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The basic model of Nuclear Theory

The basic model of nuclear theory aims at achieving a comprehensive description of the
wealth of data and peculiarities exhibited by nuclear systems. It should simultaneously

describe:

Nucleon-nucleon (NN) scattering data: “thousands” of experimental data available
such as differential and total cross sections, polarizations, asymmetries, etc...

The spectra, properties, and transition of nuclei: binding energies, radii, magnetic
moments, beta decays rates, weak/radiative captures, electroweak form factors, etc.

The nucleonic matter equation of state: neutrons stars with masses of order twice
the solar mass

Inputs for the basic model.
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Phenomenological formulation of the basic model

“* NN Argonne V18 Wiringa. Stoks, Schiavilla, PRC 51, 38 (1995)

I8 » 42 independent parameters controlled by
v1g(r12) = V)5 + V] + vy 4+ v, = Z vP(r12)O74  ~4300 np and pp scattering data below 350
p=1 MeV lab energy
** 3N Urbana-lllinois J. Carlson et al. NP A401, 59 (1983)  S. Pieper et al. PRC 64, 014001 (2001)
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Good description for light nuclei up to A=12;
inadequate description of the neutron star matter
equation of state

Good description for s-shell nuclei (A=3,4) and
neutron stars; inadequate description of the
absolute binding energies and spin-orbit
splitting of heavier nuclei

Pros:» Very good description of several nuclear observables in particular GFMC binding
energies up to A=12 with AV18+IL7 (GFMC energies: uncertainties within 1-2%)

Cons:» Phenomenological interactions are phenomenological, not clear how to improve their
quality
» They do not provide rigorous schemes to consistently derive NN and 3N forces and
compatible electroweak currents



yEFT formulation of the basic model

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett B295, 114 (1992)

% In yEFT the symmetries of QCD, including its approximate chiral-symmetry, are employed

to constrain the interactions of pions (1) among other pions, baryons (N and A-isobars) or
external fields (such as electroweak)

“ In particular, 1’s couple to baryons by powers of its momentum Q, and the Lagrangian
( Zerr ) can be expanded systematically in powers of Q/A (according to a power counting
scheme); (Q << A = 1 GeV is the chiral-symmetry breaking scale and Q~mp)

Lopr =L+ 0 4 £ 4

% yEFT allows for a perturbative treatment in terms of powers of a Q—as opposed to a
coupling constant— expansion

< £ also include contact (NN)(NN) -type interactions parametrized by low-energy
constants (LECs)

*» The yEFT provides a practical scheme to construct potentials and currents, which can be
systematically improvements
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Chiral 2N Potentials: some recents developments

“ First generation of chiral NN potential up to N3LO:
Entem-Machleidt PRC 68, 041001 2003; Epelbaum-Gloeckle-Meissner JNP A747, 362 2005

“* Optimized N2LO NN potential (N LECs are tuned to NN peripheral scattering):
Ekstrom et al. PRL 110, 192502 2013; JPG 42, 034003 2015

“ N2LO potential: a simultaneous fit of NN and 3N forces to low NN data (Eia=35 MeV),
deuteron BE, BE and CR of hydrogen, helium, carbon and oxygen isotopes;
Carlsson et al. PRC 91, 051301(R) 2015

“* New generation of chiral NN potentials up to N4LO: improved choice of the regulator, no SFR
Epelbaum et al. PRL 112, 102501 2014; EPJ A51, 53 2015; PRL 115, 122301 2015

“ Chiral 2rtand 3t exchange up to N4LO and up to N5LO in NN peripheral scattering;
Entem et al. PRC 91, 014002 2015; PRC 92, 064001 2015, arXiv:1703.05454 2017

“ The LENPIC collaboration arXiv: 1705.01530v1

Note: Many of the available versions of chiral potentials are formulated in momentum-
space and are strongly nonlocal: m) p — —iV  hard to use in QMC methods

