

In Medium Majorana Neutrinos and Double Beta Decay

Mihai Horoi

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

INT 18-1a, March 8, 2018

- In vacuum Majorana neutrinos and double beta decay (DBD)
 - Classical neutrinoless DBD
 - Effective field theory approach
- In medium Majorana neutrino and neutrinoless DBD
 - Neutrino mixing inside atomic nuclei
 - Neutrinoless DBD of atomic nuclei

Classical Double Beta Decay Problem

INT 18-1a, March 8, 2018

CENTRAL MARCHENERN

$$|\nu_{\alpha}\rangle = \sum_{\alpha} U_{\alpha i} |\nu_{\alpha}\rangle$$

$$PMNS - matrix$$

$$U = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{bmatrix} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{22}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \begin{bmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_{12} = \cos\theta_{12}, s_{12} = \sin\theta_{12}, etc$$

$$Tritium decay:$$

$$^{3}H \rightarrow ^{3}He + e^{-} + \overline{v}_{e}$$

$$m_{v_{e}} = \sqrt{\sum_{i} |U_{ei}|^{2}m_{i}^{2}} < 2.2eV (Mainz exp.)$$

$$KATRIN (to take data): goal m_{v_{e}} < 0.3eV$$

$$Cosmology: CMB power
spectrum, BAO, etc,
$$\sum_{i=1}^{3} m_{i} < 0.23eV$$

$$Goal: 0.01eV (5-10 y)$$

$$MT 18-1a, March 8,
N. Horoi CMU$$

$$Marchen K. M. Horoi CMU$$$$

The Black Box Theorems

Black box I (electron neutrino)

- J. Schechter and J.W.F Valle, PRD 25, 2951 (1982)
- E. Takasugi, PLB 149, 372 (1984)
- J.F. Nieves, PLB 145, 375 (1984)

However:

M. Duerr et al, JHEP 06 (2011) 91

at some level

 $0\nu\beta\beta$ observed

violated by 2 units.(ii) Electron neutrinos are Majorana fermions (with m > 0).

(i) Lepton number conservation is

 $\left(\delta m_{_{\!\! V_e}}\right)_{\!_{BB}}\sim 10^{-24}\,eV<<\sqrt{\left|\Delta m_{_{32}}^2\right|}\approx 0.05\,eV$

Black box II (all flavors + oscillations)

M. Hirsch, S. Kovalenko, I. Schmidt, PLB 646, 106 (2006)

(i) Lepton number conservation is violated by 2 units.

Regardless of the dominant $0\nu\beta\beta$ mechanism!

 $0\nu\beta\beta$ observed \Leftrightarrow at some level

(ii) Neutrinos are Majorana fermions.

(*iii*)
$$\langle m_{\beta\beta} \rangle = \left| \sum_{k=1}^{3} m_k U_{ek}^2 \right| = \left| c_{12}^2 c_{13}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right| > 0$$

INT 18-1a, March 8, 2018

Other models: Left-Right symmetric model and SUSY R-parity violation

(e)

INT 18-1a, March 8, 2018

M. Horoi, A. Neacsu, PRD 93, 113014 (2016) M. Horoi CMU

QRPA-Jy J. Suhonen, O. Civitarese, Phys. NPA 847 207-232 (2010).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077

ISM-Men J. Menéndez, A. Poves, E. Caurier, F. Nowacki, NPA 818 139-151 (2009).

SM M. Horoi et. al. PRC 88, 064312 (2013), PRC 89, 045502 (2014), PRC 89, 054304 (2014), PRC 90, 051301(R) (2014), PRC

91, 024309 (2015), PRL **110**, 222502 (2013), PRL **113**, 262501(2014).

INT 18-1a, March 8, M. Horoi CMU 2018

IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315 (2013).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077.

QRPA-Jy J. Hivarynen and J. Suhonen, PRC 91, 024613 (2015), ISM-StMa J. Menendez, private communication.

ISM-CMU M. Horoi et. al. PRC 88, 064312 (2013), PRC 90, PRC 89, 054304 (2014), PRC 91, 024309 (2015), PRL 110, 222502 (2013).

