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Plan of talk 

•  In vacuum Majorana neutrinos and double 
beta decay (DBD) 
– Classical neutrinoless DBD 
– Effective field theory approach 

•  In medium Majorana neutrino and 
neutrinoless DBD 
– Neutrino mixing inside atomic nuclei 
– Neutrinoless DBD of atomic nuclei 
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Classical Double Beta Decay Problem 
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Neutrino ββ effective mass 
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Light sterile neutrinos 22
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Figure 6. Value of the e↵ective Majorana mass |m�� | as a function of the lightest
neutrino mass in the cases of 3⌫ and 3+1 mixing with Normal and Inverted Ordering
of the three lightest neutrinos [210]. The signs in the legends indicate the signs of
ei↵2 , ei↵3 , ei↵4 = ±1 for the cases in which CP is conserved. The intermediate yellow
regions are allowed only in the case of CP violation.

produced by Big Bang Nucleosynthesis (BBN). In Subsection 6.3 we discuss the e↵ects of

light sterile neutrinos on the formation of Large Scale Structures (LSS), which occurred

after the sterile neutrinos became non-relativistic. Finally, in Subsection 6.4 we review

the current cosmological bounds on light sterile neutrinos.

6.1. Neutrino parameterization

It is convenient to parametrize the neutrino contribution to the radiation content in the

early Universe in terms of an e↵ective number of degrees of freedom Ne↵ , such that the
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Neutrino Masses 
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-  Tritium decay: 

 

 

-  Cosmology: CMB power 
spectrum, BAO, etc, 
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Δm21
2 ≈ 7.5 ×10−5 eV 2 (solar)

Δm32
2 ≈ 2.4 ×10−3 eV 2 (atmospheric)
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c12 ≡ cosθ12 , s12 = sinθ12 , etc

Two neutrino mass hierarchies 
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Neutrino oscillations parameters 
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FIG. 1: Global 3⌫ oscillation analysis. Projections of the �2 function onto the parameters �m2, |�m2|, sin2 ✓ij , and �, for NO
(blue) and IO (red). In each panel, all the undisplayed parameters are marginalized, and the o↵set ��2

IO�NO = 3.6 is included.

p 2 [0, 1] linking any two competing hypotheses [35]). Explicit parametric connections have been worked out for
medium-baseline reactor neutrino oscillations, in terms of the mixing variable sin2 ✓12 (swapping octants between NO
and IO for �m2 > 0 in vacuum [36]) and of an empirical variable ↵ (ranging in [�1, +1] from IO to NO [37]). The
above considerations further support our adoption of Eq. (8) as a reasonable metric for the IO–NO discrimination
[25], akin to a one-parameter estimation test. For a discussion of further statistical issues and possible alternative
approaches, see also [3, 4, 38–40] and refs. therein.

With present data, the current statistical sensitivity associated to ��2
IO�NO tests appears to be limited to ⇠ 2�

(see Sec. III). Therefore, we shall conservatively report ��2 bounds on mass-mixing parameters both by separately

minimizing the �2 in NO and IO (discarding the relative ��2
IO�NO di↵erence), and by further minimizing the �2

over any ordering (including the ��2
IO�NO information), with a discussion of the relative di↵erences in the results.

Such a format has been adopted in presenting the oscillation parameter ranges in [11, 41], and is extended herein to
nonoscillation parameters.

A. Neutrino oscillations

An analysis of neutrino oscillation data has been previously presented in [9], to which we refer the reader for a
discussion of the adopted methodology and earlier literature. A partial update of [9], including novel accelerator
data shown in mid-2016, was reported in [10]. The more complete update presented herein (circa 2017) includes, with
respect to [9]: (i) the latest results from the long-baseline accelerator experiments T2K [42] and NOvA [43, 44]; (ii) the
latest far/near spectral ratio from the reactor neutrino experiment Daya Bay [45]; (iii) the most recent atmospheric
neutrino data from the Super-Kamiokande (SK) phase IV [46, 47]. The results of our oscillation data analysis are
reported graphically in Fig. 1 and numerically in Table I.

Figure 1 shows the �2 curves in terms of the six oscillation parameters (�m2, �m2, sin2 ✓12, sin
2 ✓13, sin

2 ✓23, �),
for both NO (blue) and IO (red). We find an overall preference for NO, quantified by the �2 di↵erence

��2
IO�NO = 3.6 (all oscill. data) , (9)

that is explicitly shown as an o↵set of the IO curves. The o↵set is of some relevance in the analysis of absolute mass
observables, as shown later.

Bari group: 

arxiv.org/1703.04471 

(Δχ2 
IO-NO)1/2 = 2 

Normal ordering 
favored  at 2σ
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J. Schechter and J.W.F Valle, PRD 25, 2951 (1982) 

0νββ observed     ó 

at some level 

E. Takasugi, PLB 149, 372 (1984) 

(i) Lepton number conservation is 
violated by 2 units.  

(ii) Electron neutrinos are Majorana 
fermions (with m > 0). 

J.F. Nieves, PLB 145, 375 (1984) 

Black box I  (electron neutrino) 

However: 

M. Duerr et al, JHEP 06 (2011) 91 
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Black box II  (all flavors + oscillations) 
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Other models: Left-Right symmetric model and 
SUSY R-parity violation 

€ 

η
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λ
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TABLE I. The Q0⌫
�� values in MeV, the experimental T 0⌫

1/2 limits in years, and the calculated PSF in years�1 for all five isotopes
currently under investigation.

48Ca 76Ge 82Se 130Te 136Xe

Q0⌫
�� 4.2723 2.0390 2.9951 2.8135 2.2870

T 0⌫
1/2 > 2.0⇥ 1022[30] 5.3⇥ 1025[31] 2.5⇥ 1023[32] 4.0⇥ 1024[33] 1.1⇥ 1026[34]

G01 ⇥ 1014 2.45 0.22 1.00 1.41 1.45

G02 ⇥ 1014 15.4 0.35 3.21 3.24 3.15

G03 ⇥ 1015 18.2 1.20 6.50 8.46 8.55

G04 ⇥ 1015 5.04 0.42 1.92 2.53 2.58

G05 ⇥ 1013 3.28 0.60 2.16 4.12 4.36

G06 ⇥ 1012 3.87 0.50 1.65 2.16 2.21

G07 ⇥ 1010 2.85 0.28 1.20 1.75 1.80

G08 ⇥ 1011 1.31 0.17 0.82 1.72 1.83

G09 ⇥ 1010 15.5 1.12 4.42 4.47 4.44

II. EFFECTIVE FIELD THEORY APPROACH
TO NEUTRINOLESS DOUBLE-BETA DECAY

The possibility that right-handed currents could con-
tribute neutrinoless double-beta decay (0⌫��) has been
already considered for some time [29, 35]. Recently, 0⌫��
studies [9, 36] have adopted the left-right symmetric
model [7, 37] for the inclusion of right-handed currents.
In the framework of the left-right symmetric model and
R-parity violating (��Rp

) supersymmetric (SUSY) model
[38–40], the half-life expression can be written as a sum
of products of PSF, BSM LNV parametes, and their cor-
responding NME [11]:

h
T 0⌫
1/2

i�1
= G01g

4
A

��⌘0⌫M0⌫ +
�
⌘L
NR

+ ⌘R
NR

�
M0N

+ ⌘
q̃

M
q̃

+ ⌘
�

0M
�

0 + ⌘
�

X
�

+ ⌘
⌘

X
⌘

|2 . (1)

Here, G01 is a phase space factor that can be calculated
with good precision for most cases [41–44], g

A

is the ax-

ial vector coupling constant, ⌘0⌫ = hm��i
me

, with hm
��

i
representing the e↵ective Majorana neutrino mass and
m

e

the electron mass. ⌘L
NR

, ⌘R
NR

are the heavy neutrino
parameters with left-handed and right-handed currents,
respectively [9, 21], ⌘

q̃

, ⌘
�

0 are ��Rp

SUSY LNV parame-
ters [45], ⌘

�

, and ⌘
⌘

are parameters for the so-called ”��”
and ”⌘�mechanism”, respectively [9]. M0⌫ , M0N , are the
light and the heavy neutrino exchange NME,M

q̃

,M
�

0 are
the��Rp

SUSY NME, andX
�

andX
⌘

denote combinations
of NME and other PSF (G02�G09) corresponding to the
the ��mechanism involving right-handed leptonic and
right-handed hadronic currents, and the ⌘�mechanism
with right-handed leptonic and left-handed hadronic cur-
rents, respectively [11].

In Table I we present the Q0⌫
��

values, the most re-
cent experimental half-life limits from the indicated ref-
erences, and the nine PSF for 0⌫�� transitions to ground
states of the daughter nucleus for five isotopes currently
under investigation. The PSF were calculated using a
new e↵ective method described in great detail in Ref.

TABLE II. The NME that appear in Eq. (1) and their cor-
responding LNV parameters for the five nuclei of current ex-
perimental interest.

48Ca 76Ge 82Se 130Te 136Xe

M0⌫ 1.03 3.64 3.42 1.93 1.75

M0N [25] 75.5 202 187 136 143

Mq̄ 107 339 320 185 169

M�0 370 619 570 415 366

X� 2.11 4.13 5.69 2.81 2.48

X⌘ 246 794 725 517 467

106·|⌘0⌫ | 27.5 0.50 3.70 1.37 0.28

109·|⌘0N | 376.5 8.97 67.5 19.5 3.49

109·|⌘q̄| 264 5.35 39.4 14.3 2.96

109·|⌘�0 | 76.9 2.92 22.1 6.39 1.36

107·|⌘�| 135 4.39 22.2 9.42 2.01

109·|⌘⌘| 115 2.28 17.4 5.13 1.07

[44]. G01 were calculated with a screening factor (s
f

) of
94.5, while G02 � G09 used s

f

= 92.0 that is shown to
provide good accuracy within 18% of those in Ref. [46].
Table II shows the shell model values the the NME

that enter Eq. (1). The heavy right-handed neutrino-
exchange NME M0N are taken from Ref. [25] that de-
scribes their formalism and calculation. M

q̄

and M
�

0 are
calculated using the description in Eq. (150) and Eq.
(155), respectively, of Ref. [45]. X

�

and X
⌘

are adapted
from C4 and C5 of Eq. (3.5.15d) and Eq. (3.5.15e), re-
spectively, in Ref. [29] multiplied by M

GT

/G01 to fit the
factorization of Eq. (1).
..........................

A more general approach is based on the e↵ective field
theory extension of the Standard Model. The analysis
based on the beyond standard model (BSM) e↵ective
field theory is more desirable, because it does not rely
on specific models, and their parameters could be ex-
tracted/constrained by the existing 0⌫�� data, and by

Gluino exchange 

Squark 
exchange 
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
G

Fp
2

2

4jµ
V�A

J†
V�A,µ

+
⇤X

↵,�

✏�
↵

j
�

J†
↵

3

5 , (2)

where J†
↵

= ūO
↵

d and j
�

= ēO
�

⌫ are hadronic
and leptonic Lorentz currents, respectively. The def-
initions of the O

↵,�

operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏�

↵

=
{✏V+A

V�A

, ✏V+A

V+A

, ✏S+P

S±P

, ✏TR

TL

, ✏TR

TR

}. The ”*” symbol in-
dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. G

F

= 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:

T (L(1)
6 L(2)

6 ) =
G2

F

2
T
h
j
V�A

J†
V�A

j
V�A

J†
V�A

+ ✏�
↵

j
�

J†
↵

j
V�A

J†
V�A

+ ✏�
↵

✏�
�

j
�

J†
↵

j
�

J†
�

i
. (3)

In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
G2

F

2m
p

h
"1JJj + "2J

µ⌫J
µ⌫

j + "3J
µJ

µ

j

+"4J
µJ

µ⌫

j⌫ + "5J
µJj

µ

i
, (4)

with "�
↵

= "xyz
↵

= {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:

h
T 0⌫
1/2

i�1
=g4

A

2

4
X

i

|E
i

|2 M2
i

+Re

2

4
X

i 6=j

E
i

E
j

M
ij

3

5

3

5 . (5)

Here, the E
i

contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏V+A

V�A

, ✏V+A

V+A

, ✏S+P

S±P

, ✏TR

TL

, ✏TR

TR

, ⌘
⇡⌫

} are the long-
range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E

↵

E
�

M
↵�

are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. G
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denotes the Fermi coupling constant.
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "�
↵

= "xyz
↵

= {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the E
i

contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏V+A
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} are the long-
range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E

↵

E
�

M
↵�

are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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TABLE I. The Q0⌫
�� values in MeV, the experimental T 0⌫

1/2 limits in years, and the calculated PSF (G01 � G09) in years�1 for
all five isotopes currently under investigation.

48Ca 76Ge 82Se 130Te 136Xe

Q0⌫
�� [53] 4.272 2.039 2.995 2.813 2.287

T 0⌫
1/2 > 2.0 · 1022[54] 5.3 · 1025[55] 2.5 · 1023[56] 4.0 · 1024[57] 1.1 · 1026[58]

G01 · 1014 2.45 0.22 1.00 1.41 1.45

G02 · 1014 15.4 0.35 3.21 3.24 3.15

G03 · 1015 18.2 1.20 6.50 8.46 8.55

G04 · 1015 5.04 0.42 1.92 2.53 2.58

G05 · 1013 3.28 0.60 2.16 4.12 4.36

G06 · 1012 3.87 0.50 1.65 2.16 2.21

G07 · 1010 2.85 0.28 1.20 1.75 1.80

G08 · 1011 1.31 0.17 0.82 1.72 1.83

G09 · 1010 15.5 1.12 4.42 4.47 4.44

TABLE II. The NME that appear in Eq. (1) for the five
nuclei of current experimental interest, and the corresponding
LNV parameters extracted under the assumption that only
one dominates.

48Ca 76Ge 82Se 130Te 136Xe

M0⌫ 1.03 3.64 3.42 1.93 1.75

M0N 75.5 202 187 136 143

Mq̃ 107 339 320 185 169

M�0 370 619 570 415 366

X� 2.11 4.13 5.69 2.81 2.48

X⌘ 246 794 725 517 467

106·|⌘0⌫ | 27.5 0.50 3.70 1.37 0.28

109·|⌘0N | 376.5 8.97 67.5 19.5 3.49

109·|⌘q̃| 264 5.35 39.4 14.3 2.96

109·|⌘�0 | 76.9 2.92 22.1 6.39 1.36

107·|⌘�| 135 4.39 22.2 9.42 2.01

109·|⌘⌘| 115 2.28 17.4 5.13 1.07

[52]multiplied by M
GT

/G01 to fit the factorization of Eq.
(1). All NME used in this paper were calculated using the
interacting shell model (ISM) approach[27–30, 33, 48, 70]
(see Ref. [33] for a review), and include short-range-
correlation e↵ects based on the CD-Bonn parametriza-
tion [26], finite-size e↵ects [68] and, when appropriate,
optimal closure energies [50] (see Appendix for more de-
tails).
The upper limits for corresponding LNV parameters

extracted from lower limits of the half-lives under the as-
sumption that only one term in the amplitude dominates,
are also presented in Table II.

