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• interactions and transition 
operators from Chiral EFT, 
including currents                      


• tune resolution scale of the 
Hamiltonian / Hilbert space            


• (MR-)IMSRG: calculate 
ground (and excited) states 
or derive Shell Model 
interaction             


• evaluate 1B, 2B (, 3B,…) 
transition operator 
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Large-Scale Diagonalization

• basis-size “explosion”: factorial growth

• importance truncation etc. cannot fully compensate this 
growth as A increases
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(a) The growth of the matrix dimension
(|A|) with respect to Nmax

105 106 107 108 109

matrix dimension
106

107

108

109

1010

1011

1012

nu
m

be
r o

f n
on

ze
ro

 m
at

rix
 e

le
m

en
ts

6Li
8Be
10B
12C
14N
16O
18F
20Ne

     2-body
potentials

     3-body
potentials

(b) The growth of number of nonzero ma-
trix elements in Ĥ with respect to |A|

Figure 1: The characteristics of the CI projected Hamiltonian Ĥ for a variety of
nuclei.

by more than one single-particle state, and a two-body integral becomes zero when a
and b differ by more than two single-particle states, etc. This observation allows us
to determine many of the zero entries of Ĥ without evaluating the numerical integral
in (5).

Empirical evidence suggests that the probability of two randomly chosen but valid
many-body basis states sharing more than k−2 single-particle states is relatively low.
As a result, Ĥ is extremely sparse. Figure 1 shows both the growth of the matrix
dimension (|A|) with respect to Nmax and the growth of the number of nonzero
elements in Ĥ with respect to |A| for a variety of nuclei for both two-body and two-
plus three-body potentials. In practice, we observe that the number of non-zeros in Ĥ
is proportional to |A|3/2.

To compute the eigenvalues of Ĥ efficiently on a high performance parallel com-
puter, the following three issues must be addressed carefully:

1. The generation and distribution of the many-body basis states — This step
essentially determines how the matrix Hamiltonian Ĥ or ĤZ is partitioned and
distributed in subsequent calculations.

2. The construction of the sparse matrix Hamiltonian Ĥ — This step is performed
simultaneously on all processors. Each processor will construct its portion of Ĥ
defined by the many-body basis states assigned to it. Because the positions
of the nonzero elements of the Hamiltonian is not known a priori, the key to
achieving good performance during this step is to quickly identify the locations
of these elements without evaluating them numerically first.

3. The calculation of the eigenvalues and eigenvectors using the Lanczos itera-
tion — The major cost of the Lanczos iteration is the computation required to
perform sparse matrix-vector multiplications of the form y ← Ĥx, where x, y
are both vectors. Performing efficient orthogonalizations of the Lanczos basis
vectors is also an important issue to consider.

3 Parallel basis generation

Because the rows and columns of Ĥ are indexed by valid many-body basis states, the
first step of the nuclear CI calculation is to generate these states so that they can be
used to construct and manipulate matrix elements of Ĥ in subsequent calculations. It

from: C. Yang, H. M. Aktulga, P. Maris, E. Ng, J. Vary, Proceedings of NTSE-2013



Transforming the Hamiltonian

• reference state: single Slater 
determinant
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Normal-Ordered Hamiltonian
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Normal-Ordered Hamiltonian
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Single-Reference Case
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• reference state: Slater determinant 

• normal-ordered operators depend on occupation 
numbers (one-body density)
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Decoupling in A-Body Space
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aim: decouple reference state  
from excitations
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Flow Equation
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Flow Equation
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Matrix is never 
constructed explicitly!



Decoupling
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Decoupling
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off-diagonal couplings 
are rapidly driven to zero
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non-perturbative 
resummation of MBPT series 

(correlations)
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• absorb correlations into RG-improved Hamiltonian

• reference state is ansatz for transformed, less correlated 
eigenstate:

Decoupling

U(s)HU†(s)U(s)
�� n

�
= EnU(s)

�� n
�

U(s)
�� n

� !
=

�� �

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018



“standard” IMSRG: build correlations on top of 

Slater determinant (=independent-particle state)

Correlated Reference States

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

! IMSRG(2) IMSRG(3) IMSRG(4) IMSRG(5)

. . . 



“standard” IMSRG: build correlations on top of 

Slater determinant (=independent-particle state)

Correlated Reference States

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

! IMSRG(2) IMSRG(3) IMSRG(4) IMSRG(5)

. . . 

Collective (aka static) correlations, e.g.

due to intrinsic deformation:



Correlated Reference States

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

! MR-IMSRG(2)

. . . 

MR-IMSRG: build correlations on top of 

already correlated state (e.g., from a method that


describes static correlation well)



Correlated Reference States

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

! MR-IMSRG(2)

. . . 