INT 18-1a, March 8, 2018

Consequences: - scales for new physics

- baryogenesis via leptogenesis

PHYSICAL REVIEW D 92, 036005 (2015)

 $\mathcal{L}_D = \frac{g}{\Lambda_D^{D-4}} \mathcal{O}_D$

$m_e\bar{\epsilon}_5 = \frac{g^2v^2}{\Lambda_5},$	$\frac{G_F\bar{\epsilon}_7}{\sqrt{2}} = \frac{g^3v}{2\Lambda_7^3},$
$\frac{G_F^2 \bar{\epsilon}_9}{2m_p} = \frac{g^4}{\Lambda_9^5},$	$\frac{G_F^2 \bar{\epsilon}_{11}}{2m_p} = \frac{g^6 v^2}{\Lambda_{11}^7}$

 $g \approx 1$ v = 174 GeV (Higgs expectation value)

$$\begin{array}{c|cccc} \mathcal{O}_D & \bar{\epsilon}_D & \Lambda_D \, (GeV) \\ \hline \mathcal{O}_5 & 2.8 \times 10^{-7} & 2.12 \times 10^{14} \\ \mathcal{O}_7 & 2.0 \times 10^{-7} & 3.75 \times 10^4 \\ \mathcal{O}_9 & 1.5 \times 10^{-7} & 2.48 \times 10^3 \\ \mathcal{O}_{11} & 1.5 \times 10^{-7} & 1.16 \times 10^3 \end{array}$$

INT 18-1a, March 8, 2018

Consequences: - scales for new physics

- baryogenesis via leptogenesis

PHYSICAL REVIEW D 92, 036005 (2015)

$$\mathcal{L}_D = \frac{g}{\left(\Lambda_D\right)^{D-4}} \mathcal{O}_D$$

$$\begin{split} m_e \bar{\epsilon}_5 &= \frac{g^2 (yv)^2}{\Lambda_5}, \qquad \frac{G_F \bar{\epsilon}_7}{\sqrt{2}} = \frac{g^3 (yv)}{2(\Lambda_7)^3}, \\ \frac{G_F^2 \bar{\epsilon}_9}{2m_p} &= \frac{g^4}{(\Lambda_9)^5}, \qquad \frac{G_F^2 \bar{\epsilon}_{11}}{2m_p} = \frac{g^6 (yv)^2}{(\Lambda_{11})^7} \end{split}$$

TABLE VIII. The BSM effective scale (in GeV) for different dimension-D operators at the present ¹³⁶Xe half-life limit (Λ_D^0) and for $T_{1/2} \approx 1.1 \times 10^{28}$ years (Λ_D) .

\mathcal{O}_D	$ar{\epsilon}_D$	$\Lambda_D^0(y=1)$	$\Lambda_D^0(y=y_e)$	$\Lambda_D(y=y_e)$
\mathcal{O}_5	$2.8 \cdot 10^{-7}$	$2.12\cdot 10^{14}$	1904	19044
\mathcal{O}_7	$2.0 \cdot 10^{-7}$	$3.75\cdot 10^4$	541	1165
\mathcal{O}_9	$1.5 \cdot 10^{-7}$	$2.47\cdot 10^3$	2470	3915
\mathcal{O}_{11}	$1.5 \cdot 10^{-7}$	$1.16\cdot 10^3$	31	43
			\mathbf{X}	

$$\eta_N \propto \frac{l}{m_{W_R}^4 m_N}$$

 $g \approx 1$ v = 174 GeV $y_e = 3 \times 10^{-6}$ electron mass Yukawa

INT 18-1a, March 8, 2018

coming from the light left-handed Majorana neutrino (Fig. 1b), a long-range part coming from the low-energy four-fermion charged-current interaction (Fig. 1c), and a short-range part (Fig. 1d).

We treat the 40 hg range component of the $0\nu\beta\beta$ diagram as the point plane relevant the Gernvisial one of exchange a light neutrino. In this case, the Lagrangian can be expressed in terms of effective couplings [15]:

$$\mathcal{L}_{6} = \frac{G_{F}}{\sqrt{2}} \left[j_{V-A}^{\mu} J_{V-A,\mu}^{\dagger} + \sum_{\alpha,\beta}^{*} \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}^{\dagger} \right], \qquad (2).$$

where $J_{\alpha}^{\dagger} = \bar{u} \mathcal{O}_{\alpha} d$ and $f_{\beta} = \bar{e} \mathcal{O}_{\beta} \nu$ are hadronic and leptonic Lorgetz currents, respectively. The definitions of the $\mathcal{O}_{\alpha,\beta}$ operators are given in Eq. (3) of Ref. [15]. 7 The LNV parameters are $\epsilon_{\alpha}^{\beta} =$ $\{\epsilon_{V-A}^{V+A}, \epsilon_{V+A}^{V+A}, \epsilon_{S+P}^{S+P}, \epsilon_{TL}^{TR}, \epsilon_{TR}^{TR}\}$. The symbol indicates that the term with $\alpha = \beta = (V - A)$ is explicitly taken out of the sum. $G_F = 1.1663787 \times 10^{-5} \text{ GeV}^{-2}$ denotes the Fermi coupling constant.