III. EFFECTIVE FIELD THEORY APPROACH
TO NEUTRINOLESS DOUBLE-BETA DECAY

A more general approach is based on the e↵ective
field theory extension of the Standard Model. The anal-
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

ysis based on the BSM contributions to the e↵ective
field theory is more desirable, because it does not rely
on specific models, and their parameters could be ex-
tracted/constrained by the existing 0⌫�� data, and by
data from LHC and other experiments. In fact, the mod-
els considered in section II always lead to a subset of
terms in the low-energy (⇠ 200 MeV) e↵ective field the-
ory Lagrangian. Here we consider all the terms in the
Lagrangian allowed by the symmetries. Some of the cou-
plings will correspond to the model couplings in Eq. (1),
but they might have a wider meaning. Others are new,
not corresponding to specific models.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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G

Fp
2

2

4jµ
V�A

J†
V�A,µ

+
⇤X

↵,�

✏�
↵

j
�

J†
↵

3

5 , (2)

where J†
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= ūO
↵

d and j
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= ēO
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⌫ are hadronic
and leptonic Lorentz currents, respectively. The def-
initions of the O
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operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏�
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}. The ”*” symbol in-
dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. G

F

= 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "�
↵

= "xyz
↵

= {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the E
i

contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏V+A

V�A

, ✏V+A

V+A

, ✏S+P

S±P

, ✏TR

TL

, ✏TR

TR

, ⌘
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} are the long-
range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E

↵

E
�

M
↵�

are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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denotes the Fermi coupling constant.
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "�
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2
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as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
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are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.

3

0νββ
eL R

−

u

u

d

d

eL R
−

(a) The generic 0⌫�� decay

diagram at the quark-level.

=

d

d

u

u

eL
−

ν

W L

W L
eL

−

(b) Light left-handed neutrino

exchange diagram.

+

d

d

u

u

ν

W L

ϵ

eL R
−

eL
−

(c) The long-range part of the

0⌫�� diagram.

+

eL/ R
−

u

u

d

d

eL/ R
−

ε

(d) The short-range part of

the 0⌫�� diagram.

FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
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exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "�
↵

= "xyz
↵

= {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the E
i

contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏V+A

V�A

, ✏V+A

V+A

, ✏S+P
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, ✏TR

TL

, ✏TR

TR

, ⌘
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} are the long-
range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E

↵

E
�

M
↵�

are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
G

Fp
2

2

4jµ
V�A

J†
V�A,µ

+
⇤X

↵,�

✏�
↵

j
�

J†
↵

3

5 , (2)

where J†
↵

= ūO
↵

d and j
�

= ēO
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "�
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LRz(RLz)
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
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denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E
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M
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are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 2. Similar to Fig.1, we present the nucleon-level diagrams of 0⌫�� decay process : (2a) presents the generic description
of the process, (2b) shows the light left-handed neutrino exchange, (2c) is the long-range component, Subfigure 2d shows the
short-range contribution. On the second line, (2e) is the pion-neutrino component, (2f) is the one-pion long-range contribution
of the⇢Rp SUSY induced 0⌫�� diagram, and (2g presents the two-pion long-range contribution of the⇢Rp SUSY induced 0⌫��.
The e↵ective couplings ⌘1⇡ and ⌘2⇡ are related to Eq. (16) as ⌘1⇡ = c1⇡⌘⇡N and ⌘2⇡ = c2⇡⌘⇡N .

In that restrictive case we showed that one can disen-
tangle di↵erent contributions to the 0⌫�� decay process
using two-electron angular and energy distributions as
well as half-lives of two selected isotopes. Obviously, this
number of observables is not enough to extract all cou-
pling appearing in the e↵ective field theory Lagrangian.
However, they can be used to constrain these couplings,
thus adding to the information extracted from the Large
Hadron Collider and other related experiments. Here we
attempt to extract these couplings assuming that only
one of them can have a dominant contribution to the
half-life, Eq. (5). We call this approach “on-axis“. Con-
sidering the “on-axis“ approach to extracting limits of the
LNV parameters, the interference terms are neglected in
our analysis. In the following, we extract the “on-axis“
upper limits of these parameters using the most recent
experimental the half-lives lower limits, as presented in
Table I.

IV. EXPERIMENTAL LIMITS ON THE BSM
LNV COUPLINGS

To obtain experimentally constrained upper limits of
the e↵ective LNV couplings one needs experimental half-

life lower limits, accurate calculations of the PSF, to-
gether with reliable NME results calculated using nu-
clear structure methods tested to correctly describe the
experimental nuclear structure data available for the nu-
clei involved. We split our analysis of the LNV parame-
ters into three subsections corresponding the exchange of
light left-handed Majorana neutrinos, the LNV couplings
entering the remaining quark-level long-range diagrams,
and the LNV couplings entering the quark-level short-
range diagrams.

A. The exchange of light left-handed neutrinos

Most studies in the literature have only considered the
case where only the exchange of light left-handed Ma-
jorana neutrinos contribute to the 0⌫�� decay process,
presented in Figs. 1b and 2b. Therefore, one can easily
find calculations of NME and PSF for this scenario. Con-
sidering only this case, we reduce the half-life equation
to:
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. G
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= 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "�
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= "xyz
↵

= {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the E
i

contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
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range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E
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E
�

M
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are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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denotes the Fermi coupling constant.
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "�
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LRz(RLz)
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏V+A
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S±P
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} are the long-
range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E

↵

E
�

M
↵�

are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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3 , "
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3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E
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E
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M
↵�

are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).
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the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
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as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
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are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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representative examples that mediate 0νββ decay via stan-
dard or nonstandard light neutrino exchange, or via short-
range interactions at tree level.

II. NEUTRINOLESS DOUBLE BETA DECAY

The most prominent probe of low energy LNV is 0νββ
decay, the simultaneous transition of two neutrons into two
protons and two electrons. The most general Lagrangian
triggering the decay can be parametrized as depicted in
Fig. 1, in terms of effective 6-dim and 9-dim operators at
the nuclear Fermi scale Oð100 MeVÞ [7]. The diagrams
show the exchange of a light Majorana neutrino generated
by O5 between two SM Fermi interactions (a), the
exchange of a light neutrino between a Fermi interaction
and the operator O7 (b), and two short-range contributions
triggered by the operators O9 (c) and O11 (d).
The 0νββ half-life can be succinctly written in terms of

an effective coupling ϵi of a single operator as T−1
1=2 ¼

ϵ2i GijMij2, where Gi and Mi are the nuclear 0νββ phase
space factor and matrix element, respectively, for a given
isotope and operator. The effective couplings ϵi are con-
nected to the scales of the operators in Eq. (2) as [8]

meϵ5 ¼
g2v2

Λ5

;
GFϵ7ffiffiffi

2
p ¼ g3v

2Λ3
7

;

G2
Fϵf9;11g
2mp

¼
"
g4

Λ5
9

;
g6v2

Λ7
11

#
: ð3Þ

In terms of the effective 0νββ mass mee, one simply has
ϵ5 ¼ mee=me with the electron mass me, whereas the other
couplings are normalized with respect to the Fermi cou-
pling GF and the proton mass mp. The Higgs vacuum
expectation value v ¼ 174 GeV arises from EW symmetry
breaking thereby generating the effective 6-dim and 9-dim

operators for 0νββ. Powers of a generic (average) coupling
constant g are included to illustrate the scaling expected in
a tree level ultraviolet (UV) completion of an operator.
In the following we will set g ¼ 1 for simplicity.
The most stringent bounds are currently derived from

experimental 0νββ searches in 76Ge and 136Xe with
90% C.L. limits of T1=2 > 2.1 × 1025 y [9] and T0

1=2 >
ð1.1 − 1.9Þ × 1025 y [10,11], respectively. In deriving the
corresponding scales of the operators we use the results of
[8] for 76Ge. Planned future experiments aim to increase the
sensitivity by potentially 2 orders of magnitude to T1=2 ≈
1027 y [12]. Assuming the dominance of a single operator,
the half-life can be expressed as

T1=2 ¼ 2.1 × 1025 y · ðΛD=Λ0
DÞ2d−8; ð4Þ

where Λ0
D is the scale corresponding to the current

sensitivity. Table I lists the values of Λ0
D for our selection

of operators. The scaling dimension d is identical to the
operator dimensionD if 0νββ is generated at tree level from
the underlying operator, as in the cases we discuss, but
could be smaller for loop-induced diagrams. As mentioned
before, the operators in Eq. (2) act as examples for the
different types of 0νββ decay mediation. Similar results
hold for the other 125 operators and other Lorentz
structures. The latter will affect the 0νββ sensitivity some-
what, but due to the high dimensionality of the operators
this will only weakly impact the derived scales. Many of the
129 operators will induce 0νββ nonstandard mechanisms
only at the loop level; in such cases, there will be additional
loop suppression factors in the relations analogous to
Eq. (3). This will make it unlikely that such contributions
can be observed in 0νββ decay, but if they were, our
following argumentation with respect to baryogenesis
would be even stronger.
If 0νββ decay was observed, the responsible operator

would still be unknown. Although discriminating between
the different underlying operators is a challenging task,
various ideas have been proposed how this could be
achieved, at least for a subset of the various contributions.
Cosmological observations such as anisotropies of the
cosmic microwave background or the large scale structure
can set stringent constraints on the sum of neutrino masses;
the Planck Collaboration, for example, recently attainedP

mν < 0.17 [1], which can be further improved by future

(a) (b)

(c) (d)

FIG. 1 (color online). Contributions to 0νββ decay generated by
the operators O5 (a), O7 (b), O9 (c) and O11 (d), as given in
Eq. (2), in terms of effective vertices, pointlike at the nuclear
Fermi momentum scale.

TABLE I. Operator scale Λ0
D and minimal washout scale λ0D for

the LNV operators in Eq. (2) and the current 0νββ sensitivity
T1=2 ¼ 2.1 × 1025 y.

OD λ0D [GeV] Λ0
D [GeV]

O5 9.2 × 1010 9.1 × 1013

O7 1.2 × 102 2.6 × 104

O9 4.3 × 101 2.1 × 103

O11 7.8 × 101 1.0 × 103
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Consequences: - scales for new physics 

                         - baryogenesis via leptogenesis 

g ≈1 v =174GeV ( Higgs expectation value )

7

TABLE VIII. The ⇤D scale limits and the minimal washout
scales �D and �̂D for the 0⌫�� decay of 136Xe with a half-life
limit T1/2 > 1.1⇥ 1026 years.

OD ✏̄D ⇤D �D �̂D

O5 2.8⇥ 10�7 2.12⇥ 1014 4.94⇥ 1011 8.20⇥ 1012

O7 2.0⇥ 10�7 3.75⇥ 104 1.78⇥ 102 4.32⇥ 102

O9 1.5⇥ 10�7 2.48⇥ 103 5.10⇥ 101 1.74⇥ 102

O11 1.5⇥ 10�7 1.16⇥ 103 8.73⇥ 101 1.74⇥ 102

and 2g, "̃1 provides significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.
...........
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Here, m
e

= 0.511⇥10�3 GeV is the electron mass, g = 1
is a generic coupling constant, v = 174 GeV is the Higgs
vaccum expectation value, G

F

= 1.166 ⇥ 10�5 GeV�2

is the Fermi coupling constant, and m
p

= 0.938 GeV is

the proton mass. ✏̄5 = |⌘0⌫ |, ✏̄7 = Max
h
|✏V+A

V�A

|, |✏V+A

V+A

|,
|✏S+P

S±P

|, |✏TR

TL

|, |✏TR

TR

|
i
, ✏̄9 = Max

h
|"1|, |"2|, |"LLz(RRz)

3 |,
|"LRz(RLz)

3 |, |"4|, |"5|
i
, and ✏̄11 = ✏̄9.

To extract the operator scale limits ⇤5,7,9,11 we need
the most stringent limits for the LNV parameters, which
are found in the case of 136Xe. Because of this, we focus
our analysis on using the ✏̄

D

(with D = {5, 7, 9, 11})
values from this nucleus. ✏̄5 corresponds to the ⌘0⌫ pa-
rameter of the light left-handed Majorana neutrino ex-
change mechanism. For ✏̄7 we choose ✏V+A

V�A

, that is the
largest long-range ✏�

↵

parameter. In the case of ✏̄9 = ✏̄11
we select "1, being the largest short-range "�

↵

parameter.

V. CONCLUSIONS

This work advances and extends the analysis of beyond
standard model physics parameters involved in the neu-
trinoless double-beta decay. We calculate 23 nuclear ma-
trix elements and 9 phase-space factors. Using a general
e↵ective field theory, we extract limits for the e↵ective
Majorana mass and 11 e↵ective couplings in the case of
five nuclei of immediate experimental interest. Due to

the better half-life limits, the most stringent limits found
are for 136Xe, closely followed by 76Ge. An upper-limit
for the Majorana neutrino mass hm

��

i of 140 meV was
calculated in the case of 136Xe.

Should neutrinoless double-beta decay be experimen-
tally observed, a thorough analysis of the outgoing elec-
trons (presented in Ref. [11]) and precise calculations of
the matrix elements are needed to investigate the pres-
ence of right-handed currents and the dominant mechan-
sim.

VI. APPENDIX

In this Appendix, we present the detailed expressions
for the M2

i

NME that are needed to analyze the outcome
of Eq.(5).

The NME that enter the equations (8, 10, 12, 14, and
16) are written as a product of two-body transition den-
sities (TBTD) and two-body matrix elements (TBME),
where the summation is over all the nucleon states. Their
numerical values when calculated within the shell model
approach are presented in Table IX for the light lef-
handed Majorana neutrino exchange, in Table X for the
long-range part in Fig. 2, and in Table XI for the short-
range component of Fig. 2. The general expressions for
the NME are (see Refs. [11, 21, 29]):
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We group the operators that share similar structure into
five families.

Gamow-Teller operator : O�

12 = ~�1 · ~�2H�

(r),

Fermi operator : O�

12 = H
�

(r),

Tensor operator : O✓

12 = [3(~�1 · r̂)(~�2 · r̂)� ~�1 · ~�2]H✓

(r),

P operator : OP

12 = (~�1 � ~�2)HP

(r),

R operator : OR

12 = ~�1 · ~�2HR

(r).

Here, � = GT , GT!, GTq, GTN , GT 0, GT 00, GT⇡⌫,
GT1⇡, GT2⇡, � = F, F!, F q, FN, F 0, and ✓ =
T, Tq, T 0, T 00, T⇡⌫, T1⇡, T2⇡. Equations (21) present
the radial part of the NME and their expressions are
adapted for consistency from Refs. [29],[15], and [45].
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representative examples that mediate 0νββ decay via stan-
dard or nonstandard light neutrino exchange, or via short-
range interactions at tree level.

