

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Ab initio calculations of double-beta decay and WIMPnucleus scattering

Jason D. Holt

INT, 6 March 2018

The Next Big Discovery: $0\nu\beta\beta$ -decay?

Neutrino own antiparticle $\Longleftrightarrow 0\nu\beta\beta$ decay

Tremendous impact on BSM physics:

Lepton-number violating process

Majorana character of neutrino

Absolute neutrino mass scale

The Next Big Discovery: $0\nu\beta\beta$ -decay?

The Next Big Discovery: $0\nu\beta\beta$ -decay?

Uncertainty from Nuclear Matrix Element; bands do not represent rigorous uncertainties

Next Big Discovery: Nature of Dark Matter?

Many direct-detection searches underway worldwide

Direct detection: $X \operatorname{SM} \to X \operatorname{SM}$

Leading candidates: neutralinos

Couples primarily to scalar and axial-vector currents in atomic nuclei

Observation of nuclear recoil

Next Big Discovery: Nature of Dark Matter?

Exclusion plots for WIMP-nucleon total cross section (spin-dependent)

Differential cross section: compare results from different targets

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p^2} = \frac{8G_F^2}{(2J_i+1)v^2}S_A(p)$$

Next Big Discovery: Nature of Dark Matter?

Exclusion plots for WIMP-nucleon total cross section (spin-dependent)

Differential cross section: compare results from different targets

 $\frac{\mathrm{d}\sigma}{\mathrm{d}p^2} = \frac{8G_F^2}{(2J_i+1)v^2} S_A(p)$

Structure functions required from nuclear theory

Predictions with Models

How well can nuclear models motivate experiments, predict beyond data?

Work well in regions where informed by data

Predictions with Models

How well can nuclear models motivate experiments, predict beyond data?

Often extrapolate unreliably

Spread in results = meaningful uncertainty?

Predictions with Models

How well can nuclear models motivate experiments, predict beyond data?

Often extrapolate unreliably

Spread in results = meaningful uncertainty?

Analogous picture in $0\nu\beta\beta$ decay

$$M_{GT}^{0\nu} = \langle f | \sum_{ab} H(r_{ab}) \sigma_a \cdot \sigma_b \ \tau_a^+ \tau_b^+ | i \rangle$$

$0\nu\beta\beta$ -Decay Nuclear Matrix Element Status

All calculations to date from extrapolated phenomenological models; large spread in results

All models missing essential physics

$0\nu\beta\beta$ -Decay Nuclear Matrix Element Status

 $0\nu\beta\beta$

All calculations to date from extrapolated phenomenological models; large spread in results

All models missing essential physics $M^{0
u}$ 0
uetaeta

RTRIUMF

Spin-Dependent Structure Factors

Phenomenological wfs + inconsistent bare operator (with two-body currents)

Ab Initio Approach

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

$$H\psi_n = E_n\psi_n$$

Ab Initio Approach: Interactions

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (low-energy QCD)

$$H\psi_n = E_n\psi_n$$

- Electroweak physics

"The first, the basic approach, is to study the elementary particles, their properties and mutual interaction. Thus one hopes to obtain knowledge of the nuclear forces."

Effective Theory of Nuclear Forces

Chiral effective field theory: systematic expansion of nuclear interactions

Consistent EW interactions Quantifiable uncertainties possible Best fitting strategy for ~30 undetermined couplings debated

Ab Initio Approach: Interactions

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

Ab Initio Approach: Many-Body Methods

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (low-energy QCD)

$$H\psi_n = E_n\psi_n$$

- Electroweak physics
- Nuclear many-body problem

"If the forces are known, one should, in principle, be able to calculate deductively the properties of individual nuclei."

Chronological Reach of Ab Initio Many-Body Methods

Moore's law: exponential growth in computing power

Methods for light nuclei (QMC, NCSM) scale exponentially with mass

Chronological Reach of Ab Initio Many-Body Methods

Moore's law: exponential growth in computing power

Methods for light nuclei (QMC, NCSM) scale exponentially with mass

Mid 2000's **polynomial scaling methods developed** (coupled cluster, in-medium SRG,...) Explosion in limits of ab initio theory

Chronological Reach of Ab Initio Many-Body Methods

Moore's law: exponential growth in computing powe **2017:** A>100

Methods for light nuclei (QMC, NCSM) scale exponentially with mass

Mid 2000's **polynomial scaling methods developed** (coupled cluster, in-medium SRG,...) Explosion in limits of ab initio theory

