Nuclear structure studies relevant to $\beta\beta$ decay of ${}^{136}\mathrm{Xe}$

Bernadette Rebeiro

Open Questions in Neutrino Physics

Neutrino nature

Observation of $0\nu\beta\beta$ decay could answer some of these questions.

Neutrino mass

If $0\nu\beta\beta$ decay is observed...

what is driving the decay?

$$[T_{1/2}^{0\nu}]^{-1} = \sum_{i} G_{i}^{0\nu}(Q,Z) |M^{0\nu}|^2 \eta_{i}^2$$

If $0\nu\beta\beta$ decay is observed...

If light LH Majorana neutrino

$$[T_{1/2}^{0\nu}]^{-1} = \sum_{i} G_{i}^{0\nu}(Q,Z) |M^{0\nu}|^{2} \left(\frac{\langle m_{\beta\beta} \rangle}{m_{e}}\right)^{2}$$

Figure : J. Engel and J. Menéndez, Reports on Progress in Physics, 80, 4 (2017)

B. Rebeiro (UWC, SA)

The Interesting Case of ${}^{136}\text{Xe} \rightarrow {}^{136}\text{Ba}$

- 136 Xe (N = 82, Z = 54) singly closed shell and nearly spherical \Rightarrow matrix element calculations relatively simpler.
- From measured half life, $|M^{2\nu}| = 0.021 \text{ MeV}^{-1} \Rightarrow 2\nu\beta\beta$ decay background suppressed.

The Interesting Case of ${}^{136}Xe \rightarrow {}^{136}Ba$

- ¹³⁶Xe is relatively abundant, affordable and easy to purify.
- Decay has a large Q value ($\sim 2.5~{\rm MeV}) \Rightarrow$ beta endpoint not plagued by room backgrounds.
- Possibility of the Ba ion tagging allows for maximal background reduction.

Closure approximation and Beyond

- Usually NME calculations done using the closure approximation¹.
- This introduces $\sim 10\%$ uncertainity in $M^{0\nu}$
- Recently, theoretical approaches have tried to move beyond the closure approximation.²
- Mixed approach: non-closure for low excitation energies closure for high excitation energy.
- Experimental information about low lying states in the intermediate nucleus would be beneficial.

B. Rebeiro (UWC, SA)

¹ Horoi M and Stoica S 2010 *Phys. Rev.* C **81**, 024321

²A. Brown, M.Horoi and R.Sen'kov. Phys. Rev. Lett.113,262501 (2014)

Knowledge of low-lying excited states in ^{136}Cs

2009 ¹³⁶Cs Levels

	E(level)	$J\pi^{\dagger}$	T _{1/2}		Comments
	0.0 x	5 8	19 s 2	μ=+3.71 2 (1981Th06). T _{1/2} : from 1975Ra03. μ=+1.319 7 (1989Ra17,1981 %IT>0. Q: includes polarization com %IT: Suggested by evaluate	81Th06); Q=+0.74 10 (1989Ra17,1981Th06). correction. ator from the observation of Cs x-rays by 1975Ra03.
				_	PHYSICAL REVIEW C 84, 051305(R) (2011)
K. WIMMER	et al. PHYS	SICAL F	REVIEW C 84,	014329(2011)	
8	0.9988		517 9(1) koV	17 5(2) s	g 35- μAS 138/μq(θμ ₀ /186C), E = 420 MeV 9 50- -
ŝ	M4		517.3(1) KCV	11.5(2) 5	Φ Ξ Ξ 0.0 ⁰ < θ _{bb} < 0.5 ⁰ 25 Ξ Ξ 10 ⁰ < θ _{bb} < 0.5 ⁰ 10 ⁰ < θ _{bb} < 1.5 ⁰ Ξ 10 ⁰ < θ _{bb} < 2.5 ⁰ 20 ¹ < θ _{bb} < 2.5 ⁰ Ξ 20 ⁰ < θ _{bb} < 2.5 ⁰
518	413				15 - 0 13 135 14
4*	202	4	104.8(3) keV		10- 5- 11
5*	* -+- ¹³⁶ 55Cs ₈₁		0.0 keV	13.16 d	

FIG. 3. Proposed level scheme of 136Cs. Previously known were only the spins of the ground state and the isomeric state as well as the half-life of 136Cs

PHYSICAL REVIEW C 95, 034619 (2017)

• ^{136}Cs is an odd-odd nucleus \Rightarrow higher density of states.

