Neutrino-Nucleus Interactions

Ulrich Mosel

Institut für **Theoretische Physik** **JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN**

Motivation

Institut für **Theoretische Physik**

Energy-Distributions of Neutrino Beams

Energy must be reconstructed event by event, within these distributions

Oscillation Signals as F(E_v)

From: Diwan et al, Ann. Rev. Nucl. Part. Sci 66 (2016)

DUNE, 1300 km HyperK (T2K) 295 km Energies have to be known within 100 MeV (DUNE) or 50 MeV (T2K) Ratios of event rates to about 10%**Institut für**

INT 03/2018

Theoretische Physik

Number 19 Number 2018 What is measured in neutrino LBL experiments: fully inclusive X-section, 1 number **Not 12 What is needed for oscillation signal:**

- fully inclusive X -section as function of E_{n}
- **Notable 10 Millon** What is needed to get inclusive X-section (E_v) : Exclusive X-sections for many-particle final states

Inclusive Cross sections

Notamark 19 Yearth Inclust in an inclusive experiment

$$
\sigma_{incl} = \int_0^\infty \Phi(E_\nu) \sigma(E_\nu) dE_\nu
$$

One number!

can (in principle) be calculated ab initio

For oscillation analysis needed is more:

$$
\sigma(E_{\nu}) = \sum_{allchannels} \sigma_{excl}(E_{\nu})
$$

Energy Reconstruction

Need neutrino energy to extract neutrino mixing angles and δ_{CP} , but how to get it??

Only way: from the final state! \rightarrow Need cross sections for initial interaction *and* final state interactions

Oscillation signal in T2K δ_{CP} sensitivity of appearance exps

Uncertainties due to energy reconstruction as large as δ_{CP} dependence **Institut für**

INT 03/2018

Theoretische Physik

Institut für **Theoretische Physik**

Neutrino Cross Sections: Nucleus

- All targets in long-baseline experiments are nuclei: C, O, Ar, Fe
- **E** Cross sections on the *nucleus*:
	- \blacksquare QE + final state interactions (fsi)
	- Resonance-Pion Production $+$ fsi
	- Deep Inelastic Scattering \rightarrow Pions + fsi
- Additional cross section on the *nucleus*:
	- **Many-body effects, e.g., 2p-2h excitations**
	- **Coherent neutrino scattering and coh. pion production**

Neutrino-Nucleon Cross Sections

Experimental error-bars directly enter into nuclear cross sections and limit accuracy of energy reconstruction

Quasielastic Scattering

- **Vector form factors from** e **-scattering**
- axial form factors
	- F_A ⇔ F_P and F_A(0) via PCAC dipole ansatz for F_A with

$$
M_A = 1 GeV:
$$

$$
F_A(Q^2) = \frac{g_A}{\left(1 + \frac{Q^2}{M_A^2}\right)^2}
$$

Axial Formfactor of the Nucleon

n neutrino data agree with electro-pion production data **Bernard et al, J.Phys. G28 (2002) R1-R35**

USTUS-LIEBIG-UNIVERSITÄT

 $M_A \cong 1.02$ GeV world average $M_A \cong 1.07$ GeV world average Are there still neutrino generators out there with $M_A = 1.3$ GeV??? INT 03/2018 **Theoretische Physik**

Pions

Pion production amplitude = resonance contrib + background (Born-terms) **Resonance contrib** ■ *V* determined from e-scattering (MAID) *A* from PCAC ansatz **Background:** \blacksquare Up to about Δ obtained from effective field theory **Beyond** Δ **unknown 2 pi BG totally unknown**

Pion Production

Reanalysis of BNL data (posthumous flux correction) by T2K group: C.Wilkinson et al, **Phys.Rev. D90 (2014) no.11, 112017**

Agrees with earlier findings in Graczyk et al, Phys.Rev. D80 (2009) 093001 Lalakulich et al, Phys.Rev. D82 (2010) 0930