Breadth of Ab Initio Many-Body Methods

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

 $H\psi_n = E_n\psi_n$

- Nuclear forces (low-energy QCD)
- Electroweak physics

- Nuclear many-body problem

Breadth of Ab Initio Many-Body Methods

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (low-energy QCD)

$$H\psi_n = E_n\psi_n$$

- Electroweak physics
- Nuclear many-body problem

Breadth of Ab Initio Many-Body Methods

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (low-energy QCD)

$$H\psi_n = E_n\psi_n$$

- Nuclear many-body problem

- Electroweak physics

Breadth of Ab Initio Many-Body Methods

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (low-energy QCD)
- Electroweak physics

- Nuclear many-body problem

Ab Initio $0\nu\beta\beta$ -Decay Predictions in the Shell Model

Conventional Shell Model: phenomenological wavefunctions

Ab initio valence-space: wavefunctions based on NN+3N forces from chiral EFT

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$
$$M^{0\nu}_{GT} = \langle f | \sum_{ab} H(r_{ab}) \sigma_a \cdot \sigma_b \ \tau_a^+ \tau_b^+ | i \rangle$$

1) Ab initio energies in medium/heavy-mass region

Valence-Space In-Medium SRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c.}$$
$$\tilde{H} = e^{\Omega} H e^{-\Omega} = H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \cdots$$

All operators truncated at two-body level

Step 1: Decouple core Step 2: Decouple valence space

Can we achieve accuracy of large-space methods?

$$\langle \tilde{\Psi}_n | P \tilde{H} P \mid \tilde{\Psi}_n \rangle \approx \langle \Psi_i | H | \Psi_i \rangle$$

Tsukiyama, Bogner, Schwenk, PRC 2012 Morris, Parzuchowski, Bogner, PRC 2015

$\langle P H P\rangle$	$\langle P H Q angle ightarrow 0$
$\langle Q H P angle ightarrow 0$	$\langle Q H Q angle$

Ground States: From Oxygen to Nickel

ENO agrees to 1% with large-space methods (where calculations exist)

Extend beyond standard *sdlpf* shells

Agreement with experiment deteriorates for heavy chains (due to input Hamiltonian) Significant gain in applicability with little/no sacrifice in accuracy

Low computational cost: ~1 node-day/nucleus

Ground States: From Oxygen to Nickel

Targeted valence space agrees to 1% with all large-space methods (where calculations exist)

Extend beyond standard *sdlpf* shells

Agreement with experiment deteriorates for heavy chains (due to input Hamiltonian)

Significant gain in applicability with little/no sacrifice in accuracy

Low computational cost: ~1 node-day/nucleus

Breadth of Ab Initio Many-Body Methods

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (low-energy QCD)

$$H\psi_n = E_n\psi_n$$

- Electroweak physics

- Nuclear many-body problem

Extrapolating Beyond Data

Stark contrast in extrapolations between model extrapolations and ab initio

All ab initio methods in good agreement when starting from same input NN+3N forces

Ònly informed by 2,3-body data

RETRIUMF Connection to Infinite Matter: Saturation as a Guide for Nuclei

Hebeler/Simonis NN+3N forces with reasonable saturation properties

1.8/2.0 (EM) reproduces closed shells through ⁷⁸Ni

Only underbound for neutron-rich oxygen

RETRIUMF Connection to Infinite Matter: Saturation as a Guide for Nuclei

Hebeler/Simonis NN+3N forces with reasonable saturation properties

1.8/2.0 (EM) reproduces closed shells through ⁷⁸Ni

Only underbound for neutron-rich oxygen

Connection to Infinite Matter: Saturation as a Guide for Nuclei

Hebeler/Simonis NN+3N forces with reasonable saturation properties

1.8/2.0 (EM) reproduces closed shells through ⁷⁸Ni

Only underbound for neutron-rich oxygen

Forces with good saturation

Isotopic chains: dramatic improvement with respect to experimental data

Forces with good saturation

Isotopic chains: dramatic improvement with respect to experimental data

How well does it work across broad regions of nuclei?
Ground-State Properties in sd-Shell: F (Z=9)

Ground-State Properties in sd-Shell: Ne (Z=10)

Ground-State Properties in sd-Shell: Na (Z=11)

Ground-State Properties in sd-Shell: Mg (Z=12)

Ground-State Properties in sd-Shell: AI (Z=13)

Ground-State Properties in sd-Shell: Si (Z=14)

Ground-State Properties in sd-Shell: P (Z=15)

Ground-State Properties in sd-Shell: S (Z=16)

JDH, Stroberg, et al., in preparation

Ground-State Properties in sd-Shell: CI (Z=17)

Ground-State Properties in sd-Shell: Ar (Z=18)

Ground-State Properties in sd-Shell: K (Z=19)

60

60

Ground-State Properties in pf-Shell: Ca (Z=20)

JDH, Stroberg, et al., in preparation

Ground-State Properties in pf-Shell: Sc (Z=21)

Ground-State Properties in pf-Shell: Ti (Z=22)