Nonlocalities due to contact interactions and to regulator functions

Nonlocal regulator Van(p, p') — exp [ —[(p* +p"?)/ A2]”] Van(p, p’)

Local regulator Van(p, p’) — exp [ —[(p' - p)2/A2]”] Van(p, p')

P
“ Local NN potentials up to N2LO:
Gezerlis et al. PRL 111, 032501 2013; PRC 90, 054323 2014; Lynn et al. PRL 113, 192501 2014

“ Minimally nonlocal/local NN potentials including N2LO A contributions;
Piarulli et al. PRC 91, 024003 2015; PRC 94, 054007 2016



Local chiral NN potential: EM, LR and SR components

< The chiral NN potential we designed can be written as: | 119 = U%M + 0%2 + 21?2

U12 : EM component including corrections up to o
0%2 . long-range component including
Pl |P » dependence only on the momentum
LO: @ [7 transfer k=p'-p
p P
» known LECS: g4, F,,ha = 39ga/V?2
A |2 LA L,,, 1/,«;:3 l/::Y » unknown LECs: c1, e, ¢z, s (L13)
NLO: Q* [~ BRI 4 Y v ‘v

2 [
bs +bs (Lina) taken from m-N scattering
i T (Krebs at al. EPJ A32, 127 2007)
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% At NLO and N3LO strongly nonlocal contact terms: proportional to K2 and K4 where K=(p’

+p)/2; we use Fierz rearrangements to remove these nonlocalities (see also Gezerlis et al. PRL
111, 032501 2013; PRC 90, 054323 2014)

% Contact terms of type kxK or k2 K2 still persist: they can not Fierz-transformed away



Local chiral NN potential: coordinate-space formulation

< In coordinate-space the short-range part of the interaction can be written as

16
_ L S l l
V12 = Vg + V1 = Z v’ ()01
[=1
» Static part: 051 """" "=[1,0, 09,812 ®[1, T 7]

» Spin-orbit, (Spin-orbit)2, L2 part: 057" =L.S,L-S7 -1, (L-8)?,L?, L2 0y - 0,

» Charge-dependent part: OS2 10 =Ty (7F+78),01-02T1a, S12Ti2, L-STis

“ The radial functions in vle have divergencies of type 1/r" ,1 <n <6

. 1.0
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Cr, (r) =1 (TR e Rjar 1 03
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Ry = (0.8,1.0,1.2) fm £ 04
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arjp — RL/2
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r [fm)]
% The FT of the single contact terms is carried out with a Gaussian regulator, depending only
on the momentum transfer k, such that
b Cpy (k)= BsF/4 5 Op (r) o—(7/Rs)? Rs = (0.6,0.7,0.8) fm

- m3/2R3



Fitting procedure: NN PWA and database

“ The LECs fixed by fitting the pp and np Granada database up to two ranges of Ejap = 125
MeV and 200 MeV, the deuteron BE and the nn scattering length: we first fit the partial wave
phase shifts then we refine the fit with a direct comparison with the database

“ To minimizing x2the we use the Practical Optimization Using No Derivatives (for Squares),
POUNDers (M. Kortelainen, PRC 82, 024313 2010)
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model order Ry, (fm) Rs (fm) Epap MeV) x?/datum

Model b LO 1.0 0.7 125 59.88

Model b NLO 1.0 0.7 125 2.18

Moddlh NALO 10 071 1m0 Modela :(Ry, Rs) = (1.2,08)
Modol o N3LO 1.2 08 125 1.05 Modelb :(Rp, Rs) = (1.0,0.7)
Model ¢ N3LO 0.8 0.6 125 1.11 Model ¢ I(RL, Rs) — (0.8,0.6)
Nodel o N3LO 1.2 0.8 200 1.37

Model b N3LO 1.0 0.7 200 1.37

Model ¢ N3LO 0.8 0.6 200 1.40




*** Inclusion of 3N forces at N2LO:

Fit to (for the time being):