The $0\nu\beta\beta$ decay amplitude is proportional to the timeordered product of two effective Lagrangians [15]: -

$$T(\mathcal{L}_{6}^{(1)}\mathcal{L}_{6}^{(2)}) = \frac{G_{F}}{22} T \begin{bmatrix} y_{V-A} J_{V-A}^{\dagger} y_{V-A} J_{V-A}^{\dagger} & \text{not taken into account in our analysis. In the following,} \\ + \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}^{\dagger} J_{V-A}^{\dagger} + \epsilon_{\alpha}^{\beta} \epsilon_{\gamma}^{\delta} j_{\beta} J_{\alpha}^{\dagger} J_{\gamma}^{\delta} J_{\gamma}^{\dagger} \end{bmatrix} (3) & \text{not taken into account in our analysis. In the following,} \\ + \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}^{\dagger} J_{V-A}^{\dagger} + \epsilon_{\alpha}^{\beta} \epsilon_{\gamma}^{\delta} j_{\beta} J_{\alpha}^{\dagger} J_{\gamma}^{\delta} J_{\gamma}^{\dagger} \end{bmatrix} (3) & \text{the most recent experimental limits of the half-lives, as} \\ + \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}^{\dagger} J_{V-A}^{\dagger} + \epsilon_{\alpha}^{\beta} \epsilon_{\gamma}^{\delta} j_{\beta} J_{\alpha}^{\dagger} J_{\gamma}^{\delta} J_{\gamma}^{\dagger} \end{bmatrix} (3) & \text{the most recent experimental limits of the half-lives, as} \\ \eta_{0\nu} \quad \varepsilon_{V+A}^{V+A} \quad \varepsilon_{VA}^{V+A} \quad \varepsilon_{S\pm P}^{S+P} \quad \varepsilon_{TR}^{TR} \quad \eta_{n\nu} \quad \varepsilon_{1} \quad \varepsilon_{2} \quad \eta_{0N} \quad \varepsilon_{3}^{RR} \quad \varepsilon_{3}^{LR} \quad \varepsilon_{4} \quad \varepsilon_{5} \end{bmatrix}$$

Lagrangian dominates the process) of the LNV parameters:

$$\left[\left[\mathcal{I}_{1/2}^{0\nu}\right]^{-1} = \overline{g}_{A}^{4} \left[\left[\sum_{i} \mathcal{E}_{i} |i|^{2} \mathcal{M}_{i}^{4} + \operatorname{Re}\left[\left[\sum_{i\neq j} \mathcal{E}_{i} |j|^{2} \mathcal{M}_{i}^{4}\right]\right]\right] \right]$$

Here, the formula the neutrino physics parameters, with $\mathcal{E}_1 = \eta_{0\nu}$ representing the exchange of light lefthanded neutrinos corresponding to Fig. 2b. \mathcal{E}_{2-7} = $\left\{\epsilon_{V-A}^{V+A}, \epsilon_{V+A}^{V+A}, \epsilon_{S\pm P}^{S+P}, \epsilon_{TL}^{TR}, \epsilon_{TR}^{TR}, \eta_{\pi\nu}\right\} = 4^{48} Cahe \text{ long-}$ range parameters appearing in Figs. 2t & **56** 2e, and $\mathcal{E}_{8=15} = \{\varepsilon_1, \varepsilon_2, \varepsilon_3^{LLz(RRz)}, \varepsilon_3^{LRz(RLz)}, \varepsilon_3^{LRz(RLz)}, \varepsilon_4^{130}, \varepsilon_{\eta_1\pi}, \eta_{2\pi}\}$ denote the short-range parameters at the duaxe level involved in the diagram of Fig. 2d, 2f, 2g. Following Refs. [13–15, 45], we write \mathcal{M}_{i}^{2} as combinations of NME described in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)) in the Appendix for the individual NME) and integrated **PSF** [44] denoted with $G_{01} - G_{09}$. Our values of the PSF are presented in Table I. In some cases the interference terms $\mathcal{E}_{\alpha}\mathcal{E}_{\beta}\mathcal{M}_{\alpha\beta}$ are small [48] and can be neglected. Considering an on-axis approach when extracting the LNV parameters limits, the interference terms are

coming from the light left-handed Majorana neutrino (Fig. 1b), a long-range part coming from the low-energy four-fermion charged-current interaction (Fig. 1c), and a short-range part (Fig. 1d).