II. NEUTRINOLESS DOUBLE BETA DECAY

The most prominent probe of low energy LNV is 0νββ
decay, the simultaneous transition of two neutrons into two
protons and two electrons. The most general Lagrangian
triggering the decay can be parametrized as depicted in
Fig. 1, in terms of effective 6-dim and 9-dim operators at
the nuclear Fermi scale Oð100 MeVÞ [7]. The diagrams
show the exchange of a light Majorana neutrino generated
by O5 between two SM Fermi interactions (a), the
exchange of a light neutrino between a Fermi interaction
and the operator O7 (b), and two short-range contributions
triggered by the operators O9 (c) and O11 (d).
The 0νββ half-life can be succinctly written in terms of

an effective coupling ϵi of a single operator as T−1
1=2 ¼

ϵ2i GijMij2, where Gi and Mi are the nuclear 0νββ phase
space factor and matrix element, respectively, for a given
isotope and operator. The effective couplings ϵi are con-
nected to the scales of the operators in Eq. (2) as [8]

meϵ5 ¼
g2v2

Λ5

;
GFϵ7ffiffiffi

2
p ¼ g3v

2Λ3
7

;

G2
Fϵf9;11g
2mp

¼
"
g4

Λ5
9

;
g6v2

Λ7
11

#
: ð3Þ

In terms of the effective 0νββ mass mee, one simply has
ϵ5 ¼ mee=me with the electron mass me, whereas the other
couplings are normalized with respect to the Fermi cou-
pling GF and the proton mass mp. The Higgs vacuum
expectation value v ¼ 174 GeV arises from EW symmetry
breaking thereby generating the effective 6-dim and 9-dim

operators for 0νββ. Powers of a generic (average) coupling
constant g are included to illustrate the scaling expected in
a tree level ultraviolet (UV) completion of an operator.
In the following we will set g ¼ 1 for simplicity.
The most stringent bounds are currently derived from

experimental 0νββ searches in 76Ge and 136Xe with
90% C.L. limits of T1=2 > 2.1 × 1025 y [9] and T0

1=2 >
ð1.1 − 1.9Þ × 1025 y [10,11], respectively. In deriving the
corresponding scales of the operators we use the results of
[8] for 76Ge. Planned future experiments aim to increase the
sensitivity by potentially 2 orders of magnitude to T1=2 ≈
1027 y [12]. Assuming the dominance of a single operator,
the half-life can be expressed as

T1=2 ¼ 2.1 × 1025 y · ðΛD=Λ0
DÞ2d−8; ð4Þ

where Λ0
D is the scale corresponding to the current

sensitivity. Table I lists the values of Λ0
D for our selection

of operators. The scaling dimension d is identical to the
operator dimensionD if 0νββ is generated at tree level from
the underlying operator, as in the cases we discuss, but
could be smaller for loop-induced diagrams. As mentioned
before, the operators in Eq. (2) act as examples for the
different types of 0νββ decay mediation. Similar results
hold for the other 125 operators and other Lorentz
structures. The latter will affect the 0νββ sensitivity some-
what, but due to the high dimensionality of the operators
this will only weakly impact the derived scales. Many of the
129 operators will induce 0νββ nonstandard mechanisms
only at the loop level; in such cases, there will be additional
loop suppression factors in the relations analogous to
Eq. (3). This will make it unlikely that such contributions
can be observed in 0νββ decay, but if they were, our
following argumentation with respect to baryogenesis
would be even stronger.
If 0νββ decay was observed, the responsible operator

would still be unknown. Although discriminating between
the different underlying operators is a challenging task,
various ideas have been proposed how this could be
achieved, at least for a subset of the various contributions.
Cosmological observations such as anisotropies of the
cosmic microwave background or the large scale structure
can set stringent constraints on the sum of neutrino masses;
the Planck Collaboration, for example, recently attainedP

mν < 0.17 [1], which can be further improved by future

(a) (b)

(c) (d)

FIG. 1 (color online). Contributions to 0νββ decay generated by
the operators O5 (a), O7 (b), O9 (c) and O11 (d), as given in
Eq. (2), in terms of effective vertices, pointlike at the nuclear
Fermi momentum scale.

TABLE I. Operator scale Λ0
D and minimal washout scale λ0D for

the LNV operators in Eq. (2) and the current 0νββ sensitivity
T1=2 ¼ 2.1 × 1025 y.

OD λ0D [GeV] Λ0
D [GeV]

O5 9.2 × 1010 9.1 × 1013

O7 1.2 × 102 2.6 × 104

O9 4.3 × 101 2.1 × 103

O11 7.8 × 101 1.0 × 103
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TABLE VIII. The ⇤D scale limits and the minimal washout
scales �D and �̂D for the 0⌫�� decay of 136Xe with a half-life
limit T1/2 > 1.1⇥ 1026 years.

OD ✏̄D ⇤D �D �̂D

O5 2.8⇥ 10�7 2.12⇥ 1014 4.94⇥ 1011 8.20⇥ 1012

O7 2.0⇥ 10�7 3.75⇥ 104 1.78⇥ 102 4.32⇥ 102

O9 1.5⇥ 10�7 2.48⇥ 103 5.10⇥ 101 1.74⇥ 102

O11 1.5⇥ 10�7 1.16⇥ 103 8.73⇥ 101 1.74⇥ 102

and 2g, "̃1 provides significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.
...........

L
D

=
g

⇤D�4
D

O
D

(17)

m
e

✏̄5 =
g2v2

⇤5
,

G
F

✏̄7p
2

=
g3v

2⇤3
7

,

G
F

✏̄9
2m

p

=
g4

⇤5
9

,
G

F

✏̄11
2m

p

=
g6v2

⇤7
11

. (18)

Here, m
e

= 0.511⇥10�3 GeV is the electron mass, g = 1
is a generic coupling constant, v = 174 GeV is the Higgs
vaccum expectation value, G

F

= 1.166 ⇥ 10�5 GeV�2

is the Fermi coupling constant, and m
p

= 0.938 GeV is

the proton mass. ✏̄5 = |⌘0⌫ |, ✏̄7 = Max
h
|✏V+A

V�A

|, |✏V+A

V+A

|,
|✏S+P

S±P

|, |✏TR

TL

|, |✏TR

TR

|
i
, ✏̄9 = Max

h
|"1|, |"2|, |"LLz(RRz)

3 |,
|"LRz(RLz)

3 |, |"4|, |"5|
i
, and ✏̄11 = ✏̄9.

To extract the operator scale limits ⇤5,7,9,11 we need
the most stringent limits for the LNV parameters, which
are found in the case of 136Xe. Because of this, we focus
our analysis on using the ✏̄

D

(with D = {5, 7, 9, 11})
values from this nucleus. ✏̄5 corresponds to the ⌘0⌫ pa-
rameter of the light left-handed Majorana neutrino ex-
change mechanism. For ✏̄7 we choose ✏V+A

V�A

, that is the
largest long-range ✏�

↵

parameter. In the case of ✏̄9 = ✏̄11
we select "1, being the largest short-range "�

↵

parameter.

V. CONCLUSIONS

This work advances and extends the analysis of beyond
standard model physics parameters involved in the neu-
trinoless double-beta decay. We calculate 23 nuclear ma-
trix elements and 9 phase-space factors. Using a general
e↵ective field theory, we extract limits for the e↵ective
Majorana mass and 11 e↵ective couplings in the case of
five nuclei of immediate experimental interest. Due to

the better half-life limits, the most stringent limits found
are for 136Xe, closely followed by 76Ge. An upper-limit
for the Majorana neutrino mass hm

��

i of 140 meV was
calculated in the case of 136Xe.

Should neutrinoless double-beta decay be experimen-
tally observed, a thorough analysis of the outgoing elec-
trons (presented in Ref. [11]) and precise calculations of
the matrix elements are needed to investigate the pres-
ence of right-handed currents and the dominant mechan-
sim.

VI. APPENDIX

In this Appendix, we present the detailed expressions
for the M2

i

NME that are needed to analyze the outcome
of Eq.(5).

The NME that enter the equations (8, 10, 12, 14, and
16) are written as a product of two-body transition den-
sities (TBTD) and two-body matrix elements (TBME),
where the summation is over all the nucleon states. Their
numerical values when calculated within the shell model
approach are presented in Table IX for the light lef-
handed Majorana neutrino exchange, in Table X for the
long-range part in Fig. 2, and in Table XI for the short-
range component of Fig. 2. The general expressions for
the NME are (see Refs. [11, 21, 29]):

M
↵

=
X

jpjp0 jnjn0J⇡

TBTD (j
p

j
p

0 , j
n

j
n

0 ; J⇡)

⇥
D
j
p

j
p

0 ; J⇡

���⌧�1⌧�2O�,�,✓,P,R

12

��� j
n

j
n

0 ; J⇡

E
. (19)

We group the operators that share similar structure into
five families.

Gamow-Teller operator : O�

12 = ~�1 · ~�2H�

(r),

Fermi operator : O�

12 = H
�

(r),

Tensor operator : O✓

12 = [3(~�1 · r̂)(~�2 · r̂)� ~�1 · ~�2]H✓

(r),

P operator : OP

12 = (~�1 � ~�2)HP

(r),

R operator : OR

12 = ~�1 · ~�2HR

(r).

Here, � = GT , GT!, GTq, GTN , GT 0, GT 00, GT⇡⌫,
GT1⇡, GT2⇡, � = F, F!, F q, FN, F 0, and ✓ =
T, Tq, T 0, T 00, T⇡⌫, T1⇡, T2⇡. Equations (21) present
the radial part of the NME and their expressions are
adapted for consistency from Refs. [29],[15], and [45].
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representative examples that mediate 0νββ decay via stan-
dard or nonstandard light neutrino exchange, or via short-
range interactions at tree level.

II. NEUTRINOLESS DOUBLE BETA DECAY

The most prominent probe of low energy LNV is 0νββ
decay, the simultaneous transition of two neutrons into two
protons and two electrons. The most general Lagrangian
triggering the decay can be parametrized as depicted in
Fig. 1, in terms of effective 6-dim and 9-dim operators at
the nuclear Fermi scale Oð100 MeVÞ [7]. The diagrams
show the exchange of a light Majorana neutrino generated
by O5 between two SM Fermi interactions (a), the
exchange of a light neutrino between a Fermi interaction
and the operator O7 (b), and two short-range contributions
triggered by the operators O9 (c) and O11 (d).
The 0νββ half-life can be succinctly written in terms of

an effective coupling ϵi of a single operator as T−1
1=2 ¼

ϵ2i GijMij2, where Gi and Mi are the nuclear 0νββ phase
space factor and matrix element, respectively, for a given
isotope and operator. The effective couplings ϵi are con-
nected to the scales of the operators in Eq. (2) as [8]

meϵ5 ¼
g2v2

Λ5

;
GFϵ7ffiffiffi

2
p ¼ g3v

2Λ3
7

;

G2
Fϵf9;11g
2mp

¼
"
g4

Λ5
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;
g6v2

Λ7
11

#
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In terms of the effective 0νββ mass mee, one simply has
ϵ5 ¼ mee=me with the electron mass me, whereas the other
couplings are normalized with respect to the Fermi cou-
pling GF and the proton mass mp. The Higgs vacuum
expectation value v ¼ 174 GeV arises from EW symmetry
breaking thereby generating the effective 6-dim and 9-dim

operators for 0νββ. Powers of a generic (average) coupling
constant g are included to illustrate the scaling expected in
a tree level ultraviolet (UV) completion of an operator.
In the following we will set g ¼ 1 for simplicity.
The most stringent bounds are currently derived from

experimental 0νββ searches in 76Ge and 136Xe with
90% C.L. limits of T1=2 > 2.1 × 1025 y [9] and T0

1=2 >
ð1.1 − 1.9Þ × 1025 y [10,11], respectively. In deriving the
corresponding scales of the operators we use the results of
[8] for 76Ge. Planned future experiments aim to increase the
sensitivity by potentially 2 orders of magnitude to T1=2 ≈
1027 y [12]. Assuming the dominance of a single operator,
the half-life can be expressed as

T1=2 ¼ 2.1 × 1025 y · ðΛD=Λ0
DÞ2d−8; ð4Þ

where Λ0
D is the scale corresponding to the current

sensitivity. Table I lists the values of Λ0
D for our selection

of operators. The scaling dimension d is identical to the
operator dimensionD if 0νββ is generated at tree level from
the underlying operator, as in the cases we discuss, but
could be smaller for loop-induced diagrams. As mentioned
before, the operators in Eq. (2) act as examples for the
different types of 0νββ decay mediation. Similar results
hold for the other 125 operators and other Lorentz
structures. The latter will affect the 0νββ sensitivity some-
what, but due to the high dimensionality of the operators
this will only weakly impact the derived scales. Many of the
129 operators will induce 0νββ nonstandard mechanisms
only at the loop level; in such cases, there will be additional
loop suppression factors in the relations analogous to
Eq. (3). This will make it unlikely that such contributions
can be observed in 0νββ decay, but if they were, our
following argumentation with respect to baryogenesis
would be even stronger.
If 0νββ decay was observed, the responsible operator

would still be unknown. Although discriminating between
the different underlying operators is a challenging task,
various ideas have been proposed how this could be
achieved, at least for a subset of the various contributions.
Cosmological observations such as anisotropies of the
cosmic microwave background or the large scale structure
can set stringent constraints on the sum of neutrino masses;
the Planck Collaboration, for example, recently attainedP

mν < 0.17 [1], which can be further improved by future

(a) (b)

(c) (d)

FIG. 1 (color online). Contributions to 0νββ decay generated by
the operators O5 (a), O7 (b), O9 (c) and O11 (d), as given in
Eq. (2), in terms of effective vertices, pointlike at the nuclear
Fermi momentum scale.

TABLE I. Operator scale Λ0
D and minimal washout scale λ0D for

the LNV operators in Eq. (2) and the current 0νββ sensitivity
T1=2 ¼ 2.1 × 1025 y.

OD λ0D [GeV] Λ0
D [GeV]

O5 9.2 × 1010 9.1 × 1013

O7 1.2 × 102 2.6 × 104

O9 4.3 × 101 2.1 × 103

O11 7.8 × 101 1.0 × 103
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representative examples that mediate 0νββ decay via stan-
dard or nonstandard light neutrino exchange, or via short-
range interactions at tree level.

II. NEUTRINOLESS DOUBLE BETA DECAY

The most prominent probe of low energy LNV is 0νββ
decay, the simultaneous transition of two neutrons into two
protons and two electrons. The most general Lagrangian
triggering the decay can be parametrized as depicted in
Fig. 1, in terms of effective 6-dim and 9-dim operators at
the nuclear Fermi scale Oð100 MeVÞ [7]. The diagrams
show the exchange of a light Majorana neutrino generated
by O5 between two SM Fermi interactions (a), the
exchange of a light neutrino between a Fermi interaction
and the operator O7 (b), and two short-range contributions
triggered by the operators O9 (c) and O11 (d).
The 0νββ half-life can be succinctly written in terms of

an effective coupling ϵi of a single operator as T−1
1=2 ¼

ϵ2i GijMij2, where Gi and Mi are the nuclear 0νββ phase
space factor and matrix element, respectively, for a given
isotope and operator. The effective couplings ϵi are con-
nected to the scales of the operators in Eq. (2) as [8]
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In terms of the effective 0νββ mass mee, one simply has
ϵ5 ¼ mee=me with the electron mass me, whereas the other
couplings are normalized with respect to the Fermi cou-
pling GF and the proton mass mp. The Higgs vacuum
expectation value v ¼ 174 GeV arises from EW symmetry
breaking thereby generating the effective 6-dim and 9-dim

operators for 0νββ. Powers of a generic (average) coupling
constant g are included to illustrate the scaling expected in
a tree level ultraviolet (UV) completion of an operator.
In the following we will set g ¼ 1 for simplicity.
The most stringent bounds are currently derived from

experimental 0νββ searches in 76Ge and 136Xe with
90% C.L. limits of T1=2 > 2.1 × 1025 y [9] and T0

1=2 >
ð1.1 − 1.9Þ × 1025 y [10,11], respectively. In deriving the
corresponding scales of the operators we use the results of
[8] for 76Ge. Planned future experiments aim to increase the
sensitivity by potentially 2 orders of magnitude to T1=2 ≈
1027 y [12]. Assuming the dominance of a single operator,
the half-life can be expressed as

T1=2 ¼ 2.1 × 1025 y · ðΛD=Λ0
DÞ2d−8; ð4Þ

where Λ0
D is the scale corresponding to the current

sensitivity. Table I lists the values of Λ0
D for our selection

of operators. The scaling dimension d is identical to the
operator dimensionD if 0νββ is generated at tree level from
the underlying operator, as in the cases we discuss, but
could be smaller for loop-induced diagrams. As mentioned
before, the operators in Eq. (2) act as examples for the
different types of 0νββ decay mediation. Similar results
hold for the other 125 operators and other Lorentz
structures. The latter will affect the 0νββ sensitivity some-
what, but due to the high dimensionality of the operators
this will only weakly impact the derived scales. Many of the
129 operators will induce 0νββ nonstandard mechanisms
only at the loop level; in such cases, there will be additional
loop suppression factors in the relations analogous to
Eq. (3). This will make it unlikely that such contributions
can be observed in 0νββ decay, but if they were, our
following argumentation with respect to baryogenesis
would be even stronger.
If 0νββ decay was observed, the responsible operator

would still be unknown. Although discriminating between
the different underlying operators is a challenging task,
various ideas have been proposed how this could be
achieved, at least for a subset of the various contributions.
Cosmological observations such as anisotropies of the
cosmic microwave background or the large scale structure
can set stringent constraints on the sum of neutrino masses;
the Planck Collaboration, for example, recently attainedP

mν < 0.17 [1], which can be further improved by future
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FIG. 1 (color online). Contributions to 0νββ decay generated by
the operators O5 (a), O7 (b), O9 (c) and O11 (d), as given in
Eq. (2), in terms of effective vertices, pointlike at the nuclear
Fermi momentum scale.

