2}{2\pi} p_e \ E_e \left(1 - f_e(E_e)\right) \times \left[(1 + \cos\theta)S_\tau(q_0, q) + g_A^2(3 - \cos\theta)S_{\sigma\tau}(q_0, q)\right]$

Rrapaj, Holt, Bartl, Reddy & Schwenk (2015)

Neutrino Spectra are Sensitive to Symmetry Energy

Time evolution of electron neutrino spectrum could be a useful diagnostic. Larger difference between electron and anti-electron neutrino energies is good for the r-process.

1013-1014 g/cm3 and T~3-20 MeV

- Interesting regime where matter behaves as a dense heterogenous liquid.
- Virial expansion fails. No small expansion parameter.
- Coexistence between neutron-rich nuclei and neutron-rich matter is favored at lower temperature favors large density fluctuations.
- Neutrinos can coherently scatter of the heterogenous structures.

$$\frac{d\Gamma_{\rm coh}}{d\cos\theta} = \frac{G_F^2 \ E_\nu^2}{8\pi} \ n_A \ (1+\cos\theta) \ S(q) \ N_{\rm w}^2 \ F_A^2(q)$$

Pasta in Beta-Equilibrium Dissolves at Low Temperature

For large Y_e the volume fraction of nuclei denoted by **u** is large near the transition density. For small Y_e **u** decreases rapidly with T as protons leak out of nuclei.

Gibbs equilibrium is altered due to thermal protons in the low-density phase.

Pasta configurations favored at large Y_e at T=0, are not realized at T > 1 MeV for matter close to beta-equilibrium.

Roggero, Margueron, Reddy, & Roberts & (2017)

Pasta in Beta-Equilibrium Dissolves at Low Temperature

For large Y_e the volume fraction of nuclei denoted by **u** is large near the transition density. For small Y_e **u** decreases rapidly with T as protons leak out of nuclei.

Gibbs equilibrium is altered due to thermal protons in the low-density phase.

Pasta configurations favored at large Y_e at T=0, are not realized at T > 1 MeV for matter close to beta-equilibrium.

Roggero, Margueron, Reddy, & Roberts & (2017)

Pasta in Beta-Equilibrium Dissolves at Low Temperature

For large Y_e the volume fraction of nuclei denoted by **u** is large near the transition density. For small Y_e **u** decreases rapidly with T as protons leak out of nuclei.

Gibbs equilibrium is altered due to thermal protons in the low-density phase.

Pasta configurations favored at large Y_e at T=0, are not realized at T > 1 MeV for matter close to beta-equilibrium.

Roggero, Margueron, Reddy, & Roberts & (2017)

Paucity of Large Nuclei & Reduced Coherent Scattering

Coherent scattering makes a modest contribution to the total opacity at sub-nuclear density

10¹⁴ g/cm³ uniform neutron-rich matter

10¹⁴ g/cm³ uniform neutron-rich matter

- Corrections due to screening, 2-body currents and 2p-2h excitations are all large. No expansion parameter - results rely on (uncontrolled) many-body approximations.
- Need re-summations Random Phase Approximation or RPA.
- A lot of work in this direction suggests that both the density and soon response is reduced by factors of 2-4.

10¹⁴ g/cm³ uniform neutron-rich matter

- Corrections due to screening, 2-body currents and 2p-2h excitations are all large. No expansion parameter - results rely on (uncontrolled) many-body approximations.
- Need re-summations Random Phase Approximation or RPA.
- A lot of work in this direction suggests that both the density and soon response is reduced by factors of 2-4.

Spin-Response of Neutron Matter: Guidance from Quantum Monte Carlo

Going beyond RPA: Sum-rules can be calculated with QMC.

Shen, Gandolfi, Carlson, Reddy (2012)

In the vicinity of nuclear density QMC sum-rules indicate significant strength at

 $\omega \simeq 30 - 50 \text{ MeV}$

Spin-Response of Neutron Matter: Guidance from Quantum Monte Carlo

Going beyond RPA: Sum-rules can be calculated with QMC.

50

100

ω [MeV]

150

200

Spin-Response of Neutron Matter: Guidance from Quantum Monte Carlo

Going beyond RPA: Sum-rules can be calculated with QMC.

In the vicinity of nuclear density QMC sum-rules indicate significant strength at

 $\omega \simeq 30 - 50 \text{ MeV}$

Energy scale is large compared to

$$\frac{q^2}{2m} \quad \text{or} \quad q \times v_F$$

Conclusions

- Effects due nuclear interactions on the density, spin and isospin susceptibility impacts neutrino transport and spectra in supernovae and mergers. Affects SN and BNS mergers: explosion mechanism, nucleosynthesis, mass ejection, and detections.
- First steps towards an ab-inito approach to calculating the dynamic structure factors at densities and temperatures of interest to the neutrino-sphere are encouraging.
- Nuclei and coherent neutrino scattering are reduced in hot neutron-rich matter at small Y_e. Pasta dissolves rapidly.
- At high density sum rules from ab initio theory can be useful to construct reliable models for the dynamic response.
- It is essential to ensure consistency between the EoS and neutrino opacities in simulations.