CE We the doing-range component of the $0\nu\beta\beta$ diagram arts coupling vertices name Fewhistal on the contract of the coupling of the coupling of the coupling [15]:

$$\mathcal{L}_{6} = \frac{G_{F}}{\sqrt[3]{2}} \left[\frac{j_{V-A}^{\mu} J_{V-A,\mu}^{\dagger} + \sum_{\alpha,\beta}^{*} \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}^{\dagger}}{\alpha_{\alpha,\beta}^{\dagger}} \right], \qquad (2)$$

where $J_{\alpha}^{\dagger} = \frac{9}{u} \mathcal{O}_{\alpha} d$ and $\mathcal{I}_{\mathcal{D}} = \tilde{e} \mathcal{O}_{\beta} \nu$ are hadronic and leptonic Logentz currents) respectively. The definitions of the $\mathcal{O}_{\alpha,\beta}$ operators are given in Eq. (3) of Ref. [15].7 The LNV parameters are $\epsilon_{\alpha}^{\beta} =$ $\{\epsilon_{V-A}^{V+A}, \epsilon_{V+A}^{V+A}, \epsilon_{S\pm P}^{S+P}, \epsilon_{TE}^{TR}, \epsilon_{TR}^{TR}\}$. The "*" symbol indicates that the derm with $\alpha = \beta = (V - A)$ is explicitly taken out of the sum. $G_F = 1.1663787 \times 10^{-5} \text{ GeV}^{-2}$ denotes the Fernal coupling constant.

The $0\nu\beta\beta$ decay amplitude is proportional to the times ordered product of two effective Lagrangians [15]:

$$T(\mathcal{L}_{6}^{(1)}\mathcal{L}_{6}^{(2)}) = \underbrace{\mathfrak{E}_{F}^{2} T\left[j_{V-A}J_{V-A}^{\dagger}j_{V-A}J_{V-A}^{\dagger}}_{2} + \epsilon_{\alpha}^{\beta}\epsilon_{\gamma}^{\beta}j_{\beta}J_{\alpha}^{\dagger}j_{\delta}J_{1}^{\dagger}\right]}_{2} \underbrace{\mathfrak{E}_{F}^{\gamma}}_{1} T\left[j_{V-A}J_{V-A}^{\dagger}j_{V-A}J_{V-A}^{\dagger}\right]} + \epsilon_{\alpha}^{\beta}\epsilon_{\gamma}^{\beta}j_{\beta}J_{\alpha}^{\dagger}j_{\delta}J_{1}^{\dagger}\right]}_{2} \underbrace{\mathfrak{E}_{F}^{\gamma}}_{1} \left[\mathfrak{E}_{T}^{TR}\right]}_{1} \underbrace{\mathfrak{E}_{F}^{\gamma}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{2} \underbrace{\mathfrak{E}_{F}^{TR}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{2} \underbrace{\mathfrak{E}_{F}^{TR}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{2} \underbrace{\mathfrak{E}_{F}^{TR}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{2} \underbrace{\mathfrak{E}_{F}^{TR}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{2} \underbrace{\mathfrak{E}_{F}^{TR}}_{2} \underbrace{\mathfrak{E}_{F}^{TR}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{2} \underbrace{\mathfrak{E}_{F}^{TR}}_{1} \underbrace{\mathfrak{E}_{F}^{TR}}_{2} \underbrace{\mathfrak{E}_{F}^$$

Lagrangian dominates the process) of the LNV parameters:

$$\left[T^{0}_{I/2/2} \right]^{-\frac{1}{2}-1} \mathfrak{g}_{\mathcal{A}}^{4} \left[\sum_{i \ i} \mathcal{E}_{i}^{|2|} \mathcal{M}_{i}^{2} + \operatorname{Re}\left[\sum_{i \neq j} \mathcal{E}_{i}^{|j|} \mathcal{M}_{i}^{j} \right] \right] \right].$$