TABLE I. Operator scale Λ0
D and minimal washout scale λ0D for

the LNV operators in Eq. (2) and the current 0νββ sensitivity
T1=2 ¼ 2.1 × 1025 y.

OD λ0D [GeV] Λ0
D [GeV]

O5 9.2 × 1010 9.1 × 1013

O7 1.2 × 102 2.6 × 104

O9 4.3 × 101 2.1 × 103

O11 7.8 × 101 1.0 × 103
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TABLE VI. The M2
↵ values for the short-range physics.

48Ca 76Ge 82Se 130Te 136Xe

1013·M2
1 1.08 0.75 2.81 1.98 1.63

108· M2
2 0.77 0.55 2.07 1.51 1.25

1010·M2
3LLz(RRz) 1.12 0.80 2.99 2.17 1.79

1011·M2
3LRz(RLz) 6.00 4.31 16.1 11.8 9.73

1010·M2
4 1.02 0.76 2.72 1.93 1.59

1013·M2
5 4.71 3.44 12.3 8.44 7.02

109· M2
⇡N 3.26 0.87 3.24 2.47 1.94

M2
4 = G09

(m
e

R)2

8

"
T

(3)
1

g
A

M
GTN

#2

, (14e)

M2
5 = G09

(m
e

R)2

8

"
F

(3)
S

g
V

g2
A

M
FN

#2

. (14f)

The parameters F
(3)
S

= 0.48 and T
(3)
1 = 1.38 are taken

form Ref. [75]. The values of these M2
↵�

are presented in
Table VI. Detailed expressions for M

GTN

and M
FN

are
presented in the Appendix, and their shell model values
are shown in Table XI.

Considering the 0⌫�� amplitudes displayed in Figs. 2f
and 2g in the one-pion and two-pion exchange modes it
is possible to get alternative limits for "1 and "2 consid-
ering a di↵erent NME, M

⇡N

. The analysis of Ref. [68]
suggests these alternative values, here denoted by "̃1 and
"̃2, can be obtained as "̃1 = 64

16⌘⇡N , and "̃2 = 2
3⌘⇡N , using

h
T 0⌫
1/2

i�1
= g4

A

h
|⌘

⇡N

|2 M2
⇡N

i
, (15)

where

M2
⇡N

= G01

⇥
c1⇡ (M

GT1⇡ +M
T1⇡)

+ c2⇡ (M
GT2⇡ +M

T2⇡)
⇤2

. (16)

The expressions for the factors c1⇡ and c2⇡ are found in
Eq. (151) of Ref. [65]. These factors depend on the
masses of the up and down quark, and choosing (m

u

+
m

d

) = 11.6 MeV [26, 76], one gets c1⇡ = �83.598, c2⇡ =
359.436 that we use in these calculations. The description
of M

↵

(with ↵ = GT1⇡, T1⇡, GT2⇡, T2⇡) is presented
in the Appendix.

Shown in Table VII are the values of the short-range
LNV parameters. Using the di↵erent hadronization pre-
sented in Figs. 2f and 2g, "̃1 provides significantly more
stringent upper-limits than "1. With the exception of
48Ca, where the "̃2 limit is identical to "2, the other "̃2
upper-limits are almost double those of "2.

V. DISCUSSIONS

From the ⌘0⌫ limits presented in Table III for 136Xe,
one gets the lowest shell model upper-limit for the Majo-
rana neutrino mass hm

��

i ⇠ 140 meV. A wider range of

TABLE VII. The “on-axis“ values of the long-range param-
eters "i. The last three lines present the ⌘⇡N limits for ⇢Rp

SUSY, and their corresponding "̃1 and "̃1 limits, respectively.
48Ca 76Ge 82Se 130Te 136Xe

|"1| 1.4 · 10�5 3.2 · 10�7 2.4 · 10�6 7.1 · 10�7 1.5 · 10�7

|"2| 5.1 · 10�8 1.2 · 10�9 8.8 · 10�9 2.6 · 10�9 5.4 · 10�10

|"LLz(RRz)
3 | 4.2 · 10�7 9.7 · 10�9 7.3 · 10�8 2.1 · 10�8 4.5 · 10�9

|"LRz(RLz)
3 | 5.7 · 10�7 1.3 · 10�8 9.9 · 10�8 2.9 · 10�8 6.1 · 10�9

|"4| 4.4 · 10�7 9.9 · 10�9 7.6 · 10�8 2.3 · 10�8 4.8 · 10�9

|"5| 6.5 · 10�6 1.5 · 10�7 1.1 · 10�6 3.4 · 10�7 7.2 · 10�8

|⌘⇡N | 7.7 · 10�8 2.9 · 10�9 2.2 · 10�8 6.4 · 10�9 1.4 · 10�9

|"̃1| 3.3 · 10�7 1.2 · 10�8 9.4 · 10�8 2.7 · 10�8 5.8 · 10�9

|"̃2| 5.1 · 10�8 1.9 · 10�9 1.5 · 10�8 4.3 · 10�9 9.1 · 10�10

TABLE VIII. The BSM e↵ective scale (in GeV) for di↵er-
ent dimension-D operators at the present 136Xe half-life limit
(⇤0

D) and for T1/2 ⇡ 1.1⇥ 1028 years (⇤D).

OD ✏̄D ⇤0
D(y = 1) ⇤0

D(y = ye) ⇤D(y = ye)

O5 2.8 · 10�7 2.12 · 1014 1904 19044

O7 2.0 · 10�7 3.75 · 104 541 1165

O9 1.5 · 10�7 2.47 · 103 2470 3915

O11 1.5 · 10�7 1.16 · 103 31 43

values, 60�165 meV can be found if the NME calculated
with a larger number of nuclear models are considered
[55].
Considering the diagram in Fig. 2e, it is possible to

get lower limits for ✏TR

TR

, denoted as ✏̃TR

TR

in Table V, than
those corresponding to the diagram in Fig. 2c, with the
exception of 48Ca, as can be seen in Table V. Considering
the di↵erent hadronization scenario presented in Figs. 2f
and 2g, "̃1 provides a significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.
As suggested in Ref. [71] (see the diagrams of

their Fig.1), at the electroweak scale the low-energy
dimension-6 Lagrangian L6 corresponds to dimension-5
and dimension-7 BSM operators, O5 and O7, when the
appropriate Higgs fields are included. Similarly the low
energy dimension-9 Lagrangian L9 can be rearranged as
dimension-9 and dimension-11 operators, O9 and O11,.
Using the e↵ective field theory one can infer the energy
scale ⇤

D

up to which this e↵ective field operators are not
broken:

L
D

=
g

(⇤
D

)D�4OD

(17)

where D is the dimension of the e↵ective field opera-
tor. Here g is considered to be a dimensionless coupling
constant of the order of 1. Following Ref. [71] one can
find relations between the constants entering our L6 and
L9 Lagrangian and the e↵ective field theory Lagrangian

7

TABLE VI. The M2
↵ values for the short-range physics.

48Ca 76Ge 82Se 130Te 136Xe

1013·M2
1 1.08 0.75 2.81 1.98 1.63

108· M2
2 0.77 0.55 2.07 1.51 1.25

1010·M2
3LLz(RRz) 1.12 0.80 2.99 2.17 1.79

1011·M2
3LRz(RLz) 6.00 4.31 16.1 11.8 9.73

1010·M2
4 1.02 0.76 2.72 1.93 1.59

1013·M2
5 4.71 3.44 12.3 8.44 7.02

109· M2
⇡N 3.26 0.87 3.24 2.47 1.94

M2
4 = G09

(m
e

R)2

8

"
T

(3)
1

g
A

M
GTN

#2

, (14e)

M2
5 = G09

(m
e

R)2

8

"
F

(3)
S

g
V

g2
A

M
FN

#2

. (14f)

The parameters F
(3)
S

= 0.48 and T
(3)
1 = 1.38 are taken

form Ref. [75]. The values of these M2
↵�

are presented in
Table VI. Detailed expressions for M

GTN

and M
FN

are
presented in the Appendix, and their shell model values
are shown in Table XI.

Considering the 0⌫�� amplitudes displayed in Figs. 2f
and 2g in the one-pion and two-pion exchange modes it
is possible to get alternative limits for "1 and "2 consid-
ering a di↵erent NME, M

⇡N

. The analysis of Ref. [68]
suggests these alternative values, here denoted by "̃1 and
"̃2, can be obtained as "̃1 = 64

16⌘⇡N , and "̃2 = 2
3⌘⇡N , using

h
T 0⌫
1/2

i�1
= g4

A

h
|⌘

⇡N

|2 M2
⇡N

i
, (15)

where

M2
⇡N

= G01

⇥
c1⇡ (M

GT1⇡ +M
T1⇡)

+ c2⇡ (M
GT2⇡ +M

T2⇡)
⇤2

. (16)

The expressions for the factors c1⇡ and c2⇡ are found in
Eq. (151) of Ref. [65]. These factors depend on the
masses of the up and down quark, and choosing (m

u

+
m

d

) = 11.6 MeV [26, 76], one gets c1⇡ = �83.598, c2⇡ =
359.436 that we use in these calculations. The description
of M

↵

(with ↵ = GT1⇡, T1⇡, GT2⇡, T2⇡) is presented
in the Appendix.

Shown in Table VII are the values of the short-range
LNV parameters. Using the di↵erent hadronization pre-
sented in Figs. 2f and 2g, "̃1 provides significantly more
stringent upper-limits than "1. With the exception of
48Ca, where the "̃2 limit is identical to "2, the other "̃2
upper-limits are almost double those of "2.

V. DISCUSSIONS

From the ⌘0⌫ limits presented in Table III for 136Xe,
one gets the lowest shell model upper-limit for the Majo-
rana neutrino mass hm

��

i ⇠ 140 meV. A wider range of

TABLE VII. The “on-axis“ values of the long-range param-
eters "i. The last three lines present the ⌘⇡N limits for ⇢Rp

SUSY, and their corresponding "̃1 and "̃1 limits, respectively.
48Ca 76Ge 82Se 130Te 136Xe

|"1| 1.4 · 10�5 3.2 · 10�7 2.4 · 10�6 7.1 · 10�7 1.5 · 10�7

|"2| 5.1 · 10�8 1.2 · 10�9 8.8 · 10�9 2.6 · 10�9 5.4 · 10�10

|"LLz(RRz)
3 | 4.2 · 10�7 9.7 · 10�9 7.3 · 10�8 2.1 · 10�8 4.5 · 10�9

|"LRz(RLz)
3 | 5.7 · 10�7 1.3 · 10�8 9.9 · 10�8 2.9 · 10�8 6.1 · 10�9

|"4| 4.4 · 10�7 9.9 · 10�9 7.6 · 10�8 2.3 · 10�8 4.8 · 10�9

|"5| 6.5 · 10�6 1.5 · 10�7 1.1 · 10�6 3.4 · 10�7 7.2 · 10�8

|⌘⇡N | 7.7 · 10�8 2.9 · 10�9 2.2 · 10�8 6.4 · 10�9 1.4 · 10�9

|"̃1| 3.3 · 10�7 1.2 · 10�8 9.4 · 10�8 2.7 · 10�8 5.8 · 10�9

|"̃2| 5.1 · 10�8 1.9 · 10�9 1.5 · 10�8 4.3 · 10�9 9.1 · 10�10

TABLE VIII. The BSM e↵ective scale (in GeV) for di↵er-
ent dimension-D operators at the present 136Xe half-life limit
(⇤0

D) and for T1/2 ⇡ 1.1⇥ 1028 years (⇤D).

OD ✏̄D ⇤0
D(y = 1) ⇤0

D(y = ye) ⇤D(y = ye)

O5 2.8 · 10�7 2.12 · 1014 1904 19044

O7 2.0 · 10�7 3.75 · 104 541 1165

O9 1.5 · 10�7 2.47 · 103 2470 3915

O11 1.5 · 10�7 1.16 · 103 31 43

values, 60�165 meV can be found if the NME calculated
with a larger number of nuclear models are considered
[55].
Considering the diagram in Fig. 2e, it is possible to

get lower limits for ✏TR

TR

, denoted as ✏̃TR

TR

in Table V, than
those corresponding to the diagram in Fig. 2c, with the
exception of 48Ca, as can be seen in Table V. Considering
the di↵erent hadronization scenario presented in Figs. 2f
and 2g, "̃1 provides a significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.
As suggested in Ref. [71] (see the diagrams of

their Fig.1), at the electroweak scale the low-energy
dimension-6 Lagrangian L6 corresponds to dimension-5
and dimension-7 BSM operators, O5 and O7, when the
appropriate Higgs fields are included. Similarly the low
energy dimension-9 Lagrangian L9 can be rearranged as
dimension-9 and dimension-11 operators, O9 and O11,.
Using the e↵ective field theory one can infer the energy
scale ⇤

D

up to which this e↵ective field operators are not
broken:

L
D

=
g

(⇤
D

)D�4OD

(17)

where D is the dimension of the e↵ective field opera-
tor. Here g is considered to be a dimensionless coupling
constant of the order of 1. Following Ref. [71] one can
find relations between the constants entering our L6 and
L9 Lagrangian and the e↵ective field theory Lagrangian

ye =3×10
-6 electron massYukawaηN ∝

1
mWR
4 mN

8

TABLE VII. The “on-axis“ values of the long-range param-
eters "�↵. The last three lines present the ⌘⇡N limits for ⇢Rp

SUSY, and their corresponding "̃1 and "̃1 limits, respectively.
48Ca 76Ge 82Se 130Te 136Xe

|"1| 1.4 · 10�5 3.2 · 10�7 2.4 · 10�6 7.1 · 10�7 1.5 · 10�7

|"2| 5.1 · 10�8 1.2 · 10�9 8.8 · 10�9 2.6 · 10�9 5.4 · 10�10

|"LLz(RRz)
3 | 4.2 · 10�7 9.7 · 10�9 7.3 · 10�8 2.1 · 10�8 4.5 · 10�9

|"LRz(RLz)
3 | 5.7 · 10�7 1.3 · 10�8 9.9 · 10�8 2.9 · 10�8 6.1 · 10�9

|"4| 4.4 · 10�7 9.9 · 10�9 7.6 · 10�8 2.3 · 10�8 4.8 · 10�9

|"5| 6.5 · 10�6 1.5 · 10�7 1.1 · 10�6 3.4 · 10�7 7.2 · 10�8

|⌘⇡N | 7.7 · 10�8 2.9 · 10�9 2.2 · 10�8 6.4 · 10�9 1.4 · 10�9

|"̃1| 3.3 · 10�7 1.2 · 10�8 9.4 · 10�8 2.7 · 10�8 5.8 · 10�9

|"̃2| 5.1 · 10�8 1.9 · 10�9 1.5 · 10�8 4.3 · 10�9 9.1 · 10�10

V. DISCUSSIONS

From the ⌘0⌫ limits presented in Table III for 136Xe,
one gets the lowest shell model upper-limit for the Majo-
rana neutrino mass hm

��

i ⇠ 140 meV. A wider range of
values, 60�165 meV can be found if the NME calculated
with a larger number of nuclear models are considered
[58].