10 – 15 % uncertainty in pion production cross sections

INT 03/2018

Institut für **Theoretische Physik**

Pion production: Resonance

pion production dominated by P₃₃(1232) resonance

$$
J_{\Delta}^{\alpha\mu} = \left[\frac{C_3^V}{M_N} (g^{\alpha\mu} \not q - q^{\alpha} \gamma^{\mu}) + \frac{C_4^V}{M_N^2} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + \frac{C_5^V}{M_N^2} (g^{\alpha\mu} q \cdot p - q^{\alpha} p^{\mu}) \right] \gamma_5 + \frac{C_3^A}{M_N} (g^{\alpha\mu} \not q - q^{\alpha} \gamma^{\mu}) + \frac{C_4^A}{M_N^2} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + C_5^A g^{\alpha\mu} + \frac{C_6^A}{M_N^2} q^{\alpha} q^{\mu}
$$

C^V **from electron data (MAID analysis with CVC)**

 C^A **from fit to neutrino data (experiments on hydrogen/deuterium), so far only C^A ⁵determined, for other axial FFs only educated guesses**

SIS – DIS by PYTHIA

Shallow Inelastic Scattering, interplay of different reaction mechanisms \rightarrow Ambiguity to switch from one mechanism to the other

Lalakulich et al, Phys.Rev. C86 (2012) 014607, recently measured by MINERvA

First Conclusion

Uncertainties on elementary cross sections are (too) large

 \blacksquare Need new data on H and D to pin down the elementaries

Data in the BNB would give info on QE and pion production

Energy Reconstruction

Need neutrino energy, but how to get it??'

Only way: from the final state!

Institut für **Theoretische Physik**

Energy-Reconstruction

Generators are used to construct 'Migration Matrices' to go from reconstructed (measured) final-state energies to true incoming energies How good are these generators?? How well are they founded in Nuclear Physics?

Generators describe vA interactions?

- Take your favorite neutrino generator (GENIE, NEUT, ...): *"a good generator does not have to be right, provided it fits the data"*
- Indeed, all of these generators neglect from the outset:
	- Nuclear binding
	- **Final state interactions in nuclear potential**
	- Not even the same ground states for different processes
- Generators are patchworks of undocumented physics and algorithms, have a long history, so long that ingredients are forgotten

Time for new, getter generators!

vA Reaction

General structure: approximately factorizes

full event (four-vectors of all particles in final state) \equiv initial interaction *x* final state interaction

Determines inclusive X-section Determines the final state particles

Motivation for GiBUU

Need the full event for energy reconstruction Need to , compute backwards' from final state to initial incoming neutrino energy **Need initial neutrino-nucleon interactions and** hadron-hadron final state interactions \blacksquare Need to do this in the energy range $0 - 30$ GeV

n GiBUU was constructed with the aim to encode the "best possible" theory **D** "BEST POSSIBLE" requires

All neutrino energies, -> relativistic from outset, includes resonances and DIS

- All targets, all channels
- \blacksquare Not just inclusive X-sections, but full events
- Reasonable bound nuclear ground states

- **GiBUU** : **Theory and Event Generator** based on a BM solution of Kadanoff-Baym equations
- **GiBUU** describes (within the same unified theory and code)
	- heavy ion reactions, particle production and flow
	- **pion and proton induced reactions**
	- low and high energy photon and electron induced reactions
	- neutrino induced reactions

……..using the same physics input! And the same code!

→ Perfect test for final state interactions

GiBUU Ingredients

GiBUU groundstate from energy-density functional, supplemented by p-A data for momentum dependence of mean field potential **• Momentum distribution from local Thomas Fermi**

→ Nucleons are bound and Fermi-moving

Institut für Theoretische Physik, JLU Giessen

GiB

The Giessen Boltzmann-Uehling-Uhlenbeck Project

Initial interactions:

- Mean field potential with local Fermigas momentum distribution, nucleons are bound (not so in generators!)
- Initial interactions calculated by summing over interactions with all bound, Fermi-moving nucleons
- **2p2h from electron phenomenology**

Final state interaction:

- propagates outgoing particles through the nucleus using *quantum-*k*inetic transport theory*, fully relativistic (off-shell transport possible). Initial and final interactions come from the same Hamiltonian. CONSISTENCY of inclusive and semi-inclusive X-sections
- **E** Calculations give final state phase space distribution of all particles, four-vectors of all particles \rightarrow generator

2p-2h Interactions

Assume: 2p2h transverse, structure function W₁ for electrons from experimental fit of MEC contribution by Bosted and Mamyan (arXiv:1203.2262) and Christy (priv. comm.) to world data for $0 < W < 3.2$ GeV and $0.2 < Q^2 < 5$ GeV²

$$
\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2}{Q^4} E'^2 2\left(\frac{Q^2}{2\vec{q}^2} \cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}\right) W_1(Q^2,\omega)
$$

The Transversity established around 1990, Ericsson, Marteau

2p2h: purely transverse, response from e-scattering 2p2h excitations: from electrons to neutrinos

$$
\frac{d\sigma}{d\Omega dE'} = \frac{G^2}{2\pi^2} E'^2 \left[\frac{Q^2}{\bar{q}^2} \left(G_M^2 \frac{\omega^2}{\bar{q}^2} + G_A^2 \right) R_{\sigma\tau}(T) \cos^2 \frac{\theta}{2} \right. \\
\left. + 2 \left(G_M^2 \frac{\omega^2}{\bar{q}^2} + G_A^2 \right) R_{\sigma\tau}(T) \sin^2 \frac{\theta}{2} \right. \\
\left. + 2 \frac{E + E'}{M} G_A G_M R_{\sigma\tau}(T) \sin^2 \frac{\theta}{2} \right]
$$

from: Martini et al. $R_{\sigma\tau} \sim W_1$ from electron scattering

Same transverse response in V $+$ A as in V \cdot A \sim W₁, Walecka 1975

2p2h Q² - Distribution for 2p2h

ddiff cross section, MINERvA flux

INT 12/16

- *Final state interaction:* propagates outgoing particles through the nucleus using *quantum-*k*inetic transport theory*, not just MC **Fully relativistic. Initial and final interactions come from the** same Hamiltonian. \rightarrow Consistency of inclusive and semiinclusive X-sections
- **E** Calculations give the final state phase space distribution of all particles, four-vectors of all particles \rightarrow generator

- **GiBUU** : **Quantum-Kinetic Theory and Event Generator** based on a BM solution of Kadanoff-Baym equations Physics content and details of implementation in: **Buss et al, Phys. Rept. 512 (2012) 1- 124** Mine of information on theoretical treatment of potentials, collision terms, spectral functions and cross sections, useful for any generator
- Code from gibuu.hepforge.org, new version GiBUU 2017 Details in Gallmeister et al, Phys.Rev. C94 (2016) no.3, 035502 INT 03/2018

Spectral Functions

Single particle spectral functions absorb effects of interactions in particle properties

Filte Fermi gas (in generators):

$$
P_h(\mathbf{p},E) = \Theta(\mathbf{p_F} - \mathbf{p})\,\delta(E+T_p)
$$

spiky E-dep. leads to artifacts in response Now: dress particle with interactions, mean field and/or additional interactions \rightarrow quasiparticles

Spectral Function in GiBUU

$$
P_h(\mathbf{p}, E) = \int_{NV} d^3x \left[\Theta(p_F(\mathbf{x}) - \mathbf{p}) \delta(E + T_p + V(\mathbf{x}, \mathbf{p})) \right]
$$

Two essential features:

- 1. Local TF momentum distribution removes artifacts of sharp cut at ρ_{ε}
- 2. Particles bound in momentum- and coordinate-dependent potential, integration removes delta-function spikes in energy

Spectral function in GiBUU contains interactions in mean field

Nuclear Groundstate

From: Alvarez-Ruso, Hayato, Nieves

GiBUU uses Local Fermi Gas + Nucleon mean field potential

INT 03/2018

Institut für **Theoretische Physik**

Kadanoff-Baym Equations Derived

Start with one-body Green's functions, merge all many-body correlations into a selfenergy