Pairing and Double Beta Decays

- QRPA calculations assume the GS of even-even nuclei to be a BCS sea of neutron and proton pairs.
- BCS is not valid in nuclei that fall within regions of changing shapes, or when there is a large gap in single particle states-near a shell closure.

- Experimental probe for pair correlations a pair-transfer reaction:
 n-pair transfer (p,t), (t,p)
 p-pair transfer (³He, n), (n,³He).
- Strong population of the excited 0⁺ states in these reactions would imply breakdown of the BCS approximation.

Pairing and Double Beta Decays : ¹³⁶Ba

- BCS is not valid in nuclei that fall within regions of changing shapes, or when there is a large gap in single particle states-near a shell closure.
- Any structural difference between the initial and final nucleus tends to reduce the NME.
- Ba isotopes belong to a transitional region.³
- (p,t) reaction on lighter $^{(128-134)}{\rm Ba}$ isotopes have shown strong population of excited 0^+ states.
- Pairing studies in ¹³⁶Ba and ¹³⁶Xe would be useful to constain NME calculations.

³Pascu et. al PRC **81, 014304 (2010).**

⁴Pascu et. al PRC **79, 064323 (2009).**

In summary, this talk focusses on work done to

- \bullet Further improve our knowledge about low-lying states in the intermediate ^{136}Cs nucleus.
- Study neutron pairing correlations in the ¹³⁶Ba nucleus.

Experimental Details

- ¹³⁸Ba(d, α)¹³⁶Cs obtain experimental information in the intermediate nucleus.
 ^{138,136}Ba(p, t)^{136,134}Ba to study neutron pairing correlations.
- Beam Details : 22 MeV deutrons, 23 MeV protons.
- Target : $40\mu g/cm^2 \ ^{138,136}$ Ba on $30\mu g/cm^2$ on a carbon backing.
- Facility : High Resolution Q3D Magnetic Spectrometer at Maier-Leibnitz-Laboratorium (MLL), Garching (Germany)

Experimental Details : Q3D Magnetic Spectrometer

Gating for particle identification

Discussion of results - I

$^{138}\mathrm{Ba}(\mathrm{d},\alpha)^{136}\mathrm{Cs}$

B. Rebeiro (UWC, SA)

Energy Calibration : ${}^{138}Ba(d, \alpha){}^{136}Cs$

- Target 1. $40\mu g/cm^2 \ ^{138}BaCO_3$ on $30\mu g/cm^2$ of carbon backing.
- Target 2. $100\mu g/cm^2$ ⁹⁴MoO₃ on $40\mu g/cm^2$ of carbon backing.
- Calibration done in α momentum, assuming reaction occurs at center of target.
- Systematic effects,
 - Reaction location.
 - 2 d and α energy loss is targets.
 - Stopping power from SRIM.
 - Beam energy.
 - Target thickness.

- We identify approx 50 new states in ^{136}Cs upto an excitation energy of 2.4 MeV.
- Resolution ~ 12 keV.

- $^{138}\text{Ba}(d, \alpha)^{136}\text{Cs}$ analysis
 - Selectivity: $J = L \pm 1$

 $J_f = L + 1, L - 1$ for unnatural parity states (1⁺, 2⁻, ...) $J_f = L$ for natural parity states (1⁻, 2⁺, ...)

- DWBA calculation done assuming a single-step stripping of a 'deuteron' so that the transfered proton-neutron pair *only* couple to S=1 and T=0. ⁵
- Furthermore, the large (positive) Q-value for the (d, α) reaction allows for larger L values to be transfered, favoring transitions to states with (reasonably) higher angular momentum.⁶

⁵ Glendenning NK. Phy. Rev. 137, 1B (1965).

⁶ Rivet E, Pehl RH, Cerny J and Harvey BG. *Phy. Rev.* 141, No. 3 (1966).

- $^{138}\text{Ba}(d, \alpha)^{136}\text{Cs}$ analysis
 - Selectivity: $J = L \pm 1$ $J_f = L + 1, L - 1$ for unnatural parity states $(1^+, 2^-, ...)$ $J_f = L$ for natural parity states $(1^-, 2^+, ...)$
 - DWBA code used DWUCK4.
 - OMP for deutron : H. An and C. Cai. Phys. Rev. C 73, 054605 (2006).
 - OMP for alpha : L. McFadden and G.R.Satchler. Nucl. Phys. A 84, 177-200 (1966).