Considering the diagram in Fig. 2e, it is possible to
get lower limits for ✏TR

TR

, denoted as ✏̃TR

TR

in Table V, than
those corresponding to the diagram in Fig. 2c, with the
exception of 48Ca, as can be seen in Table V. Considering
the di↵erent hadronization scenario presented in Figs. 2f
and 2g, "̃1 provides a significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.

TABLE VIII. The BSM e↵ective scale (in GeV) for di↵er-
ent dimension-D operators at the present 136Xe half-life limit
(⇤0

D) and for T1/2 ⇡ 1.1⇥ 1028 years (⇤D).

OD ✏̄D ⇤0
D(y = 1) ⇤0

D(y = ye) ⇤D(y = ye)

O5 2.8 · 10�7 2.12 · 1014 1904 19044

O7 2.0 · 10�7 3.75 · 104 541 1165

O9 1.5 · 10�7 2.47 · 103 2470 3915

O11 1.5 · 10�7 1.16 · 103 31 43

As suggested in Ref. [74] (see the diagrams of their
Fig.1), at the electroweak scale when the appropriate
Higgs fields are included, the diagram 1.b originates
from a dimension-5 BSM Lagrangian, O5, responsible for
the Majorana neutrino mass. Similarly the low-energy
dimension-6 Lagrangian L6 corresponds to a dimension-
7 BSM operator, O7, and the low energy dimension-9
Lagrangian L9 can be rearranged as dimension-9 and
dimension-11 operators, O9 and O11. Using the e↵ec-
tive field theory one can infer the energy scale ⇤

D

up to
which these e↵ective field operators are not broken:

L
D

=
g

(⇤
D

)D�4OD

, (17)

where D is the dimension of the e↵ective field opera-
tor. Here g is considered to be a dimensionless coupling
constant of the order of 1. Following Ref. [74] one can
find relations between the constants entering our L6 and
L9 Lagrangian and the e↵ective field theory Lagrangians
above the electroweak scale, Eq. (17).

m
e

✏̄5 =
g2(yv)2

⇤5
,

G
F

✏̄7p
2

=
g3(yv)

2(⇤7)3
,

G2
F

✏̄9
2m

p

=
g4

(⇤9)5
,

G2
F

✏̄11
2m

p

=
g6(yv)2

(⇤11)7
. (18)

Here, m
e

= 0.511 ⇥ 10�3 GeV is the electron mass,
g = 1 is a generic coupling constant, v = 174 GeV is
the Higgs vacuum expectation value, y is a Yukawa cou-
pling associated to the interaction with the Higgs bosons,
G

F

= 1.166⇥10�5 GeV�2 is the Fermi coupling constant,
and m

p

= 0.938 GeV is the proton mass. The ✏̄
D

(with
D = {5, 7, 9, 11}) can be extracted from the LNV pa-
rameters in Eqs. (2) and (3). Considering that values of
these LNV parameters may be a↵ected by mixing angles
that might distort the scales in Eq. (17), we choose their

maximum values: ✏̄5 = |⌘0⌫ |, ✏̄7 = Max
h
|✏V+A

V�A

|, |✏V+A

V+A

|,
|✏S+P

S±P

|, |✏TR

TL

|, |✏TR

TR

|
i
, ✏̄9 = Max

h
|"1|, |"2|, |"LLz(RRz)

3 |,
|"LRz(RLz)

3 |, |"4|, |"5|
i
, and ✏̄11 = ✏̄9.

To extract the limits of the BSM scales ⇤5,7,9,11 we
need the most stringent limits for the LNV parameters,
which are found for the case of 136Xe. Inspecting Ta-
bles V and VII we found that ✏̄5 corresponds to the ⌘0⌫
parameter of the light left-handed Majorana neutrino ex-
change mechanism. For ✏̄7 we choose ✏V+A

V+A

, that is the
largest long-range ✏�

↵

parameter. In the case of ✏̄9 = ✏̄11
we select "1, being the largest short-range "�

↵

parameter.
These values are listed in Table VIII.
As in Ref. [74] we take g = 1 in Eq. (17). However,

we introduce here the Yukawa coupling y between the
Higgs boson field and the fermion fields, and we consider
two cases: (i) y = 1 corresponding to the top quark mass
(choice made in Ref. [74]), and (ii) y = 3 ⇥ 10�6 corre-
sponding to the electron mass. Based on these values we
calculate the limits of the new BSM scales or di↵erent
dimension-D operators. The results are shown in Table
VIII. The ⇤0

D

scales are calculated using the present
lower limit for the half-life of 136Xe, 1.1 ⇥ 1026. ⇤

D

is
estimated assuming a half-life of T1/2 ⇡ 1.1⇥ 1028 years,
which would correspond to a hm

��

i ⇡ 14 meV.
The ⇤9 scale does not depend on the unknown Yukawa

coupling, and from that point of view, if O9 amplitude
is dominant, that would indicate that the scale of new
physics should be found around 3 TeV. Unfortunately,
the ⇤9 scale, as well as all other high D scales, are not
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
G

Fp
2

2

4jµ
V�A

J†
V�A,µ

+
⇤X

↵,�

✏�
↵

j
�

J†
↵

3

5 , (2)

where J†
↵

= ūO
↵

d and j
�

= ēO
�

⌫ are hadronic
and leptonic Lorentz currents, respectively. The def-
initions of the O

↵,�

operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏�

↵

=
{✏V+A

V�A

, ✏V+A

V+A

, ✏S+P

S±P

, ✏TR

TL

, ✏TR

TR

}. The ”*” symbol in-
dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. G

F

= 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:

T (L(1)
6 L(2)

6 ) =
G2

F

2
T
h
j
V�A

J†
V�A

j
V�A

J†
V�A

+ ✏�
↵

j
�

J†
↵

j
V�A

J†
V�A

+ ✏�
↵

✏�
�

j
�

J†
↵

j
�

J†
�

i
. (3)

In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
G2

F

2m
p

h
"1JJj + "2J

µ⌫J
µ⌫

j + "3J
µJ

µ

j

+"4J
µJ

µ⌫

j⌫ + "5J
µJj

µ

i
, (4)

with "�
↵

= "xyz
↵

= {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:

h
T 0⌫
1/2

i�1
=g4

A

2

4
X

i

|E
i

|2 M2
i

+Re

2

4
X

i 6=j

E
i

E
j

M
ij

3

5

3

5 . (5)

Here, the E
i

contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏V+A

V�A

, ✏V+A

V+A

, ✏S+P

S±P

, ✏TR

TL

, ✏TR

TR

, ⌘
⇡⌫

} are the long-
range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E

↵

E
�

M
↵�

are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.

One coupling dominance: which one?   
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
G

Fp
2

2

4jµ
V�A

J†
V�A,µ

+
⇤X

↵,�

✏�
↵

j
�

J†
↵

3

5 , (2)

where J†
↵

= ūO
↵

d and j
�

= ēO
�

⌫ are hadronic
and leptonic Lorentz currents, respectively. The def-
initions of the O

↵,�

operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏�
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=
{✏V+A

V�A

, ✏V+A

V+A

, ✏S+P

S±P

, ✏TR
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, ✏TR
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}. The ”*” symbol in-
dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. G

F

= 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "�
↵

= "xyz
↵

= {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the E
i

contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏V+A

V�A

, ✏V+A

V+A

, ✏S+P

S±P

, ✏TR

TL

, ✏TR

TR

, ⌘
⇡⌫

} are the long-
range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E

↵

E
�

M
↵�

are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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where J†
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d and j
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= ēO
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and leptonic Lorentz currents, respectively. The def-
initions of the O
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operators are given in Eq. (3)
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, ✏S+P

S±P

, ✏TR

TL

, ✏TR

TR

}. The ”*” symbol in-
dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. G

F

= 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:

T (L(1)
6 L(2)

6 ) =
G2

F

2
T
h
j
V�A

J†
V�A

j
V�A

J†
V�A

+ ✏�
↵

j
�

J†
↵

j
V�A

J†
V�A

+ ✏�
↵

✏�
�

j
�

J†
↵

j
�

J†
�

i
. (3)

In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "�
↵

= "xyz
↵

= {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the E
i

contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏V+A

V�A
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, ✏S+P
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, ✏TR
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} are the long-
range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E

↵

E
�

M
↵�

are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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d and j
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denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "�
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3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M2

i

as combinations of NME de-
scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E
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E
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M
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are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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Neutrinos in atomic nuclei 
Atomic nucleus is a high electron density medium:  

Consider 2 electrons in the lowest s-orbital of an 
Hydrogen-like atom 

Electron density inside nucleus: Ne ≈
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5.4 Borexino and the MSW-LMA solution 
The different Borexino measurements have allowed to test and validate the MSW-LMA solution. This 
can be shown on Fig. 8 which presents the survival probability of solar νe as a function of the energy. 
The grey line corresponds to the calculation of the oscillation with the parameters of the LMA 
solution, taking into account the MSW effect (sin2(2θ12)=0.87 and ∆m12

2=7.6 10-5 eV2); the value on 
the left (0 MeV) corresponds to the vacuum solution (1-0.5 sin2(2θ12)) and the value on the right (20 
MeV) to the MSW effect (sin2θ12). The Borexino data are shown in colour, the pink value at low 
energy being calculated using all solar neutrino data. All this confirms pretty well the transition 
between the two regimes. 
 
 

 
Figure 8. Solar νe survival probability as a function of energy. 
The colour lines correspond to experimental data. The grey line 
corresponds to the MSW-LMA solution for solar neutrino 
oscillation. (From [29]). 

 
Borexino also contributed to reinforce the MSW-LMA solution via the study of the day-night effect 
using the large statistics for 7Be events [33]. As said in section 3.6, it is known that solar νe which have 
been transformed in the Sun via the MSW effect can be regenerated when crossing the Earth if they 
arrive during the night [23]. This phenomenon depends on the values of the parameters and on the 
neutrino energy. The measured value of the day-night asymmetry, Adn = 0.001 ± 0.012 (stat.) ± 0.007 
(syst.), shows the absence of a significant asymmetry. This allows to reject the, already disfavoured, 
LOW solution (see section 3.6) at more than 8.5σ. Combined with the other solar neutrino data it 
isolates the LMA solution without relying on the assumption of the CPT symmetry in the neutrino 
sector. More details are found in [33]. 
 
5.5 The future of solar neutrinos in Borexino 
During the phase II, Borexino will measure with a better precision the 7Be neutrinos. But the main 
effort concerning solar neutrinos will be twofold : a) direct detection of pp-neutrinos, which means a 
dedicated understanding of the low energy spectrum, dominated by the radioactivity of the 14C 
intrinsic to the scintillator; b) observation of CNO neutrinos, which means to disentangle the signal 
from backgrounds, mainly 210Bi, with a similar energy spectrum. All this is not guaranteed but the 
scientific challenge is there. 
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Neutrinos in matter interact with: 
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Gonzales-Garcia & Nir, RMP 75, 345 (2003) 

Following the same procedure we can obtain the ef-
fective potentials for any flavor neutrino or antineutrino
due to interactions with different particles in the me-
dium (for a list, see, for instance, Kim and Pevsner,
1993). For !" and !# , VC!0 for most media, while for
any active neutrino the effective potential due to
neutral-current interactions in a neutral medium is VN
!"1/&GFNn , where Nn is the number density of neu-
trons. One can further generalize this analysis to other
types of interactions (Bergmann, Grossman, and Nardi,
1999).

C. Evolution equation in matter: Effective mass and
mixing

There are several derivations in the literature of the
evolution equation of a neutrino system in matter (see,
for instance, Halprin, 1986; Mannheim, 1988). We follow
here the discussion in Baltz and Weneser (1988). Con-
sider a state that is an admixture of two neutrino species
!!e$ and !!X$ or, equivalently, of !!1$ and !!2$:

!%&x '$!%e&x '!!e$#%X&x '!!X$

!%1&x '!!1$#%2&x '!!2$. (44)

The evolution of % in a medium is described by a system
of coupled Dirac equations:

E%1!"(i )x
*

*x
#+m1#V11#%1#V12%2 ,

E%2!"(i )x
*

*x
#+m2#V22#%2#V12%1 , (45)

where +!,0 and )x!,0,1 . The Vij terms give the ef-
fective potential for neutrino mass eigenstates. They can
be simply derived from the effective potential for inter-
action eigenstates [such as Vee of Eq. (42)]:

Vij!-! i! $ d3xHint
medium!! j$!Ui)V))Uj)* . (46)

We decompose the neutrino state: % i(x)!Ci(x). i(x).
Here . i(x) is the Dirac spinor part satisfying

„)x/0E"Vii&x '12"mi
221/2#+mi#Vii…. i&x '!E. i&x '.

(47)

So . i(x) has the form of a free-particle solution with
local energy Ei(x)!E"Vii(x):

. i&x '!"Ei#mi

2Ei
#1/2

$" 3

!E i
2"mi

2

Ei#mi
4x3# , (48)

where 3 is the Pauli spinor. We make the following ap-
proximations:

(i) The scale over which V changes is much larger than
the microscopic wavelength of the neutrino:
(*V/*x)/V%(m/E2.

(ii) Expanding to first order in V implies that V12 )x .2
%.1 , V12 )x .1%.2 , and /0E"Vii(x)12"mi

221/2

%E"Vii(x)" mi
2/2E .

From (i) we find that the Dirac equations take the form

EC1.1!
(

i
)x

*C1

*x
.1#&+m1#V11'C1.1#V12C2.2 ,

EC2.2!
(

i
)x

*C2

*x
.2#&+m2#V22'C2.2#V12C1.1 .

(49)

Then multiplying by )x and using the equation of mo-
tion of . i and (ii), we can drop the dependence on the
spinor . and obtain

(

i
*C1

*x
!& E"V11&x '"

m1
2

2E ' C1"V12C2 ,

(

i
*C2

*x
!& E"V22&x '"

m2
2

2E ' C2"V12C1 . (50)

Changing notations Ci ,)(x)→! i ,)(x) (and (!1), re-
moving the diagonal piece that is proportional to E , and
rotating to the flavor basis, we can rewrite Eq. (50) in
matrix form (Wolfenstein, 1978):

"i
*

*x & !e

!X
'!& "

Mw
2

2E ' & !e

!X
' , (51)

where we have defined an effective mass matrix in mat-
ter

Mw
2 !& m1

2#m2
2

2
#2EVe"

5m2

2
cos 26

5m2

2
sin 26

5m2

2
sin 26

m1
2#m2

2

2
#2EVX#

5m2

2
cos 26

' . (52)

Here 5m2!m2
2"m1

2.
We define the instantaneous mass eigenstates in mat-

ter, ! i
m , as the eigenstates of Mw for a fixed value of x

(or t). They are related to the interaction eigenstates
through a unitary rotation,

& !e

!X
'!U&6m'& !1

m

!2
m' !& cos 6m sin 6m

"sin 6m cos 6m
' & !1

m

!2
m' . (53)

The eigenvalues of Mw , that is, the effective masses in

354 M. C. Gonzalez-Garcia and Yosef Nir: Neutrino masses and mixing

Rev. Mod. Phys., Vol. 75, No. 2, April 2003

matter are given by (Wolfenstein, 1978; Mikheyev and
Smirnov, 1985)

!1,2
2 "x #!

m1
2"m2

2

2
"E"Ve"VX#

#
1
2
!"$m2 cos 2%$A #2""$m2 sin 2%#2,

(54)

while the mixing angle in matter is given by

tan 2%m!
$m2 sin 2%

$m2 cos 2%$A
. (55)

The quantity A is defined by

A&2E"Ve$VX#. (56)

In Figs. 2 and 3 we plot, respectively, the effective
masses and the mixing angle in matter as functions of
the potential A , for A%0 and $m2 cos 2%%0. Notice
that even massless neutrinos acquire nonvanishing effec-
tive masses in matter.