Here, the \mathcal{E}_1 contain the neutrino physics parameters, with $\mathcal{E}_1 = \eta_{0\nu}$ representing the exchange of light lefthanded neutrinos corresponding to Fig. 2b, $\mathcal{E}_{2-7} = \{\epsilon_{V-A}^{V+A}, \epsilon_{V+A}^{V+A}, \epsilon_{S\pm P}^{S+P}, \epsilon_{TL}^{TR}, \epsilon_{TR}^{TR}, \eta_{\pi\nu}\}$ and the long-denote the short-range parameters at the distant level involved in the diagram of Fig. 2d, 2f, 2g. Following Refs. [13-15, 45], we write \mathcal{M}_{i}^{2} as combinations of NME described in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18) in the Appendix for the individual NME) and integrated PSF [44] denoted with $G_{01} - G_{09}$. Our values of the PSF are presented in Table I. In some cases the interference terms $\mathcal{E}_{\alpha}\mathcal{E}_{\beta}\mathcal{M}_{\alpha\beta}$ are small [48] and can be neglected. Considering an on-axis approach when extracting the LNV parameters limits, the interference terms are g, g \mathfrak{lS}

Neutrinos in atomic nuclei

Atomic nucleus is a high electron density medium:

Consider 2 electrons in the lowest s-orbital of an Hydrogen-like atom

Electron density inside nucleus:
$$N_e \approx \frac{2}{\pi} \left(\frac{Z}{a_B}\right)^3$$

Equivalent matter density: $\rho = m_N N_e = 1.67 \times 10^6 \frac{2}{\pi} \left(\frac{Z}{53}\right)^3$ in g / cm² >> ρ_{Sun}

$$\rho_{Suncore} \approx 150 \ g \ / \ cm^3$$

INT 18-1a, March 8, 2018

$$|v_e\rangle = \cos\theta |v_1\rangle + \sin\theta |v_2\rangle$$

Low energy

CENTRAL MICHIGAN

UNIVERSITY

$$P_{v_e}(t) = |\langle v_e(t) \rangle|^2 = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 x}{4E}\right)$$
$$\xrightarrow[x \to \infty]{} 1 - \frac{1}{2}\sin^2 2\theta = 0.56 > 0.5$$

High energy $|v_e(t)\rangle = \sin\theta \ e^{-iEt} \ |v_2\rangle$ $P_{v_e}(t) = |\langle v_e(0) \ |v_e(t)\rangle|^2$ $= \sin^2\theta = 0.32 < 0.5$

$$|v_e\rangle = \sum_{i=1}^{N(3)} U_{ei}^* |v_i\rangle$$

INT 18-1a, March 8, 2018

Figure 8. Solar v_e survival probability as a function of energy. The colour lines correspond to experimental data. The grey line corresponds to the MSW-LMA solution for solar neutrino oscillation. (From [29]).

Journal of Physics: Conference Series 593 (2015) 012007

Neutrino Mixing (MSW effect)

Neutrinos in matter interact with:

- Electrons via charged current
- Any fermion via neutral current

 $V_e = \pm \sqrt{2}G_F N_e$ (N_e : electron density) +(-) neutrino (antineutrino)

$$V_N \qquad P \approx E$$

$$\begin{vmatrix} v_e \rangle = \cos\theta_m \mid v_1 \rangle + \sin\theta_m \mid v_2 \rangle$$

$$\left| v_X \rangle = -\sin\theta_m \mid v_1 \rangle + \cos\theta_m \mid v_2 \rangle$$

$$\leftarrow i \frac{d}{dt} \binom{|v_e\rangle}{|v_X\rangle} = \left[U^{\dagger} \binom{P + m_1^2 / 2P - 0}{0 + m_2^2 / 2P} U + \binom{V_e + V_N - 0}{0 - V_N} \right] \binom{|v_e\rangle}{|v_X\rangle}$$

$$2P\Delta E_m = 2P(E_{2m} - E_{1m}) = \Delta \mu^2 = \sqrt{\left(\Delta m^2 \cos 2\theta - 2PV_e\right)^2 + \left(\Delta m^2 \sin 2\theta\right)^2}$$
$$\cos 2\theta_m = \frac{\Delta m^2 \cos 2\theta - 2PV_e}{\sqrt{\left(\Delta m^2 \cos 2\theta - 2PV_e\right)^2 + \left(\Delta m^2 \sin 2\theta\right)}} \xrightarrow[0<2PV_e>\Delta m^2} - 1 \implies \theta_m = \frac{\pi}{2}$$

 $|v_{em}\rangle = 0 |v_1\rangle + 1 |v_2\rangle \rightarrow adiabatic \ transport \rightarrow P_{v_e}(t) = |\langle v_e | v(t)\rangle|^2 = |\langle v_e | v_{em}\rangle|^2 = \sin^2 \theta$

NO oscillations! Just mixing!