Ab Initio Dripline Prediction

General agreement with model predictions

Significant differences arise for heavy nuclei

RTRIUMF

Ab Initio Dripline Prediction

General agreement with model predictions

Proton dripline: very good agreement with experiment

Ground-State Properties in pf-Shell: V (Z=23)

Ground-State Properties in pf-Shell: Cr (Z=24)

Generally deformed, new data from ISOLTRAP

JDH, Stroberg, et al., in preparation

Ground-State Properties in pf-Shell: Mn (Z=25)

Ground-State Properties in pf-Shell: Fe (Z=26)

Explore ground-state properties throughout medium-mass region

JDH, Stroberg, et al., in preparation

Mass Number A

Mass Number A

Ground-State Properties in pf-Shell: Ni (Z=28)

Ab Initio for Structure of Lightest Tin Isotopes

Level ordering near ¹⁰¹Sn controversial and unknown: insights from ab initio valence-space IMSRG

Ab initio predicts 5/2⁺ ground state, but within theoretical uncertainties

Towards big questions: $0\nu\beta\beta$ -decay

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (low-energy QCD)
- Electroweak physics
- Nuclear many-body problem

\Re TRIUMF Ab Initio $0v\beta\beta$ -Decay Predictions from Valence-Space IMSRG

Conventional SM: phenomenological wavefunctions Ab initio SM: wavefunctions from chiral NN+3N forces

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$
$$M^{0\nu}_{GT} = \langle f | \sum_{ab} H(r_{ab}) \sigma_a \cdot \sigma_b \ \tau_a^+ \tau_b^+ | i \rangle$$

Ab initio energies in medium/heavy-mass region
 Valence-space IM-SRG for all medium-mass nuclei

\ReTRIUMF Ab Initio $0v\beta\beta$ -Decay Predictions from Valence-Space IMSRG

Conventional SM: phenomenological wavefunctions $^{16}_{14}$ Ab initio SM: wavefunctions from chiral NN+3N forces $^{16}_{12}$

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$
$$M^{0\nu}_{GT} = \langle f | \sum_{ab} H(r_{ab}) \sigma_a \cdot \sigma_b \ \tau_a^+ \tau_b^+ | i \rangle$$

1) Ab initio energies in medium/heavy-mass region

Valence-space IM-SRG for all medium-mass nuclei

Deformation challenging for large-space methods

\Re TRIUMF Ab Initio $0v\beta\beta$ -Decay Predictions from Valence-Space IMSRG

Conventional SM: phenomenological wavefunctions Ab initio SM: wavefunctions from chiral NN+3N forces

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$
$$M^{0\nu}_{GT} = \langle f | \sum_{ab} H(r_{ab}) \sigma_a \cdot \sigma_b \ \tau_a^+ \tau_b^+ | i$$

1) 🗸 Ab initio energies in medium/heavy-mass region

Valence-space IM-SRG for all medium-mass nuclei

Deformation challenging for large-space methods

First ab initio calculation of ⁷⁶Ge/⁷⁶Se

Ab Initio $0\nu\beta\beta$ -Decay Predictions in the Shell Model

Conventional SM: phenomenological wavefunctions + **bare operator**

Ab initio SM: wavefunctions from chiral NN+3N forces + consistent effective operator

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$
$$M^{0\nu}_{GT} = \langle f | \underbrace{\sum_{ab} H(r_{ab}) f_a \cdot \sigma_b \tau_a^+ \tau_b^+}_{eff} | i \rangle$$

1) 🗸 Ab initio energies in medium/heavy-mass region

2) Effective decay operator: decouple valence-space operator (analogous to Hamiltonian)

Payne, Stroberg, JDH, Menendez, in preparation

Effective Valence-Space In-Medium SRG Operators

Explicitly construct unitary transformation from sequence of rotations

Testing microscopic descriptions of collectivity

- Use GOSIA Coulomb-excitation code to extract matrix elements
- Compare with NCSpM (LSU) and VS-IM-SRG (TRIUMF)
 - NCSpM does excellent job expensive calculations
 - VS-IM-SRG underpredicts strength relatively inexpensive qualitative description excellent

Testing microscopic descriptions of collectivity

Assess nature of missing VS-IM-SRG E2 strength:

$$B(E2)_{T_z=-1}^{\text{Proj.}} = B(E2)_{T_z=-1}^{\text{Theory}} \times \frac{B(E2)_{T_z=+1}^{\text{Exp}}}{B(E2)_{T_z=+1}^{\text{Theory}}}$$

If missing E2 strength isoscalar, expected "projected" B(E2) to match experiment

- Projected B(E2) consistently 15% over/
- under predicted by VS-IM-SRG
 Missing strength has <u>consistent</u> isovector component
 Promising for future development
 Shell model (USDB) shows no consistent
- behaviour

"Quenching" of g_A in Gamow-Teller Decays

Long-standing problem in weak decays of nuclei: should g_A be "quenched"?