The resonant density (or potential) AR is defined as
the value of A for which the difference between the
effective masses is minimal:

AR!$m2 cos 2% . (57)

Notice that once the sign of Ve$VX (which depends on
the composition of the medium and on the state X) is
known, this resonance condition can only be achieved
for a given sign of $m2 cos 2%, i.e., for mixing angles in
only one of the two possible octants. We learn that the
symmetry present in vacuum oscillations is broken by
matter potentials. Also, if the resonant condition is
achieved for two neutrinos, it cannot be achieved for
antineutrinos of the same flavor, and vice versa. The
mixing angle tan 2%m changes sign at AR . As can be seen
in Fig. 3, for A%AR we have %m&% .

We define an oscillation length in matter

Losc!
L0

osc$m2

!"$m2 cos 2%$A #2""$m2 sin 2%#2
, (58)

where the oscillation length in vacuum, L0
osc , was de-

fined in Eq. (31). The oscillation length in matter pre-
sents a resonant behavior. At the resonance point the
oscillation length is

LR
osc!

L0
osc

sin 2%
. (59)

The width (in distance) of the resonance, 'rR , corre-
sponding to 'AR!2$m2 sin2 2%, is given by

'rR!
'AR

!dA
dr !

R

!
2 tan 2%

hR
, hR&! 1

A
dA
dr !

R

, (60)

where we have defined the resonance height hR .
For constant A , i.e., for constant matter density, the

evolution of the neutrino system is described just in
terms of the masses and mixing in matter. But for vary-
ing A , this is in general not the case.

D. Adiabatic versus nonadiabatic transitions

Taking time derivative of Eq. (53), we find

(

(t " )e

)X
#!U̇"%m#" )1

m

)2
m# "U"%m#" )̇1

m

)̇2
m# . (61)

Using the evolution equation in the flavor basis, Eq.
(51), we get

i" )̇1
m

)̇2
m# !

1
2E

U†"%m#Mw
2 U"%m#" )1

m

)2
m#

$iU†U̇"%m#" )1
m

)2
m# . (62)

For constant matter density, %m is constant and the sec-
ond term vanishes. In general, using the definition of the
effective masses ! i(t) in Eq. (54) and subtracting a di-
agonal piece (!1

2"!2
2)/2E'I , we can rewrite the evolu-

tion equation as

i" )̇1
m

)̇2
m# !

1
4E " $$" t # $4iE %̇m" t #

4iE %̇m" t # $" t # # " )1
m

)2
m# , (63)

where we defined $(t)&!2
2(t)$!1

2(t).

FIG. 2. Effective masses acquired in the medium by a system
of two massive neutrinos as a function of the potential A [see
Eq. (54)].

FIG. 3. The mixing angle in matter for a system of two massive
neutrinos as a function of the potential A for two different
values of the mixing angle in vacuum [see Eq. (55)].
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If (E/L)!!mij
2 (L"L0,ij

osc), the oscillation does not
have time to give an appreciable effect because sin2 xij
"1. The case of (E/L)"!mij

2 (L!L0,ij
osc) requires more

careful consideration. One must take into account that,
in general, neutrino beams are not monochromatic.
Thus, rather than measuring P"# , the experiments are
sensitive to the average probability

$P"#%#

! dE&

d'

dE&
(CC)E&*P"#)E&*+)E&*

! dE&

d'

dE&
(CC)E&*+)E&*

#,"#$4 -
i#1

n$1

-
j#i%1

n

Re.U"iU#i*U"j*U#j/$sin2 xij% ,

(32)

where ' is the neutrino energy spectrum, (CC is the
cross section for the process in which the neutrino is
detected (in general, a charged-current interaction), and
+(E&) is the detection efficiency. For L!L0,ij

osc , the oscil-
lating phase goes through many cycles before the detec-
tion and is averaged to $sin2 xij%#1/2.

For a two-neutrino case, the mixing matrix depends
on a single parameter,

U#" cos 0 sin 0

$sin 0 cos 0 # , (33)

and there is a single mass-squared difference !m2. Then
P"# of Eq. (29) takes the well-known form

P"##,"#$)2,"#$1 *sin2 20 sin2 x . (34)

The physical parameter space is covered with !m210
and 0202 3/2 (or, alternatively, 0202 3/4 and either
sign for !m2).

Changing the sign of the mass difference, !m2

→$!m2, and changing the octant of the mixing angle,
0→ 3/2 $0 , amounts to redefining the mass eigenstates,
&1↔&2 : P"# must be invariant under such transforma-
tions. Equation (34) reveals, however, that P"# is actu-
ally invariant under each of these transformations sepa-
rately. This situation implies that there is a twofold
discrete ambiguity in the interpretation of P"# in terms
of two-neutrino mixing: the two different sets of physical
parameters, (!m2,0) and (!m2,3/2 $0), give the same
transition probability in vacuum. One cannot tell from a
measurement of, say, Pe4 in vacuum whether the larger
component of &e resides in the heavier or in the lighter
neutrino mass eigenstate.

Neutrino oscillation experiments measure P"# . It is
common practice for the experiments to interpret their
results in the two-neutrino framework. In other words,
the constraints on P"# are translated into allowed or
excluded regions in the plane (!m2, sin2 20) by using
Eq. (34). An example is given in Fig. 1. We now explain
some of the typical features of these constraints.

When an experiment is taking data at fixed $L% and
$E%, as is the case for most laboratory searches, its result
can always be accounted for by !m2 that is large enough

to be in the region of averaged oscillations, $sin2 xij%
#1/2. Consequently, no upper bound on !m2 can be
achieved by such an experiment. For negative searches
that set an upper bound on the oscillation probability,
$P"#%2PL , the excluded region always lies on the up-
per right side of the (!m2,sin2 20) plane, limited by the
following asymptotic lines:

• for !m2!1/$L/E%, a vertical line at sin2 20#2 PL ;
• for !m2"1/$L/E%, the oscillating phase can be ex-

panded and the limiting curve takes the form
!m2 sin 20#4!PL/$L/E%, which in a log-log plot
gives a straight line of slope $1/2.

If, instead, data are taken at several values of $L%
and/or $E%, the corresponding region may be closed, as
it is possible to have direct information on the charac-
teristic oscillation wavelength.

B. Neutrinos in matter: Effective potentials

When neutrinos propagate in dense matter, the inter-
actions with the medium affect their properties. These
effects are either coherent or incoherent. For purely in-
coherent inelastic &-p scattering, the characteristic cross
section is very small:

(5
GF

2 s
3

510$43 cm2" E
1 MeV# 2

. (35)

FIG. 1. The characteristic form of an excluded region from a
negative search with fixed L/E and of an allowed region from
a positive search with varying L/E in the two-neutrino oscilla-
tion parameter plane.
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On the MSW neutrino mixing e↵ects in atomic weak interactions and double beta
decays

Mihai Horoi⇤

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

(Dated: February 23, 2018)

Matter e↵ects on neutrinos, aka the Mikheyev-Smirnov-Wolfenstein e↵ects [1], seem to be well
established in describing the propagation of the neutrino from source to detecting devices. These
e↵ects were mostly considered in bulk matter, such as the Sun or Earth, but not inside the atoms.

Weak interaction in nuclei represents a well-known venue for testing many of the fundamental
symmetries of the Standard Model.

In particular, neutrinoless double-beta decay o↵ers the possibility to test Beyond Standard Model
theories predicting that neutrinos are Majorana fermions and the lepton number conservation is
violated. This paper focuses on an e↵ective field theory approach to neutrinoless double-beta decay
for extracting information regarding the properties of the Beyond Standard Model Lagrangian re-
sponsible for this process. We use shell model nuclear matrix elements and the latest experimental
lower limits for the half-lives to extract the lepton number violating parameters of five nuclei of
experimental interest, and lower limits for the energy scales of the new physics.

I. INTRODUCTION

The neutrinoless double-beta decay (0⌫��) is consid-
ered the best approach to study the yet unknown proper-
ties of neutrinos related to their nature, whether they are
Dirac or Majorana fermions, which the neutrino oscilla-
tion experiments cannot clarify. Should the neutrinoless
double-beta transitions occur, then the lepton number
conservation is violated by two units, and the black-box
theorems [2–5] indicate that the light left-handed neutri-
nos are Majorana fermions. As such, through black-box
theorems alone, it is not possible to disentangle the dom-
inant mechanism contributing to this process.

0�� reviews: [6–12]
Majoron decay: [13, 14].
General: [14–18]. See also [19].

II. NEUTRINO EMISSION AND ABSORPTION
IN ATOMIC NUCLEI

See section III of Ref. [18].
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X
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U

↵a

⌫

aL

(x) (1)

where index ↵ indicates a flavor state (electron, muon,
tau, ), and a designates a mass eigenstates (1, 2, 3, )
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X
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U

⇤
fa

|⌫
aL
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For two-flavor approximation, electron and X (a com-
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where ⇢ is in g/cm

3, Z is the atomic number, and t is in
pm.

III. NEUTRINOLESS DOUBLE BETA DECAY
IN ATOMIC NUCLEI

The part of the neutrinoless double beta decay ampli-
tude relevant to the neutrino fields is neutrino propagator
(NP)

Pe = νe
m 2

PX = ν X
m 2

Adiabatic evolution : off − diagonal terms neglijable(2) !m2 cos 2"!A0 : the neutrino does not pass
through the resonance point but its mixing is affected by
the matter in the Sun. This effect is well described by an
adiabatic propagation:

Pee#!m2 cos 2"!A0$"
1
2 #1#cos 2"m cos 2"$. (79)

Since the resonance point is not crossed, cos 2"m has the
same sign as cos 2" and the corresponding survival prob-
ability is also larger than 1/2.

(3) !m2 cos 2"$A0 : the neutrino can cross the reso-
nance point on its way out. In this case, as discussed in
the previous section, for small mixing angle in vacuum,
%e&%2

m at the production point and remains %2
m till the

resonance point (for larger mixing but still in the first
octant, %e is a combination of %1

m and %2
m with larger %2

m

component). It is important in this case to find whether
the transition is adiabatic. For the solar density, Q&1
corresponds to

#!m2/eV2$sin2 2"

#E/MeV$cos 2"
&3%10&9. (80)

For Q'1 the transition is adiabatic and the neutrino
state remains in the same linear combination of mass
eigenstates after the resonance determined by "m . As
can be seen in Fig. 3, "m (that is, the %e component of
the state) decreases after crossing the resonance and,
consequently, so does the survival probability Pee . In
particular, for small mixing angle, %2 at the exit point is
almost a pure %X and, consequently, Pee can be very
small. Explicitly,

Pee#!m2 cos 2"$A0 ,Q'1 $"
1
2 #1#cos 2"m ,0 cos 2"$

(81)

can be much smaller than 1/2 because cos 2"m,0 and
cos 2" can have opposite signs. Note that the smaller the
mixing angle in vacuum the larger is the deficit of elec-
tron neutrinos in the outgoing state. This is the
Mikheyev-Smirnov-Wolfenstein (MSW) effect (Wolfen-
stein, 1978; Mikheyev and Smirnov, 1985). This behavior
is illustrated in Fig. 6, where we plot the electron sur-
vival probability as a function of !m2/E for different
values of the mixing angle.

For smaller values of !m2/E (right side of Fig. 6) we
approach the regime where Q$1 and nonadiabatic ef-
fects start playing a role. In this case the state can jump
from %2 into %1 (or vice versa) with probability PLZ . For
small mixing angle, at the surface %1&%e and the %e com-
ponent of the exiting neutrino increases. This can be
seen from the expression for Pee ,

Pee#!m2 cos 2"$A0 ,Q(1 $

"
1
2 '1##1&2PLZ$cos 2"m cos 2"( , (82)

and from Fig. 6. For large mixing angles this expression
is still valid.

IV. SOLAR NEUTRINOS

Solar neutrinos are electron neutrinos produced in the
thermonuclear reactions which generate the solar en-
ergy. These reactions occur via two main chains, the pp
chain and the CNO cycle, shown in Figs. 7 and 8, respec-
tively. There are five reactions which produce %e in the
pp chain and three in the CNO cycle. Both chains result
in the overall fusion of protons into 4He:

4p→4He#2e##2%e#) , (83)

where the energy released in the reaction, Q"4mp
&m4He&2me!26 MeV, is mostly radiated through the
photons and only a small fraction is carried by the neu-
trinos, *E2%e

+"0.59 MeV.
In order to determine precisely the rates of the differ-

ent reactions in the two chains, which would give us the
final neutrino fluxes and their energy spectrum, a de-
tailed knowledge of the Sun and its evolution is needed.
Solar models (Bahcall and Ulrich, 1988; Turck-Chieze,
Cahen, Casse, and Doom, 1988; Bahcall and Pinson-
neault, 1992, 1995; Bahcall, Basu, and Pinsonneault,
1998; Bahcall, Pinsonneault, and Basu, 2001) describe

FIG. 6. The survival probability for a %e state produced in the
center of the Sun as a function of E/!m2 for various values of
the mixing angle.

FIG. 7. The pp chain in the Sun.
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(1) small energies : matter effects neglijable
(2) lage energies : matter effects + adiabatic evolution
(3) lager energies : matter effects + nonadiabatic evolution

(1) (2) (3) 

!θm ∝ !Ve

= 2PVe
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Neutrinos in atomic nuclei 
Atomic nucleus is a high electron density medium:  

Consider 2 electrons in the lowest s-orbital of an 
Hydrogen-like atom 

Equivalent matter density: ρ(t) =1.67×106 2
π
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On the MSW neutrino mixing e↵ects in atomic weak interactions and double beta
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Matter e↵ects on neutrinos, aka the Mikheyev-Smirnov-Wolfenstein e↵ects [1], seem to be well
established in describing the propagation of the neutrino from source to detecting devices. These
e↵ects were mostly considered in bulk matter, such as the Sun or Earth, but not inside the atoms.

Weak interaction in nuclei represents a well-known venue for testing many of the fundamental
symmetries of the Standard Model.

In particular, neutrinoless double-beta decay o↵ers the possibility to test Beyond Standard Model
theories predicting that neutrinos are Majorana fermions and the lepton number conservation is
violated. This paper focuses on an e↵ective field theory approach to neutrinoless double-beta decay
for extracting information regarding the properties of the Beyond Standard Model Lagrangian re-
sponsible for this process. We use shell model nuclear matrix elements and the latest experimental
lower limits for the half-lives to extract the lepton number violating parameters of five nuclei of
experimental interest, and lower limits for the energy scales of the new physics.

I. INTRODUCTION

The neutrinoless double-beta decay (0⌫��) is consid-
ered the best approach to study the yet unknown proper-
ties of neutrinos related to their nature, whether they are
Dirac or Majorana fermions, which the neutrino oscilla-
tion experiments cannot clarify. Should the neutrinoless
double-beta transitions occur, then the lepton number
conservation is violated by two units, and the black-box
theorems [2–5] indicate that the light left-handed neutri-
nos are Majorana fermions. As such, through black-box
theorems alone, it is not possible to disentangle the dom-
inant mechanism contributing to this process.

0�� reviews: [6–12]
Majoron decay: [13, 14].
General: [14–18]. See also [19].
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See section III of Ref. [18].
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e↵ects were mostly considered in bulk matter, such as the Sun or Earth, but not inside the atoms.

Weak interaction in nuclei represents a well-known venue for testing many of the fundamental
symmetries of the Standard Model.