INT 18-1a, March 8, 2018

Gonzales-Garcia & Nir, RMP 75, 345 (2003)

$$\begin{pmatrix} \nu_e \\ \nu_X \end{pmatrix} = U(\theta_m) \begin{pmatrix} \nu_1^m \\ \nu_2^m \end{pmatrix} = \begin{pmatrix} \cos \theta_m & \sin \theta_m \\ -\sin \theta_m & \cos \theta_m \end{pmatrix} \begin{pmatrix} \nu_1^m \\ \nu_2^m \end{pmatrix}$$
$$P_e = \left| \nu_e^m \right|^2 \qquad P_X = \left| \nu_X^m \right|^2$$

$$\begin{pmatrix} \dot{\nu}_1^m \\ \dot{\nu}_2^m \end{pmatrix} = \begin{pmatrix} i\Delta(t) & -4E\dot{\theta}_m(t) \\ 4E\dot{\theta}_m(t) & -i\Delta(t) \end{pmatrix} \begin{pmatrix} \nu_1^m \\ \nu_2^m \end{pmatrix}$$

Adiabatic evolution : off – diagonal terms neglijable

(1) small energies : matter effects neglijable
(2) lage energies : matter effects + adiabatic evolution
(3) lager energies : matter effects + nonadiabatic evolution

INT 18-1a, March 8, 2018

M. Horoi CMU

 μ^{2} m_{2}^{2} m_{1}^{2} M_{1}^{2

 $\cos\theta$

 $-\sin\theta$

U =

 $\dot{\theta}_m \propto \dot{V}_e$

 $\sin \theta$

 $\cos \theta$

Neutrinos in atomic nuclei

Atomic nucleus is a high electron density medium:

Consider 2 electrons in the lowest s-orbital of an Hydrogen-like atom

Equivalent matter density: $\rho(t) = 1.67 \times 10^6 \frac{2}{\pi} \left(\frac{Z}{53}\right)^3 e^{-2tZ/53} [in g/cm^2, t in pm]$

 $V_e(t) [in \ eV] = 7.6 \times 10^{14} \rho(t) [in \ g / cm^3]$

The typical requirement is:

$$\lambda \ll \left| \frac{V}{\partial V / \partial t} \right| \iff 2\pi \frac{\hbar c}{p} \ll \frac{53}{2Z} 1000 \ [in fm]$$

INT 18-1a, March 8, 2018

Partial summary

- One can consider the neutrino mixing in atomic nuclei.
- The analysis of neutrino mixing in the Sun and atomic nuclei leads to results backed up by phenomenology.
- These results seem simple and natural, but the road to them is complex!

2018

Neutrinoless double beta decay in vacuum

$$A_{0\beta\beta} \propto NP = \langle 0 | T \left[\psi_{eL}(x_1) \psi_{eL}^T(x_2) \right] | 0 \rangle$$

$$\psi_e(x) = \sum_{a=1}^{N(3)} U_{ea} \psi_a(x)$$

$$\begin{split} NP &= \sum_{a=1}^{3} U_{ea}^{2} \left\langle 0 \right| T \left[\psi_{aL}(x_{1}) \psi_{aL}^{T}(x_{2}) \right] \left| 0 \right\rangle \\ &= \sum_{a=1}^{3} U_{ea}^{2} \left[-i \int \frac{d^{4}p}{(2\pi)^{4}} \frac{m_{a}e^{-ip(x_{1}-x_{2})}}{p^{2}-m_{a}^{2}+i\epsilon} P_{L} \mathcal{C} \right] \\ P_{L} &= \frac{1}{2} \left(1 - \gamma^{5} \right) \qquad \hat{\psi}(x) = C \psi^{*}(x) \end{split}$$

P_LC product is further used to process the electron current, and one finally gets:

Neutrino Fields

Dirac equation: states vs fields

In addition one needs a vaccum state : $|0> \implies |\psi \rangle = \psi^{\dagger}(x) |0\rangle$

P. Mannheim, PRD **37**, 1935 (1988): used a(p, -) piece of the field to justify Wolfenstein's Eqs. provided that neutrinos, Dirac or Majorana, are ultra relativistic!

