

Electromagnetic sum rules and observables from the ab initio symmetry-adapted no-core shell model

Kristina Launey

... LSU Team ... Jerry Draayer, Tomas Dytrych, Alexis Mercenne

Robert Baker, Ali Dreyfuss, David Kekejian, Grigor Sargsyan, Madeleine Miora

In collaboration with Sonia Bacca & Nir Nevo Dinur Princeton U. – W. Tang & B. Wang Czech Republic – D. Langr & T. Oberhuber

Supported by NSF & DOE

HPC Resources

NSF/U. of Illinois ...BlueWaters LSU...SuperMike-II

Nuclear ab initio Theories and Neutrino Physics INT, March, 2018

Louisiana State University

Number of excitations

SA-NCSM Total HO quanta N_{max} Distribution: *z, x,* y

LSU code (LSU3shell): sourceforge.net/projects/lsu3shell Dytrych et al., Phys. Rev. Lett. 111 (2013) 252501

Launey et al., Prog. Part. Nucl. Phys. 89 (2016) 101

Nuclear ab initio Theories and Neutrino Physics INT, March, 2018

KD Launey Louisiana State University

What physics can we learn from Sp basis?

Sp (collective) basis configuration:

Nuclear *ab initio* Theories and Neutrino Physics INT, March, 2018

KD Launey III

Symplectic Sp(3,R) Symmetry!

Formal definition

All linear canonical transformations of the single-particle phasespace observables

that preserve the canonical commutation relation

$$\left[x_{i\alpha},p_{j\beta}\right]=i\hbar\delta_{ij}\delta_{\alpha\beta}$$

Generators: $Q_{ij} = \sum_{n} x_{ni} x_{nj}$,

SU(3) in a HO shell (Elliott, 1958)

$$S_{ij} = \sum_{n} (x_{ni} p_{nj} + p_{ni} x_{nj}),$$
$$L_{ij} = \sum (x_{ni} p_{nj} - x_{nj} p_{ni}),$$

$$K_{ij}=\sum_{n}p_{ni}p_{nj},$$

п

[']Rowe, Rosensteel, Draayer, Hecht, Suzuki, Escher, Bahri,

Nuclear *ab initio* Theories and Neutrino Physics INT, March, 2018

Nucleus with A nucleons

KD Launev

Louisiana State University

Novel Approximate Symmetry

Nuclear *ab initio* Theories and Neutrino Physics INT, March, 2018

KD Launey III

Collectivity features

Collectivity features

Carbon isotopes

INT, March, 2018

Louisiana State University

Structure of Ca-48 and Ti-48

8 shells, N2LOopt 0⁺

48

2+

> ⁴⁸Ti, Q(2⁺) [e fm²] ------Experiment...... -17.7

8 shells -19.3

(no effective charges)

Grigor Sargsyan, PhD student, LSU Nuclear *ab initio* Theories and Neutrino Physics INT, March, 2018 2+

SA-NCSM (selected):1,178,834 Complete model space: ...113,920,316,658

SA-NCSM (selected):602,493

Complete model space:24,694,678,414

8 shells, N2LOopt 0⁺

KD Launey Louisiana State University

HH and SA-NCSM benchmark: ⁴He

Baker et al., in preparation (2018)

Nuclear *ab initio* Theories and Neutrino Physics INT, March, 2018

KD Launey 🕮

HH and SA-NCSM benchmark: ⁴He

INT, March, 2018

Sum rules for ⁴He: HH and SA-NCSM benchmark

Sum rules for ⁴He: HH and SA-NCSM benchmark

Efficacy of SA-NCSM

Efficacy of SA-NCSM

S. Bacca et al., in preparation (2018)

Bacca, Miorelli, Hagen, J. Phys.: Conf. Series **966** (2018) 012019 Nuclear *ab initio* Theories and Neutrino Physics INT, March, 2018 from Sonia Bacca

KD Launey III

S. Bacca et al., in preparation (2018)

Nuclear *ab initio* Theories and Neutrino Physics INT, March, 2018

KD Launey III

S. Bacca et al., in preparation (2018)

Louisiana State University

Outlook

TABLE II. Predicted weak interaction rates for the ${}^{12}C \rightarrow T = 1 \ 1^+$ transitions. The units are $10^{-42} \ \text{cm}^2$ for the (ν_e, e^-) DAR cross section, $10^{-40} \ \text{cm}^2$ for the (ν_μ, μ^-) DIF cross section, and $10^3 \ \text{sec}^{-1}$ for muon capture.

Interaction	CD-Bonn			AV8' + TM'(99)	
	$2\hbar\Omega$	$4\hbar\Omega$	$6\hbar\Omega$	$4\hbar\Omega$	Experiment
(ν_{e}, e^{-})	2.27	3.2	3.69	6.8	$8.9 \pm 0.3 \pm 0.9$ [19]
(ν_{μ}, μ^{-})	0.168	0.275	0.312	0.537	$0.56 \pm 0.08 \pm 0.1$ [20]
μ -capture	1.46	2.07	2.38	4.43	6.0 ± 0.4 [21]

Hayes et al., PRL 91, 012502(2003)

• Improve earlier NCSM studies, use bare chiral potentials

- ⁴⁰Ar SA-NCSM calculations
- Calculate response functions from SA-NCSM with LIT

Nuclear *ab initio* Theories and Neutrino Physics INT, March, 2018

KD Launey 🗾 🗓 Louisiana State University

Conclusions

SA-NCSM+LIT (with S. Bacca): sum rules and responses

KD Launey

Louisiana State University

Simple physics: "shape" + vibrations + rotations

Nuclear *ab initio* Theories and Neutrino Physics INT, March, 2018