» 3H binding energy and nd
scattering length

Local chiral 3N potential: LR and SR components

C1 C3

same as NN interaction

need to be fixed

Note:

same regulator functions and
cutoff used in the NN
Interaction

courtesy of Laura E. Marcucci (Universita’ di Pisa)

Model CD
Ia J666  —1.638>
Ib —2.061 —0.982
ITa 1.278 -1.029
ITb —4.480 —0.412

o

IIIIIIIIIIIIIIIIIIII T IIIIIIH

o—e Fit to B 'H)=8.175 MeV
o—e Fil1O a,u:0.645 fm

R

1
o

-
() S
A
M»-
o)
~J



The Nuclear Many-Body Problem

“* We need to solve the many-body Schrédinger equation of the system under
consideration

H\P(R;Sl, ..,SA;tl, ..,tA) — E\P(R;Sl, ..,SA;tl, ..,tA)

/ \

v

3A coordinates in  Nucleon Nucleon isospin
r-space spin (p or n)
Bottom line:
Ll
2 X Vi Coupled second order differential equations in 3A dimension

96 for *He
17,920 for ®Be

3,784,704 for 12C

Very challenging problem!!!
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Ab initio Methods: HH and QMC

% Hyperspherical Harmonics (HH) expansion for A=3 and 4 bound and continuum states

UIH|D)
¥) = Zcu D) C from E = <
p nadl H (W W)
HH basis

Kievsky et al., JPG: NPP 35, 063101 (2008)

% Quantum Monte Carlo (QMC) methods encompass a large family of computational
methods whose common aim is the study of complex quantum systems

VMC, GFMC: sampling in coordinate space

limited number of nucleons A=12 (new developments for A=13)

R.B. Wiringa, PRC 43, 1585 (1991)
Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)

AFDMC: sampling in coordinate space + spin-isospin coordinate

larger nuclei A~50 & neutron matter

Schmidt and Fantoni, Phys. Lett. B 446, 99 (1999)
Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)

CVMC(C: sampling in coordinate space + cluster expansion

closed shell nuclei (+/- 1): A=40
Pieper, et al., Phys. Rev. C 46, 1741 (1992)

Lonardoni, et al., arXiv:1705.04337 12



https://en.wikipedia.org/wiki/Quantum_system
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741
https://arxiv.org/abs/1705.04337
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.46.1741

QMC: Variational Monte Carlo (VMC)
R.B. Wiringa, PRC 43, 1585 (1991)

W |H|r) £,

% Minimize the expectation value of H: Er = ( >
(Ur|¥r)

< Trial wave function (involves variational |¥r) = |1+ ) Uijk:J {SH (1+ Uz’j)J W)
parameters): _i<j<k i<j

W) = {Hi<j f C(T'L'j)} |®(JMTT,)) (s-shell nuclei): Jastrow wave function, fully antisymmetric
S1li<; : represents a symmetrized product

Uij = Z up (i) Og; : pair correlation operators
p=2,6

Usjr = Z e V5, : three-body correlation operators
[T ) are spin-isospin vectors in 3A dimension with 24 ( 7 )

% The search in the parameter space is made using COBYLA (Constrained Optimization
BY Linear Approximations) algorithm available in NLopt library

“ The typical number of variational parameters for s-shell nuclear wave functions is about
two dozen for a two-body potential; four to six parameters are added if a three-body
potential is included in the Hamiltonian



QMC: Diffusion Monte Carlo (DMC)

J. Carlson et al., Rev. Mod. Phys. 87, 1067 (2015)
% The diffusion Monte Carlo (DMC) method (ex. GFMC or AFDMC) overcomes the

limitations of VMC by using a projection technique to determine the true ground-state

“* The method relies on the observation that ¥+ can be expanded in the complete set of
eigenstates of the Hamiltonian according to