INT 18-1a, March 8, 2018

PHYSICAL REVIEW D

VOLUME 45, NUMBER 5

Majoron decay of neutrinos in matter

C. Giunti, C. W. Kim, and U. W. Lee Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218

W. P. Lam

with production of any massless pseudoscalar boson. In particular, we discuss the two-generation case and show that *in matter* the helicity-flipping decays are dominant over the helicity-conserving decays. The implications of the Majoron decay for the neutrinos from astrophysical objects are also briefly discussed.

$$Weyl: \ \gamma^5 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad P_L C = \begin{pmatrix} 0 & 0 \\ 0 & i\sigma^2 \end{pmatrix} \qquad \psi(x) = \begin{pmatrix} -i\sigma^2 \Phi^*(x) \\ \Phi(x) \end{pmatrix} \Rightarrow \psi_L(x) = \begin{pmatrix} 0 \\ \Phi(x) \end{pmatrix}$$

$$\Phi_{a}^{M}(x) = \int \frac{d\mathbf{p}}{\sqrt{(2\pi)^{3}}} \sum_{j=1}^{N} \sum_{h=\pm 1}^{N} \left[\alpha_{aj}^{(h)}(P)w(\mathbf{p},h)a_{j}(\mathbf{p},h)e^{-iE_{j}^{(h)}t+i\mathbf{p}\cdot\mathbf{x}} - h\beta_{aj}^{(h)}(P)w(\mathbf{p},-h)a_{j}^{\dagger}(\mathbf{p},h)e^{iE_{j}^{(h)}t-i\mathbf{p}\cdot\mathbf{x}} \right]$$

$$\beta_{aj}^{(-)}(P) = \frac{m_a}{2P} \alpha_{aj}^{(-)}(P) \qquad \qquad \frac{m_j^{(-)^2} - m_a^2}{2P} \alpha_{aj}^{(-)}(P) - \sum_{b=1}^N V_{ab}^M \alpha_{bj}^{(-)}(P) = 0$$

$$\alpha_{aj}^{(+)}(P) = \frac{m_a}{2P} \beta_{aj}^{(+)}(P) \qquad \qquad m_j^{(+)^2} - m^2 \qquad \qquad N$$

$$\frac{m_j^{(+)^2} - m_a^2}{2P} \beta_{aj}^{(+)}(P) + \sum_{b=1}^N V_{ab}^M \beta_{bj}^{(+)}(P) = 0$$

$$E_j^{(h)} = P + \frac{m_j^{(h)^2}}{2P}, \quad j = 1, \dots, N$$

INT 18-1a, March 8, 2018

CENTRAL MICHIGAN Neutrinoless double beta decay of atomic nuclei

$$\begin{split} \Phi_{e}^{W}(x) &= \int \frac{d^{3}p}{(2\pi)^{3/2}} \sum_{a,j} U_{ea} \left[\left(\alpha_{a \ j}^{(-)} \chi^{(-)}(\vec{p}) a_{j}(\vec{p}, -) + \frac{m_{a}}{2P} \beta_{a \ j}^{(+)} \chi^{(+)}(\vec{p}) a_{j}(\vec{p}, +) \right) e^{-ip \cdot x} \\ &+ \left(\frac{m_{a}}{2P} \alpha_{a \ j}^{(-)*} \chi^{(+)}(\vec{p}) a_{j}^{\dagger}(\vec{p}, -) - \beta_{a \ j}^{(+)*} \chi^{(-)}(\vec{p}) a_{j}^{\dagger}(\vec{p}, +) \right) e^{ip \cdot x} \right] \\ &\sum_{a} U_{ea} \alpha_{a \ j}^{(-)} &= \delta_{j,j_{h}} \\ &\sum_{a} U_{ea} \beta_{a \ j}^{(+)*} &= \delta_{j,j_{l}} \\ &j_{h} - \text{highest mass eigenstate (3 for NO, 2 for IO)} \\ &j_{l} - \text{lowest mass eigenstate (1 for NO, 3 for IO)} \end{split}$$

MSW effect

$$\chi^{(+)}(\vec{p}) = \begin{pmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} e^{i\phi} \end{pmatrix}, \qquad \chi^{(-)}(\vec{p}) = \begin{pmatrix} -\sin\frac{\theta}{2} e^{-i\phi} \\ \cos\frac{\theta}{2} \end{pmatrix}$$

INT 18-1a, March 8, 2018

CENTRAL MICHIGAN Neutrinoless double beta decay of atomic nuclei

$$\Phi_{e}^{W}(x) = \int \frac{d^{3}p}{(2\pi)^{3/2}} \left[\left(\chi^{(-)}(\vec{p})a_{j_{h}}(\vec{p},-) + \sum_{a,j} U_{ea} \frac{m_{a}}{2P} \beta_{a j}^{(+)} \chi^{(+)}(\vec{p})a_{j}(\vec{p},+) \right) e^{-ip \cdot x} + \left(\sum_{a,j} U_{ea} \frac{m_{a}}{2P} \alpha_{a j}^{(-)*} \chi^{(+)}(\vec{p})a_{j}^{\dagger}(\vec{p},-) - \chi^{(-)}(\vec{p})a_{j_{l}}^{\dagger}(\vec{p},+) \right) e^{ip \cdot x} \right]$$

 j_h – highest mass eigenstate (3 for NO, 2 for IO)

 j_l – lowest mass eigenstate (1 for NO, 3 for IO)