- $^{138}\text{Ba}(d, \alpha)^{136}\text{Cs}$ analysis
 - Selectivity: $J = L \pm 1$

 $J_f = L + 1, L - 1$ for unnatural parity states $(1^+, 2^-, ...)$ $J_f = L$ for natural parity states $(1^-, 2^+, ...)$

- To assign J^π, compare experimental cross-sections with DWBA predictions and normalize.
- Natural parity states :

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm expt} = \alpha \left(\frac{d\sigma}{d\Omega}\right)_{\rm DWBA:J=L}$$

Unnatural parity states

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{expt}} = \beta \left(\frac{d\sigma}{d\Omega}\right)_{\text{DWBA:J=L+1}} + \gamma \left(\frac{d\sigma}{d\Omega}\right)_{\text{DWBA:J=L-1}}$$

 $d-^{138}$ Ba optical model potential selection

AC - H. An and C. Cai. Phys. Rev. C 73, 054605 (2006).
HSS - Han, Shi, and Shen, Phys. Rev. C 74, 044615 (2006).

Discussion of results - II

 138 Ba(p,t) 136 Ba 136 Ba(p,t) 134 Ba

B. Rebeiro (UWC, SA)

$^{136}Ba(p,t)^{134}Ba$

- The (p,t) reaction preferably selects natural parity states.
- $J = L, \pi = (-1)^L$
- J^{π} assignments made by comparing experimental cross-sections with DWBA predictions.
- OMP for protons : R. L. Varner. Phys. Rpts. **201**, No. 2, 57-119 (1991).
- OMP for tritons : X. Li, C. Liang and C.Cai. Nucl. Phys. A **789**, 103-113 (2007).

Identification of 0^+ states in ${}^{136}Ba$

Preliminary Results -Strength of excited 0^+ states in $^{138}Ba(p,t)^{136}Ba$

E_x (keV)	$\left(\frac{d\sigma}{d\Omega} ight)_{ m rel}$ at $ heta=10^\circ$
2315 (0^+_2)	11.3(9)
2785 (0 ⁺ ₃)	10.4(1)
2976	4.1(6)
3278	3.6(1)
3428	0.88(7)
3920	0.9(1)
4361	2.2(2)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm Rel} = \left(\frac{\left(\frac{d\sigma}{d\Omega}\right)_{0_{\rm ex}^+}^{\rm Lab}}{\left(\frac{d\sigma}{d\Omega}\right)_{0_{\rm ex}^+}^{\rm DWBA}}\right) \left(\frac{\left(\frac{d\sigma}{d\Omega}\right)_{0_{\rm gs}^+}^{\rm Lab}}{\left(\frac{d\sigma}{d\Omega}\right)_{0_{\rm gs}^+}^{\rm DWBA}}\right)^{-1}$$

Preliminary Results: ${}^{136}Ba(p,t){}^{134}Ba$, $\theta_{lab} = 25 \text{ deg}$

Experiment performed in July 2017. Analysis in progress.

B. Rebeiro (UWC, SA)

Conclusions

• 138 Ba(d, α) 136 Cs

1 Identify 50 new states in ^{136}Cs .

Angular distribution analysis complete.

- ${}^{138}Ba(p,t){}^{136}Ba$
 - Identify 6 new 0^+ states in ${}^{136}Ba$ in addition to several other states above 2.5 MeV.
 - ⁽²⁾ Preliminary analysis show the $\ell = 0$ strength of the 0^+_2 and 0^+_3 states relative to the ground state $\sim 10\%$ for each.

• $^{136}\mathrm{Ba}(\mathrm{p},\mathrm{t})^{134}\mathrm{Ba}$

Experiment performed in July 2017, analysis in progress.

Collaborators

- University of the Western Cape, Cape Town: S. Triambak, R. Lindsay, J. Ondzé, M. Kamil, P.Z. Mabika, N.J.Orce.
- University of Guelph, Canada: P.E. Garrett, C. Burbadge, V. Bildstein, A. Diaz-Varela, E. Rand, A. Radich.
- IPN, Orsay, iThemba LABS, SA: P. Adsley.
- TRIUMF, Canada: G.C. Ball.
- LMU, Munich: R. Hertenberger, H.F. Wirth.
- TUM, Munich: T. Faestermann.
- Colorado School of Mines: K. Leach.