In particular, neutrinoless double-beta decay o↵ers the possibility to test Beyond Standard Model
theories predicting that neutrinos are Majorana fermions and the lepton number conservation is
violated. This paper focuses on an e↵ective field theory approach to neutrinoless double-beta decay
for extracting information regarding the properties of the Beyond Standard Model Lagrangian re-
sponsible for this process. We use shell model nuclear matrix elements and the latest experimental
lower limits for the half-lives to extract the lepton number violating parameters of five nuclei of
experimental interest, and lower limits for the energy scales of the new physics.

I. INTRODUCTION

The neutrinoless double-beta decay (0⌫��) is consid-
ered the best approach to study the yet unknown proper-
ties of neutrinos related to their nature, whether they are
Dirac or Majorana fermions, which the neutrino oscilla-
tion experiments cannot clarify. Should the neutrinoless
double-beta transitions occur, then the lepton number
conservation is violated by two units, and the black-box
theorems [2–5] indicate that the light left-handed neutri-
nos are Majorana fermions. As such, through black-box
theorems alone, it is not possible to disentangle the dom-
inant mechanism contributing to this process.

0�� reviews: [6–12]
Majoron decay: [13, 14].
General: [14–18]. See also [19].

II. NEUTRINO EMISSION AND ABSORPTION
IN ATOMIC NUCLEI

See section III of Ref. [18].
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where ⇢ is in g/cm

3, Z is the atomic number, and t is in
pm.

III. NEUTRINOLESS DOUBLE BETA DECAY
IN ATOMIC NUCLEI

The part of the neutrinoless double beta decay ampli-
tude relevant to the neutrino fields is neutrino propagator
(NP)
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Partial summary 

•  One can consider the neutrino mixing in 
atomic nuclei. 

•  The analysis of neutrino mixing in the Sun 
and atomic nuclei leads to results backed up 
by phenomenology.  

•  These results seem simple and natural, but 
the road to them is complex! 
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FIG. 1. The outgoing evolution of the probabilities of neu-
trinos produced inside a nucleus (Z=53 here). The neutrinos
are produced in state 2 (dashed, red) and they evolve non-
adiabatically to 68% state 1 (full, blue) and 32% state 2. The
horizontal axis represents the distance from the nucleus in
pm.

FIG. 2. Same as Fig. 1 for antineutrinos
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where  (x) is a four component Majorana spinor field.
For double beta decay only the left handed components
of the electron neutrino field contribute. The standard

FIG. 3. Similar to Fig. 1, but representing a high energy solar
neutrino coming in (from right) in state 2 with probability
100%, which decreases to 32% when it reaches the nucleus
(r=0).

FIG. 4. Same as Fig. 3 for a regular neutrino (68% state 1
and 32% state 2), which arrives with probability 1 in state 2
at the nucleus.

derivation of the 0�� decay half-life assumes that the
electron neutrino fields can be expanded in terms of the
vacuum mass eigenstates, Eq. (1), and one gets (up to
some phases)
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Here P
L

is the left-handedness projector operator, and C
is the spinor charge conjugation operator. The product
P

L

C is further used for processing the electron current
and one arrives to the standard formula for the 0�� decay
constant [10]
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where G(Z,Q) is a phase space factor, M0⌫ is a nuclear
matrix element [20], and m

e

is the electron mass.
If one wants to consider the MSW e↵ects due to the

high electron density in the atomic nuclei, one has to
take into account that di↵erent components of the vac-
uum mass eigenstate fields in Eq. (1) are changing di↵er-
ently. A simpler approach is to use 2-components spinor
fields ( See Refs. [10, 14, 16, 17, 19]). Then, one needs
to make the connection to the four-components spinor
fields necessary to further process the electron current.
The typical approach is to use a specific representation
of the Dirac matrices, the Weyl’s chiral representation
being most convenient. Using the phase conventions of
Ref. [19] (see Eqs. (A.109)-(A.122)), in the Weyl’s chiral
representation one gets
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PLC product is further used to process the electron current, and one finally gets:  

!m!!" # $%
k

mkUek
2 $ . &3'

Here the mk’s are the masses of the three light neutrinos
and U is the matrix that transforms states with well-
defined mass into states with well-defined flavor &e.g.,
electron, mu, tau'. Equation &2' gives the !!&0"' rate if
the exchange of light Majorana neutrinos with left-
handed interactions is responsible. Other mechanisms
are possible &see Secs. III and IV.D', but they require the
existence of new particles and/or interactions in addition

to requiring that neutrinos be Majorana particles. Light-
neutrino exchange is therefore, in some sense, the
“minima” mechanism and the most commonly consid-
ered.

That neutrinos mix and have mass is now accepted
wisdom. Oscillation experiments constrain U fairly
well—Table I summarizes our current knowledge—but
they determine only the differences between the squares
of the masses mk &e.g., m2

2−m1
2' rather than the masses

themselves. It will turn out that !!&0"' is among the best
ways of getting at the masses &along with cosmology and
!-decay measurements', and the only practical way to
establish that neutrinos are Majorana particles.

To extract the effective mass from a measurement, it
is customary to define a nuclear structure factor FN
#G0"&Q!! ,Z'(M0"(2me

2, where me is the electron mass.
&The quantity FN is sometimes written as Cmm.' The ef-
fective mass !m!!" can be written in terms of the calcu-
lated FN and the measured half-life as

!m!!" = me)FNT1/2
0" *−1/2. &4'

The range of mixing matrix values given in Table I, com-
bined with calculated values for FN, allow us to estimate
the half-life a given experiment must be able to measure
in order to be sensitive to a particular value of !m!!".
Published values of FN are typically between 10−13 and
10−14 yr−1. To reach a sensitivity of !m!!"+0.1 eV there-
fore an experiment must be able to observe a half-life of
1026–1027 yr. As we discuss later, at this level of sensitiv-
ity an experiment can draw important conclusions
whether or not the decay is observed.

The most sensitive limits thus far are from the
Heidelberg-Moscow experiment: T1/2

0" &76Ge'#1.9$1025

yr &Baudis et al., 1999', the IGEX experiment:
T1/2

0" &76Ge'#1.6$1025 yr &Aalseth et al., 2002a, 2004',
and the CUORICINO experiment: T1/2

0" &130Te'#3.0
$1024 yr &Arnaboldi et al., 2005, 2007'. These experi-
ments contained 5–10 kg of the parent isotope and ran
for several years. Hence increasing the half-life sensitiv-
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FIG. 2. Feynman diagrams for !!&2"' &top' and !!&0"' &bot-
tom'.

TABLE I. Neutrino mixing parameters as summarized by the Particle Data Book )Yao et al. &2006'*
based on the individual experimental reference reporting. The limit on !m!" and % are based on the
references given. The !m!!" limit comes from the Ge experiments. The parameter values would be
slightly different if determined by a global fit to all oscillation data &Fogli et al., 2006'.

Parameter Value Confidence level Reference

sin2&2&12' 0.86−0.04
+0.03 68% Aharmin et al. &2005'

sin2&2&23' '0.92 90% Ashie et al. &2005'
sin2&2&13' (0.19 90% Apollonio et al. &1999'
)m21

2 8.0−0.3
+0.4$10−5 eV2 68% Aharmin et al. &2005'

()m32
2 ( 2.4−0.5

+0.6$10−3 eV2 90% Ashie et al. &2004'
!m!" (2 eV 95% Lobashev et al. &1999'; Kraus et al. &2005'
!m!!" (0.7 eVa 90% Klapdor-Kleingrothaus et al. &2001a'; Aalseth

et al. &2002a'
% (2 eV 95% Elgaroy and Lahov &2003'

aUsing the matrix element of Rodin et al. &2006'.

483Avignone, Elliott, and Engel: Double beta decay, Majorana neutrinos, and …

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008
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iγ 0∂0 + iγ
i∂i −m( )ψ(x) = 0

Dirac equation: states vs fields 

i ∂ψ(x)
∂t

= −iγ 0γ i∂i +γ
0m( )ψ(x)

γ µγν +γνγ µ = 2gµν γ 5 = iγ 0γ1γ 2γ 3

γµ
† = γ0γµγ0 ⇒ γ0

† = γ0 γ i
† = −γ i

In addition one needs a vaccum state : | 0 > ⇒ |ψ >=ψ †(x) | 0 >

ψ(x) = d 3p
(2π )3/22Ep

u(+) ( !p)a( !p,+)+u(−) ( !p)a( !p,−)( )e−ipx + v(+) ( !p)b†( !p,+)+ v(−) ( !p)b†( !p,−)( )eipx⎡
⎣

⎤
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a( !p,h), a†( !ʹp , ʹh )⎡
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⎤
⎦+
= δh ʹhδ(

!p− !ʹp ) a( !p,h), a( !ʹp , ʹh )⎡⎣ ⎤⎦+ = a
†( !p,h), a†( !ʹp , ʹh )⎡

⎣
⎤
⎦+
= 0

P. Mannheim, PRD  37, 1935 (1988): used a(p, -) piece of the field to justify Wolfenstein’s 
Eqs. provided that neutrinos, Dirac or Majorana, are ultra relativistic!  

Same for b, b† 
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Using an helicity formalism for Majorana neutrino fields, we calculate the decay rates for the helicity-
flipping and helicity-conserving Majoron decays of neutrinos propagating in dense media. We discuss
the subtlety involved in the neutrino mixing in matter in a quantum-field-theoretical approach to clarify
previous misunderstandings in the calculation of Majoron decays. General formulas, derived in a
model-independent approach, can be applied to any number of neutrino generations and to the decay
with production of any massless pseudoscalar boson. In particular, we discuss the two-generation case
and show that in matter the helicity-flipping decays are dominant over the helicity-conserving decays.
The implications of the Majoron decay for the neutrinos from astrophysical objects are also briefly dis-
cussed.

PACS number(s): 13.35.+s, 14.60.Gh, 14.80.Gt, 95.30.Cq

I. INTRODUCTION

The effective properties of neutrinos while they propa-
gate in a dense medium can be much different from those
in a vacuum, leading to new interesting phenomena, the
Mikheyev-Smirnov-Wolfenstein (MSW) effect [1] being
the most well known. The MSW equation describes the
time evolution of weak neutrino states and the mixing be-
tween weak states and energy eigenstates. It has been
shown [2,3] that the MSW equation can be derived in the
framework of quantum field theory. However, the MSW
equation does not contain any information about the neu-
trino fields in matter, whose structure can be found only
by solving the field equations. On the other hand, the
knowledge of the effective neutrino fields in matter in the
presence of flavor mixing is essential in order to perform
realistic calculations of neutrino decays, such as radiative
or Majoron decays, or cross sections in matter.
In this paper we solve the field equations for neutrinos

in matter using the two-component helicity formalism in-
troduced by Mannheim [3]. We derive the spinorial wave
functions of neutrinos propagating in matter for the gen-
eral (n, m) theories in which there are n neutrino fields
belonging to SU(2)L isodoublets and m isosinglet neutrino
fields. Next, we study the Majoron decay of neutrinos in
matter assuming a model-independent approach, i.e.,
starting from a general interaction Lagrangian between
the neutrino fields and a massless pseudoscalar boson
which we call Majoron. In this approach the coupling
constants in the neutrino-Majoron interaction Lagrang-
ian are generic; i.e., they are independent from the origin
of the neutrino masses and their value is constrained only
by the experimental limits.
It is well known that in the simple Mal'oron models [4]

the Majoron decay of neutrinos in vacuum is negligibly
slow, essentially because the coupling matrix and the
mass matrix are generated through the same mechanism

and the off-diagonal couplings in the mass basis are
strongly suppressed. It is also well known, from the
MSW effect, that the energy eigenstates of relativistic
neutrinos in matter are a mixture of mass eigenstates.
Therefore, the coupling matrix between neutrinos and the
Majoron is effectively mixed in matter and fast Majoron
decays are possible. Furthermore, in matter the neutri-
nos can acquire very large effective masses that may lead
to a significant increase in the available phase space for
the decay. The possibility of these effects were first point-
ed out in Ref. [5]. In this reference the authors mixed the
chiral neutrino fields in the Lagrangian through the
efFective mixing angles in matter obtained from the diago-
nalization of the MSW equation. This formulation of the
problem was clearly incorrect, because the fields in the
Lagrangian cannot be mixed by a momentum-dependent
matrix. Moreover, for massive neutrinos, chirality is not
a good quantum number and one should consider the de-
cays of neutrinos propagating with a definite helicity. To
elucidate this point, let us consider the interaction La-
grangian that describes the coupling between the chiral
neutrino fields in the tnass basis v,z (a =I, . . . , N is a
generation index') and the Majoron field JK:

N

(v.t. )'G~bvbt. +H.c. ,
a, b=l

where GM is a real symmetric coupling matrix. A naive

iThroughout this paper the greek indices a,P, . . . refer to the
neutrino fields in the weak basis (and related quantities), the first
latin indices a, b, . . . refer to the neutrino fields in the mass
basis (and related quantities), and the middle latin indices i (ini-
tial), f (fina), j, k, . . . refer to the energy eigeustate neutrinos
propagating in matter.

45 1557 1992 The American Physical Society
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o"pw (p, h) =hh (p, h),
i(7 w*(p, h) =—hw (p, —h),
w (—p, —h) =71(p, h)w (p, h),
g*(p, h ) =—rI(p, —h ),
g(p, h )=—rj( —p, h ),

(2.14)

N
(E(h)+hp)a(h)(p) —m gh)(p) —y V a(")(p)=0

b=1
(2.16)

a=1, . . . , N .