:ch’\l}n> H[¥,) = Ep|Vy,)
lim W (r ) = Tim e TPIT W7 = ¢ W) ¥(r =0)) = |¥r)

where 1 is the imaginary time
“* The evaluation of ¥ (7)Is done stochastically in small time steps At (t =n At) using a Green’s
function formulation
“* Propagator does not contain p2, L2, (L . S)2 : it is carried out with a simplified version H’ of the
full Hamiltonian H
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QMC for A<6 with only local NN chiral potential

* The A<6 ground- and excited state energies with only local NN chiral interaction compared with the
corresponding GFMC results obtained with AV18 and experimental values

0
i —Exp |

- = 2" —AV18 _

10 - 3 3 ——NN A-full _

I H He 1

% 20 B |
= _
5 N, N\ L
g -30 |- 4 0° 3
i 6 .

i He He S

n Ll _

40 _

- GFMC calculations ]

sk |

3N interactions are needed!! Piarulli et al. PRC 94, 054007 2016

e For A=3, 4 benchmark with the HH calculations

* For A=3, 4, and 6 the energies differ by about 0.2-0.3, 1.0, and 0.5-1.3 MeV, respectively, from the
corresponding ones obtained using the AV18




Spectra of Light Nuclei: Phenomenology vs yEFT

Piarulli et al. PRL 120, 052503 (2018)
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“ The rms energy deviation from experiment for these states is 0.72 MeV for NV2+3-la compared to

0.80 MeV for AV18+IL7
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“ Polarization observables in pd elastic scattering at 3 MeV, obtained in HH calculations with
the NV2+3 models la-1b (lla-1lb), are shown by the green (blue) band. The black dashed
line are results obtained with only the two-body interaction NV2-la
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Equation of State of Pure Neutron Matter

“ The EoS of pure neutron matter (PNM): neutrons stars

» Compact objects: R ~ 10km, M2 ~ 2M

> Composed predominantly of neutrons between the inner
crust and the outer core

> NS from gravitational collapse of a massive star after a

supernova explosion

“ Using AFDMC to obtain EoS of PNM: finite number of particles in a box imposing periodic

E (MeV)

boundary conditions (66 particles); sum on different boxes to reduce finite-size effects
Gandolfi et al. PRC 85, 032801(R 2012)
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Equation of State of Pure Neutron Matter in yEFT

“ EoS of PNM is very sensitive to the choice of the 3N force; particularly the short-range
part of the 3N which is the less understood

= 5:L Local chiral interactions ‘
= | from: Lynn ef al., PRL '
SQO:— 116, 062501 (2016)
N
10—
5
: Tews et al. arXiv:1801.01923v1
SR R IR R IR BT I
Coo 005 010 015 020 025 030
n [fm_?’]

EoS using Local chiral forces in AFDMC
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-Local chiral interactions from: Piarulli et al. PRL 120, .
052503 (2018) .
- e—envla E
- e—e nvlb i
L oo qnvlla E
- e—e nv]lb :
s Very Preliminary 1
... .., Pianli&Lovatoin preparatian :
0 0.05 0.1 0.15 0.2 0.25 03
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NN only at saturation density~ 15-17 MeV
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Conclusions

“* We have developed a family of local NN potential with chiral TPE including A-isobar up
to N2LO and contact interactions up to N3LO in the chiral expansion

“ Different versions of this NN chiral potential have been developed with good fits to np
and pp Granada database

“ Corresponding local 3N chiral interaction up N2LO have been also developed; they
involve two new LECs fixed by fitting the binding energy of 3H and nd scattering length

» A subset of these local NN and NN+3N chiral interactions have been used to in HH and

QMC calculations of binding energies and rms proton radii for some nuclei with A<12 and
more recently for EoS of PNM

Outlook

“ Test other versions of NV2+3 with different energy fits and regulators and compare
“ Different strategies to fit 3NI

“ Studies of the effect of subleading 3N contact interactions in light nuclei

< Comprehensive treatment of radii, moments, electroweak transitions in VMC/GFMC
iIncluding exchange currents

% EoS of neutron matter testing the different parametrization for the 3NF