• Make a gradient approximation: slow changes -> applicable only to larger nuclei (> C12)

Quantum-kinetic Transport Theory

$$
\mathcal{D}F(x,p) - \text{tr}\left\{\Gamma f, \text{Re}S^{\text{ret}}(x,p)\right\}_{\text{PB}} = C(x,p) .
$$

$$
\mathcal{D}F(x,p) = \{p_0 - H, F\}_{\text{PB}} = \frac{\partial(p_0 - H)}{\partial x} \frac{\partial F}{\partial p} - \frac{\partial(p_0 - H)}{\partial p} \frac{\partial F}{\partial x}
$$

H contains mean-field potentials

Describes time-evolution of *F(x,p)*

 $F(x,p) = 2\pi gf(x,p) \mathcal{P}(x,p)$

INT 03/2018 KB equations with BM offshell term

Initial Conditions for KB Eqs

Quasiparticle approximation (on-shell, but not free):

$$
F(x, p) = 2\pi gf(x, \mathbf{p}) \,\delta(p_0 - E)
$$

n Initial condition:

$$
f(\mathbf{x}, 0, \mathbf{p}) = \frac{1}{(2\pi)^3} \int e^{-i\mathbf{p}\cdot\mathbf{s}} \rho\left(\mathbf{x} - \frac{\mathbf{s}}{2}, \mathbf{x} + \frac{\mathbf{s}}{2}\right) d\mathbf{s}
$$

determined by one-particle density matrix (could be obtained from any good theory)

BM Simplification

Problem: backflow' term does not directly depend on F

Botermans-Malfliet simplification for equilibrium, correction terms are of higher order in gradients

$$
\tilde{\Sigma}_{\text{eq}}^{<}(x, p) = \mathrm{i}\Gamma_{\text{eq}}(x, p)f_{\text{eq}}(x, p),
$$

$$
\tilde{\Sigma}_{\text{eq}}^{>}(x, p) = -\mathrm{i}\Gamma_{\text{eq}}(x, p)[1 - f_{\text{eq}}(x, p)]
$$

$$
\Gamma(x, p) = -2\mathrm{Im}\tilde{\Sigma}^{ret}(x, p)
$$

$$
\mathcal{D}F(x, p) - \text{tr}\left\{\Gamma f, \text{Re}\,\tilde{S}^{\text{ret}}(x, p)\right\}_{\text{pb}} = C(x, p).
$$

BM term now $\sim \Gamma$, controls off-shell transport

INT 03/2018

Institut für **Theoretische Physik**

Collision term

$$
C^{(2)}(x, p_1) = C^{(2)}_{\text{gain}}(x, p_1) - C^{(2)}_{\text{loss}}(x, p_1) = \frac{\mathcal{S}_{1'2'}}{2p_1^0 g_1 g_2} \int \frac{\mathrm{d}^4 p_2}{(2\pi)^4 2p_2^0} \int \frac{\mathrm{d}^4 p_{1'}}{(2\pi)^4 2p_{1'}^0} \int \frac{\mathrm{d}^4 p_{2'}}{(2\pi)^4 2p_{2'}^0}
$$

× $(2\pi)^4 \delta^{(4)} (p_1 + p_2 - p_{1'} - p_{2'}) \overline{|\mathcal{M}_{12 \to 1'2'}|^2} [F_{1'}(x, p_{1'}) F_{2'}(x, p_{2'}) \overline{F}_1(x, p_1)$
× $\overline{F}_2(x, p_2) - F_1(x, p_1) F_2(x, p_2) \overline{F}_{1'}(x, p_{1'}) \overline{F}_{2'}(x, p_{2'})]$

with

$$
F(x,p) = 2\pi g A(x,p) f(x,p)
$$

$$
F(x,p) = 2\pi g A(x,p) [1 - f(x,p)]
$$

Inclusives

Necessary Test: inclusive electron data

Institut für Theoretische Physik **JUSTUS-LIEBIG-**UNIVERSITÄT GIESSEN

Compare with ab initio

GiBUU

Inclusive QE Electron Scattering

a a necessary check for any generator development

0.24 GeV, 36 deg, $Q^2 = 0.02$ GeV² __________________________0.56 GeV, 60 deg, $Q^2 = 0.24$ GeV²

Now Neutrinos

 \blacksquare Test with data for muon and electron neutrinos, at different energy regimes **Test for both QE and pion production NO tune, all results obtained with code** 'out of the box'