N(E'"' hp—)P'"'(P) m—a'".'(P)+ g V P'"'(P) =0
b=1

where P = ~p~ and ri(p, +) are phase factors. In order to
quantize properly the fields 4, (x), we expand the
positive- and negative-frequency parts A,(")(p,t) and
8',"'(p, t) as superpositions of energy eigenstates:

N —IE'"'r
A(,")(p, t)= g a,'"'(P)a (p, h)ej=1

(2.15)

N —iE'"']
hei(p, h)%',"' (—p, t)= g P',"'(P)a (p, h)e

j=1
where P = ~P~, Ej'"' (j =1, . . . , N) are the energy eigen-
values (the sum over j goes from 1 to N because there are
N degrees of freedom for each helicity eigenvalue) and
a (p, h) (j =1, . . . , N) are operators that obey the canon-
ical anticommutation relations. The values of the
coefficients a', '(P) and P(,hj)(P) for each helicity eigenval-
ue h =+1 are given by the 2N coupled equations

+Ej+'a t(p, + )aj (p, + ) ] . (2.18)

The plane-wave expansion in matter of the quantized
two-component neutrino fields 4, (x) in the mass basis
can be written as

Since the system of equations (2.16) is homogeneous,
there are N solutions for j =1, . . . , N corresponding to
the N energy eigenvalues E'"'. Since the solutions are or-
thogonal,

[a(h) (p)a(h)(p)+p(h) (p)p(h)(p)] g (2 17}
a=1

the interpretation of the operators aj(p, h) and aj. (p, h) as
destruction and creation operators obeying the canonical
anticommutation rules leads to the correct normal-
ordered Hamiltonian:

N0= dp E' 'a p,.—a p, —

N —iE'"'f+~ x iE'"'~ —I x4, (x)= J g g [a(j)(P)w(p, h)a (p, h)e ' —hP', ".) (P)w(p, —h)aj(p, h)e ' ] . (2.19)
( 2')r ) j= 1 h =k l

mI""
E( )=P+ J j=1 . . . NJ 2P 7 0 ' ' ' 0 7 (2.20)

(}II)where m '. "' (j= 1, . . . , N) are the effective masses
squared in matter. Since to lowest order

For relativistic neutrinos, for which m, «P
(a = 1, . . . , N) and V «P, the energy-momentum disper-
sion relations E'"' =P +mJ"' can be approximated to

~ P(+ )(P)+ y VM P(+ )(P) 0
b=1

a =1, . . . , N (223)

for the positive-helicity sector. The N orthogonal solu-
tions a,'j '(P) and p(,j+)(P) (a =1, . . . , N) for j =1, . . . , N
are the columns of the N XN unitary matrices a' '(P)
and P(+'(P) that diagonalize the equations

a' ' (P)(M +2PV )a' '(P) =M' ' (P) (2.24)

m,
P'. )(P)=, 'a.' (P),

(2.21}

and
P(+) (P)(M —2PV )P(+'(P) =M'+' (P}, (2.25)

a(+ )(p)— ~ p(+ )(p)QJ 2p QJ

the system of equations (2.16) reduces to

N
a,', '(P)—g V,ba'b, '(P)=0,

b=1

a =1, . . . ,N, (2.22)

for the negative-helicity sector and

(+)where M'*' (P}are the diagonal N XN matrices contain-
ing the effective masses squared mj (P) for(+)

j =1, . . . , N. Therefore, in the relativistic approxima-
tion, the components of the plane wave expansion of the
neutrino fields given in Eq. (2.19) mix in a simple way
through the unitary mixing matrices a' '(P) and
P'+"(P). This leads to a simple mixing of the neutrino
states, which is the source of neutrino oscillations. Of
course, since the mixing depends on the momentum and a
field contains a superposition of an infinite range of
momentum components, there is no simple mixing of the
fields in matter.
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γ0
C =

(
0 −1
−1 0

)
, γ⃗C =

(
0 σ⃗
−σ⃗ 0

)
, γ5

C =

(
1 0
0 −1

)
, (A.109)

γµ
C =

(
0 σ̄µ

−σµ 0

)
, with σµ = (1 , σ⃗) , σ̄µ = (−1 , σ⃗) , (A.110)

Σ⃗C =

(
σ⃗ 0
0 σ⃗

)
, CC = i γ2

C γ
0
C = −i

(
σ2 0
0 −σ2

)
. (A.111)

σ0k
C = iαk

C = i

(
σk 0
0 −σk

)
, σkj

C =
∑

ℓ

ϵkjℓ Σℓ
C =

∑

ℓ

ϵkjℓ

(
σℓ 0
0 σℓ

)
,

(A.112)

u(h)
C (p) =

(
−

√
E + h |⃗p|χ(h)(⃗p)√

E − h |⃗p|χ(h)(⃗p)

)

, (A.113)

v(h)
C (p) = − h

(√
E − h |⃗p|χ(−h)(⃗p)√
E + h |⃗p|χ(−h)(⃗p)

)

, (A.114)

ζ(h) = −h . (A.115)

− Two-component helicity eigenstate spinors:

p⃗ · σ⃗
|⃗p| χ

(h)(⃗p) = hχ(h)(⃗p) , (A.116)

(
χ(h)(⃗p)

)†
χ(h′)(⃗p) = δhh′ , (A.117)

iσ2
(
χ(h)(⃗p)

)∗
= −hχ(−h)(⃗p) , (A.118)

χ(−h)(−p⃗) = η(⃗p, h)χ(h)(⃗p) with

⎧
⎨

⎩

|η(⃗p, h)|2 = 1 ,
η(−p⃗,−h) = η∗(⃗p, h) ,
η(⃗p,−h) = −η∗(⃗p, h) ,

(A.119)

(
χ(h)(⃗p)

)†
σk χ(h)(⃗p) =

pk

h |⃗p| . (A.120)

For p⃗ = |⃗p| (sinθ cosφ, sinθ sinφ, cosθ),

χ(+)(⃗p) =

(
cos θ

2

sin θ
2 eiφ

)
, χ(−)(⃗p) =

(
− sin θ

2 e−iφ

cos θ
2

)
, (A.121)

η(⃗p, h) = h e−ihφ . (A.122)
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jh – highest mass eigenstate (3 for NO, 2 for IO) 

jl – lowest mass eigenstate (1 for NO, 3 for IO) 
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Some of the contributions entering the neutrino field can be simplified if one considers the high electron density
medium where the neutrinos are born. In that case the terms without masses reduce to one state
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where j

h

is the index of the highest mass eigenstate (i.e. state 3 for the normal ordering and state 2 for the inverted
ordering), and j

l

is the index of the lowest mass eigenstate (i.e. state 1 for the normal ordering and state 3 for the
inverted ordering). Then, Eq. (24) becomes
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One then wonder if these limits could change the propagator, Eq. (12), and consequently the decay half-life Eq.
(13). It is preferable to calculate the contributions to electron neutrino propagator, Eq. (11), in an electron density
medium using the full expression for the field �M
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Putting everything together on gets
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and using Eqs. (14) - (17) we recover the vacuum electron
neutrino propagator of Eq. (12).

IV. CONCLUSIONS

This work advances and extends the analysis of BSM
physics parameters involved in the neutrinoless double-

beta decay. We calculate 20 nuclear matrix elements and
9 phase-space factors. Two of these nuclear matrix ele-
ments (M

GT

0 , M
T

0) are calculated for the first time us-
ing shell model techniques. Three new hadron-level dia-
grams, Fig. 2.e, 2.f, 2.g are for the first time considered
in the full analyses based on the e↵ective field theory ap-
proach to 0⌫�� decay (they were only considered in the
past in the context of particular mechanisms).
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where j

h

is the index of the highest mass eigenstate (i.e. state 3 for the normal ordering and state 2 for the inverted
ordering), and j

l

is the index of the lowest mass eigenstate (i.e. state 1 for the normal ordering and state 3 for the
inverted ordering). Then, Eq. (24) becomes
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One then wonder if these limits could change the propagator, Eq. (12), and consequently the decay half-life Eq.
(13). It is preferable to calculate the contributions to electron neutrino propagator, Eq. (11), in an electron density
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Putting everything together on gets
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and using Eqs. (14) - (17) we recover the vacuum electron
neutrino propagator of Eq. (12).

IV. CONCLUSIONS

This work advances and extends the analysis of BSM
physics parameters involved in the neutrinoless double-

beta decay. We calculate 20 nuclear matrix elements and
9 phase-space factors. Two of these nuclear matrix ele-
ments (M

GT

0 , M
T

0) are calculated for the first time us-
ing shell model techniques. Three new hadron-level dia-
grams, Fig. 2.e, 2.f, 2.g are for the first time considered
in the full analyses based on the e↵ective field theory ap-
proach to 0⌫�� decay (they were only considered in the
past in the context of particular mechanisms).
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jh – highest mass eigenstate (3 for NO, 2 for IO) 

jl – lowest mass eigenstate (1 for NO, 3 for IO) 
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Some of the contributions entering the neutrino field can be simplified if one considers the high electron density
medium where the neutrinos are born. In that case the terms without masses reduce to one state
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where j

h

is the index of the highest mass eigenstate (i.e. state 3 for the normal ordering and state 2 for the inverted
ordering), and j

l

is the index of the lowest mass eigenstate (i.e. state 1 for the normal ordering and state 3 for the
inverted ordering). Then, Eq. (24) becomes
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One then wonder if these limits could change the propagator, Eq. (12), and consequently the decay half-life Eq.
(13). It is preferable to calculate the contributions to electron neutrino propagator, Eq. (11), in an electron density
medium using the full expression for the field �M
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Putting everything together on gets
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and using Eqs. (14) - (17) we recover the vacuum electron
neutrino propagator of Eq. (12).

IV. CONCLUSIONS

This work advances and extends the analysis of BSM
physics parameters involved in the neutrinoless double-
beta decay. We calculate 20 nuclear matrix elements and
9 phase-space factors. Two of these nuclear matrix ele-
ments (M

GT

0 , M
T

0) are calculated for the first time us-

ing shell model techniques. Three new hadron-level dia-
grams, Fig. 2.e, 2.f, 2.g are for the first time considered
in the full analyses based on the e↵ective field theory ap-
proach to 0⌫�� decay (they were only considered in the
past in the context of particular mechanisms).

Using a general e↵ective field theory and assuming that
one LNV coupling plays a dominant contribution to the
0⌫�� decay amplitude, we extract limits for the e↵ective
Majorana mass and 11 e↵ective low-energy couplings in
the case of five nuclei of immediate experimental inter-
est. Due to the better half-life limits, the most stringent
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In atomic nuclei NP = In vacuum NP

3

Then, the contributions to the propagator in Eq. (12)
look like
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By comparing with Eqs. (12) and (14) on can conclude
that
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Following Ref. [14] one can relate the electron neutrino
field to the mass eigenstates in matter in two steps. In the
first step one can translate Eq. (1) for four-component
spinors to two-component spinors
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and then relate vacuum two-component spinors to the
two-component spinors in matter. This last relation is
given in Eq. (2.19) of Ref. [14], and considering the ap-
proximation for ultra-relativistic neutrinos of Eq. (2.21)
in Ref. [14], one can write
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where ↵(�) and �(+) are unitary matrices depending on momentum p.
Let‘s consider first the case of low matter density, for which the matter e↵ects do not produce any significant mixing.
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One can then calculate the contributions to the time ordered product entering propagator in Eq. (17) as
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Given that the neutrinos are ultra-relativistic one can re-
place 2p in the denominators with the on-shell energy 2E

p

that enters the standard derivation of Feynman propaga-
tors [21, 22]. Therefore, to be consistent with Eq. (17)
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which can also be checked directly.
Now we can go back to the electron neutrino fields in

high electron density environment. By combining Eq.
(18) and (19) one gets
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Some of the contributions entering the neutrino field can be simplified if one consider the high electron density medium
where the neutrinos are born. In that case the terms without masses reduce to one state
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where j

h

is the index of the highest mass eigenstate (i.e. state 3 for the normal ordering and state 2 for the inverted
ordering), and j

l

is the index of the lowest mass eigenstate (i.e. state 1 for the normal ordering and state 3 for the
inverted ordering). One then wonder if these limits could change the propagator, Eq. (12), and consequently the
decay half-life Eq. (13). It is preferable to calculate the contributions to electron neutrino propagator, Eq. (11), in
an electron density medium using the full expression for the field �M

e

(x), as
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Using the unitarity of the ↵
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Putting everything together on gets
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and using Eqs. (14) - (17) we recover the vacuum electron
neutrino propagator, Eq. (12).

IV. CONCLUSIONS

This work advances and extends the analysis of BSM
physics parameters involved in the neutrinoless double-
beta decay. We calculate 20 nuclear matrix elements and
9 phase-space factors. Two of these nuclear matrix ele-
ments (M

GT

0 , M
T

0) are calculated for the first time us-
ing shell model techniques. Three new hadron-level dia-
grams, Fig. 2.e, 2.f, 2.g are for the first time considered
in the full analyses based on the e↵ective field theory ap-
proach to 0⌫�� decay (they were only considered in the
past in the context of particular mechanisms).

Using a general e↵ective field theory and assuming that
one LNV coupling plays a dominant contribution to the
0⌫�� decay amplitude, we extract limits for the e↵ective
Majorana mass and 11 e↵ective low-energy couplings in

the case of five nuclei of immediate experimental inter-
est. Due to the better half-life limits, the most stringent
limits for the LNV couplings are found for 136Xe, closely
followed by 76Ge. An upper-limit for the Majorana neu-
trino mass hm

��

i of 140 meV was calculated in the case
of 136Xe. Assuming a Yukawa coupling corresponding to
the electron mass, one can conclude that the 0⌫�� decay
could be consistent with a new physics scale somewhere
between 2 TeV and 20 TeV.

Using the upper limits for the LNV coupling we ex-
tract limits for the energy scale of the new physics, using
EFT arguments. We found that the scale associated with
the dimension-9 EFT operator is stable, and indicates a
new physics scale around 3 TeV. We also found that the
dimension-5 EFT operator associated with the Majorana
neutrino mass varies significantly with the Yukawa cou-
pling to Higgs and the 0⌫�� decay half-life.

Should neutrinoless double-beta decay be experimen-
tally observed, a thorough analysis of the outgoing elec-
trons angular and energy distributions (presented in
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Some of the contributions entering the neutrino field can be simplified if one considers the high electron density
medium where the neutrinos are born. In that case the terms without masses reduce to one state
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where j

h

is the index of the highest mass eigenstate (i.e. state 3 for the normal ordering and state 2 for the inverted
ordering), and j

l

is the index of the lowest mass eigenstate (i.e. state 1 for the normal ordering and state 3 for the
inverted ordering). Then, Eq. (24) becomes
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One then wonder if these limits could change the propagator, Eq. (12), and consequently the decay half-life Eq.
(13). It is preferable to calculate the contributions to electron neutrino propagator, Eq. (11), in an electron density
medium using the full expression for the field �M
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(x), Eq. (24), as
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Using the unitarity of the ↵
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Putting everything together on gets
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and using Eqs. (14) - (17) we recover the vacuum electron
neutrino propagator of Eq. (12).

IV. CONCLUSIONS

This work advances and extends the analysis of BSM
physics parameters involved in the neutrinoless double-

beta decay. We calculate 20 nuclear matrix elements and
9 phase-space factors. Two of these nuclear matrix ele-
ments (M

GT

0 , M
T

0) are calculated for the first time us-
ing shell model techniques. Three new hadron-level dia-
grams, Fig. 2.e, 2.f, 2.g are for the first time considered
in the full analyses based on the e↵ective field theory ap-
proach to 0⌫�� decay (they were only considered in the
past in the context of particular mechanisms).
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Some of the contributions entering the neutrino field can be simplified if one considers the high electron density
medium where the neutrinos are born. In that case the terms without masses reduce to one state
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where j

h

is the index of the highest mass eigenstate (i.e. state 3 for the normal ordering and state 2 for the inverted
ordering), and j

l

is the index of the lowest mass eigenstate (i.e. state 1 for the normal ordering and state 3 for the
inverted ordering). Then, Eq. (24) becomes
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One can then ask if these limits could change the propagator, Eq. (12), and consequently the decay half-life Eq.
(13). It is preferable to calculate the contributions to electron neutrino propagator, Eq. (11), in an electron density
medium using the full expression for the field �M

e

(x), Eq. (24), as
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Using the unitarity of the ↵
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Putting everything together on gets
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and using Eqs. (14) - (17) we recover the vacuum electron
neutrino propagator of Eq. (12).

IV. CONCLUSIONS

This work advances and extends the analysis of BSM
physics parameters involved in the neutrinoless double-
beta decay. We calculate 20 nuclear matrix elements and
9 phase-space factors. Two of these nuclear matrix ele-
ments (M

GT

0 , M
T

0) are calculated for the first time us-

ing shell model techniques. Three new hadron-level dia-
grams, Fig. 2.e, 2.f, 2.g are for the first time considered
in the full analyses based on the e↵ective field theory ap-
proach to 0⌫�� decay (they were only considered in the
past in the context of particular mechanisms).

Using a general e↵ective field theory and assuming that
one LNV coupling plays a dominant contribution to the
0⌫�� decay amplitude, we extract limits for the e↵ective
Majorana mass and 11 e↵ective low-energy couplings in
the case of five nuclei of immediate experimental inter-
est. Due to the better half-life limits, the most stringent



Summary  
 
•  Neutrinoless DBD, if observed, will represent a big step 

forward in our understanding of the neutrinos, and of 
physics beyond the Standard Model. 

•  Better nuclear matrix elements and effective DBD 
operators are needed to identify the underlying 
mechanism(s). 

•  The effects of the high electron densities in atomic 
nuclei were investigated and they do not change the 
neutrino emission or detection, nor the 0vββ outcome. 

•  These results look simple, but the road to them is 
complex. Other observables (Majoron) may be affected! 
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