Phys.Lett. B336 (1994) 439-445 alternative 4-component spinors

INT 18-1a, March 8, 2018

Effective neutrino mass

INT 18-1a, March 8, 2018

Effective neutrino mass

INT 18-1a, March 8, 2018

閫 CENTRAL MICHIGAN Neutrinoless double beta decay of atomic nuclei

$$\begin{split} \Phi_{e}^{W}(x) &= \int \frac{d^{3}p}{(2\pi)^{3/2}} \sum_{a,j} U_{ea} \left[\left(\alpha_{a\ j}^{(-)} \chi^{(-)}(\vec{p}) a_{j}(\vec{p}, -) + \frac{m_{a}}{2P} \beta_{a\ j}^{(+)} \chi^{(+)}(\vec{p}) a_{j}(\vec{p}, +) \right) e^{-ip \cdot x} \right. \\ &+ \left(\frac{m_{a}}{2P} \alpha_{a\ j}^{(-)*} \chi^{(+)}(\vec{p}) a_{j}^{\dagger}(\vec{p}, -) - \beta_{a\ j}^{(+)*} \chi^{(-)}(\vec{p}) a_{j}^{\dagger}(\vec{p}, +) \right) e^{ip \cdot x} \right] \\ &+ \left(\frac{m_{a}}{2P} \alpha_{a\ j}^{(-)*} \chi^{(+)}(\vec{p}) a_{j}^{\dagger}(\vec{p}, -) - \beta_{a\ j}^{(+)*} \chi^{(-)}(\vec{p}) a_{j}^{\dagger}(\vec{p}, +) \right) e^{ip \cdot x} \right] \\ &\sum_{j=1}^{N(3)} \beta_{a\ j}^{(-)} \beta_{b\ j}^{(-)*} = \delta_{ab} \\ & NP_{a} = \left\langle 0 \right| T \left[\psi_{aL}(x_{1}) \psi_{aL}^{T}(x_{2}) \right] \left| 0 \right\rangle = \left(\begin{array}{c} 0 & 0 \\ 0 & \left\langle 0 \right| T \left[\Phi_{a}(x_{1}) \Phi_{a}^{T}(x_{2}) \right] \left| 0 \right\rangle \right] \end{split}$$

$$t_1 > t_2$$

$$\langle 0 | \Phi_e^W(x_1) \left(\Phi_e^W(x_2) \right)^T | 0 \rangle = \sum_a U_{ea}^2 \int \frac{d^3p}{(2\pi)^3} \frac{m_a}{2P} \left[\chi^{(-)}(\vec{p}) \chi^{(+)T}(\vec{p}) - \chi^{(+)}(\vec{p}) \chi^{(-)T}(\vec{p}) \right] e^{-ip \cdot (x_1 - x_2)}$$

$$\langle 0 | T \left[\Phi_e^W(x_1) \left(\Phi_e^W(x_2) \right)^T \right] | 0 \rangle = -i \sum_a U_{ea}^2 \int \frac{d^4p}{(2\pi)^4} \frac{m_a e^{-ip(x_1 - x_2)}}{p^2 - m_a^2 + i\epsilon} \left(i\sigma^2 \right)$$

$$In \ atomic \ nuclei \ NP = In \ vacuum \ NP \qquad \qquad P_L C = \begin{pmatrix} 0 & 0 \\ 0 & i\sigma^2 \end{pmatrix}$$

In atomic nuclei NP = *In vacuum NP*

Vacuum result stands :
$$m_{\beta\beta} = \left| \sum_{a=1}^{3} U_{ea}^{2} m_{a} \right|$$

INT 18-1a, March 8, 2018

Summary

- Neutrinoless DBD, if observed, will represent a big step forward in our understanding of the neutrinos, and of physics beyond the Standard Model.
- Better nuclear matrix elements and effective DBD operators are needed to identify the underlying mechanism(s).
- The effects of the high electron densities in atomic nuclei were investigated and they do not change the neutrino emission or detection, nor the $0\nu\beta\beta$ outcome.
- These results look simple, but the road to them is complex. Other observables (Majoron) may be affected!