Final State Interactions in Nuclear Targets

Nuclear Targets (MiniBooNE, T2K, DUNE, NOvA, Minerva, ….) Complication to identify QE, entangled with π production

Reaction Mechanisms at T2K

Inclusive 0-Pion Data (MiniBooNE)

Comparison with T2K incl. Data

T2K, $v_{\rm el}$

Agreement for different neutrino flavors

INT 03/2018

Institut für Theoretische Physik

T2K, 0 p > 500 MeV

Pions

Pions are an essential part of the cross section For total signal For ,zero-pion' events

$\Box \rightarrow$ Pions have to be under control!

Pions at lower energies: T2K ND280

Now Predictions

Institut für **Theoretische Physik**

NOvA

DUNE

QE and 2p2h are minor **components** DIS dominates

Now Influence on Oscillations

Oscillation Signals as F(E_v)

JUSTUS-LIEBIG-

UNIVERSITÄT

Oscillation signal in T2K δ_{CP} sensitivity of appearance exps

Uncertainties due to energy reconstruction as large as δ_{CP} dependence **Institut für**

INT 03/2018

Theoretische Physik

Proton Tagging and Multi-Nucleons

Mosel et al, Phys.Rev.Lett. 112 (2014) 151802

Solid: true E Dashed: reconstructed E

Event rates at near (LBNF) and far detector (DUNE) δ_{CP} sensitivity at DUNE

Generator Dependence of Oscillation Parameters

GiBUU-GiBUU

From: P. Coloma et al, Phys.Rev. D89 (2014) 073015

Nature: GiBUU Generator: GENIE

Summary I

- **Neutrino energy must be known within about 50 (T2K)** or 100 (DUNE) MeV
- Neutrino energy must be reconstructed from final state observations
- **Nuclear effects complicate the energy reconstruction**
- \blacksquare The larger the step from reconstructed to true energies, the larger is the uncertainty in the oscillation parameters → Need good Nuclear Theory

Summary II

- **Quantum-kinetic Transport Theory is the (well established, and in other** fields of physics - widely used) method to deal with potentials and binding in non-equilibium processes, allows for off-shell transport
- **GiBUU** is an implementaton of transport theory
- **GiBUU describes, without any tune:**
	- **Double-differential 0-pion data from MiniBooNE, neutrino and** antineutrino
	- **Fully inclusive T2K ND280 data for mu- and electron-neutrinos**

INT 03/2018

Pions at T2K (water) and MINERvA

What is needed?

Need reaction studies on *nuclear targets* (MINERvA, T2K ND, NOvA ND, ANNIE, ..) to control many-body effects and fsi Need data without , generator contamination[']: e.g.: no flux cuts, no W cuts, no special reaction mechanism **Need theory for full events, not just (fully) inclusive.** Need a dedicated theory support program and a computational physics effort to construct a new, reliable generator for the precision era of neutrino physics

GiBUU

E Essential References:

- 1. Buss et al, Phys. Rept. 512 (2012) 1 contains both the theory and the practical implementation of transport theory
- 2. Gallmeister et al., Phys.Rev. C94 (2016), 035502 contains the latest changes in GiBUU2016
- 3. Mosel, Ann. Rev. Nucl. Part. Sci. 66 (2016) 171 short review, contains some discussion of generators
- 4. Mosel et al, Phys.Rev. C96 (2017), 015503pion production comparison of MiniBooNE, T2K and MINERvA