Using $\,g_A^{\mathrm{eff}} pprox 0.77 imes g_A^{\mathrm{free}}\,$ agrees with data

Two-body Currents in Nuclei

Chiral Effective Field Theory – electroweak currents consistent with nuclear forces

Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents in Chiral Effective Field Theory

Doron Gazit

Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, Washington 98195, USA

Sofia Quaglioni and Petr Navrátil Lawrence Livermore, California 94551, USA (Received 23 December 2008; published 1 September 2009)

The chiral low-energy constants c_D and c_E are constrained by means of accurate *ab initia* calculations of the A = 3 binding energies and, for the first time, of the triton β decay. We demonstrate that these lowenergy observables allow arobust determination of the two undetermined constants a result of the

Two-body Currents in Nuclei

Chiral Effective Field Theory – electroweak currents consistent with nuclear forces

The chiral low-energy constants c_D and c_E are constrained by means of accurate *ab initio* calculations of the A = 3 binding energies and, for the first time, of the triton β decay. We demonstrate that these lowenergy observables allows a robust determinition of the two undetermined constants a scale of the

"Quenching" of g_A in Gamow-Teller Decays

VS-IMSRG calculations of GT transitions in sd, pf shells Minor effect from consistent effective operator Significant effect from neglected 2-body currents

Ab initio calculations explain data with unquenched g_A

RTRIUMF

"Quenching" of g_A in Gamow-Teller Decays

Prediction from light nuclei to super allowed GT transition in 100Sn

Agreement with data with no need for quenching

Ab Initio $2\nu\beta\beta$ -decay

First benchmark to reproduce known shell-model results

Ab Initio $2\nu\beta\beta$ -decay

Consistent many-body wfs/operators from chiral NN+3N forces (no 2b currents)

VS-IMSRG: decrease in final matrix element

Fayne, Stroberg, JDFT, et al., in pre

Likely missing contributions from intermediate states outside valence space

Ab Initio $2\nu\beta\beta$ -decay

Consistent many-body wfs/operators from chiral NN+3N forces (with 2b currents)

Payne, Stroberg, JDH, et al., in prep

VS-IMSRG: decrease in final matrix element

Likely missing contributions from intermediate states outside valence space

Ab Initio $0\nu\beta\beta$ -decay

Consistent many-body wfs/operators from chiral NN+3N forces (no 2b currents)

General cancellation between Fermi and Tensor contributions

Ab Initio $0\nu\beta\beta$ -decay

Consistent many-body wfs/operators from chiral NN+3N forces (no 2b currents)

Final matrix element converged – significant decrease from phenomenology

Ab Initio $0\nu\beta\beta$ -decay

Ab initio: Consistent many-body wfs/operators from chiral NN+3N forces

Ab Initio $0\nu\beta\beta$ -decay

Ab initio: Consistent many-body wfs/operators from chiral NN+3N forces

Two-body currents in progress – typically decrease NME

Ν

Ν

Ab Initio $0\nu\beta\beta$ -Decay Predictions in the Shell Model

Neutrinoless double beta decay

Standard SM: phenomenological wavefunctions + bare operator

Ab initio SM: wavefunctions from chiral NN+3N forces + consistent effective operator

$$M^{0\nu} = M^{0\nu}_{GT} - \frac{M^{0\nu}_F}{g_A^2} + M^{0\nu}_T$$

$$M^{0\nu}_{GT} = \langle f | \sum_{ab} H(r_{ab}) \sigma_a \cdot \sigma_b \ \tau_a^+ \tau_b^+ | i \rangle$$
1) \checkmark Ab initio energies in medium/heavy-mass region
2) \checkmark Effective decay operator: decouple valence-space operator
3) Operator corrections
Two-body currents S. Leutheusser (UBC/MIT)

$$\int_{s}^{s} e^{i\sqrt{s}} \int_{s}^{s} e^{i\sqrt{s}} e^{i\sqrt{s}} e^{i\sqrt{s}} \int_{s}^{s} e^{i\sqrt{s}} e^{i\sqrt{s}}$$

Towards big questions: WIMP-Nucleus Scattering

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (low-energy QCD)
- Electroweak physics
- Nuclear many-body problem

RTRIUMF

Ab Initio WIMP-Nucleus Response Functions (Isoscalar)

Ab initio: Consistent many-body wfs/operators from chiral NN+3N forces + 2b currents

Outlook

Ab initio valence-shell Hamiltonians

First ab initio prediction of nuclear driplines Cross-shell spaces underway: Island of inversion

Fundamental physics

Effective electroweak operators: M1, GT,...

Effective $0\nu\beta\beta$ decay operator