MR-IMSRG: build correlations on top of 

already correlated state (e.g., from a method that


describes static correlation well)

use generalized 
normal ordering with 

2B,… densities



MR-IMSRG References States

• Slater determinants (uncorrelated)


• number-projected Hartree-Fock Bogoliubov vacua


• Generator Coordinate Method (with projections)


• small-scale No-Core Shell Model


• symmetry-adapted NCSM, clustered states, Density Matrix 
Renormalization Group, tensor networks etc.

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018
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SA-NCSM: see  
talk by K. Launey



MR-IMSRG References States

• Slater determinants (uncorrelated) 

• number-projected Hartree-Fock Bogoliubov vacua 

• Generator Coordinate Method (with projections)


• small-scale No-Core Shell Model


• symmetry-adapted NCSM, clustered states, Density Matrix 
Renormalization Group, tensor networks etc.
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Oxygen Isotopes
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• MR-IMSRG with 
particle-number 
projected HFB 
reference state

• consistency between 
many-body methods

• 24O drip line, but 25,26O 
g.s. resonances too 
high: continuum and 
interaction

HH et al., PRL 110, 242501 (2013), ADC(3): A. Cipollone et al., PRL 111, 242501 (2013)



Oxygen Radii

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

V. Lapoux, V. Somà, C. Barbieri, HH, J. D. Holt, and S. R. Stroberg, PRL 117, 052501 (2016)
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Titanium Isotopes

H. Hergert - “Progress in Ab Initio Techniques in Nuclear Physics”, TRIUMF, Vancouver, March 1, 2018

E. Leistenschneider et al., PRL 120, 062503 (2018)
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Titanium Isotopes

N=32 sub-shell closure too pronounced: combined effect 
of method & interaction !

H. Hergert - “Progress in Ab Initio Techniques in Nuclear Physics”, TRIUMF, Vancouver, March 1, 2018
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Calcium Isotopes

H. Hergert - “Progress in Ab Initio Techniques in Nuclear Physics”, TRIUMF, Vancouver, March 1, 2018
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Calcium Isotopes
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parabola explained 

by sd-pf configuration 
mixing in Shell model:


static correlation



Ground-State to Ground-State Decay

with J. Yao, J. Engel, …



Matrix element calculations

Large difference in matrix element calculations, factor 2-3

Figure 5: (Color online) (a) Decomposition of the total NMEs from the fi-

nal GCM PNAMP (PC-PK1) calculation; (b) the total NMEs calculated with

either only spherical configuration or full configurations, in comparison with

those of GCM PNAMP (D1S) from Ref. [34]. The shaded area indicates the

uncertainty of the SRC e ect within 10%. See text for more details.

the tensor terms were neglected. These two e ects can bring a

di erence up to 15% in the NMEs. By taking into account

this point, one can draw the conclusion from Fig. 5(b) that these

two calculations give consistent results for the total NMEs for

all the candidate nuclei with the exception of 150Nd.

Moreover, we note that in the calculation with pure spher-

ical configuration, PNP increases significantly the NMEs for

the 0 -decay evolved with one (semi)magic nucleus, includ-

ing 48Ca (127%), 116Cd (49%), 124Sn (55%), and 136Xe (58%),
where pairing collapse occurs in either protons or neutrons. The

increase in the NMEs by the PNP is mainly through the su-

perfluid partner nucleus. For
48Ca, pairing collapse is found

in both neutrons and protons, leading to about twice enhanced

normalized NME than the other three ones. It can be under-

stood from Eq.(6) that the F 0 ˆ0 P̂J 0P̂NI P̂ZI
I 0 for

48Ca-Ti does not change by the PNP, while the normalization

factor F for the daughter nucleus
48Ti is increased, resulting in

the enhanced normalized NME. The comparison of the results

of “Sph PNP (PC-PK1)” and “Sph PNP (D1S)” in Fig. 5(b)
shows a large discrepancy in

100Mo-Ru and 150Nd-Sm. This

discrepancy could be attributed to di erent pairing properties.

However, after taking into account the static and dynamic de-

formation e ects, which turn out to decrease the NME signif-

icantly, the discrepancy in
100Mo-Ru is much reduced, while

that in
150Nd-Sm remains and is mainly attributed to the di er-

ence in the overlap between the initial and final collective wave

functions, as already discussed in Ref. [37].

Figure 6 displays our final NMEs for the 0 -decay in

comparison with those by the ISM [23], renormalized QRPA

(RQRPA) [30], PHFB [33], NREDF (D1S) [34], and the

IBM2 [32]. There are also other calculations that are not taken

Figure 6: (Color online) Comparison of the NME M0 for the 0 -decay from

di erent model calculations. The shaded area indicates the uncertainty of the

SRC e ect within 10%. The adopted values are available on the web site [52].

Table 2: The upper limits of the e ective neutrino mass m (eV) based on the

NMEs from the present GCM PNAMP (PC-PK1) calculation, the lower limits

of the half-life T 0

1 2
( 1024 yr) for the 0 -decay from most recent measure-

ments [56, 10, 57, 58, 8, 9, 59] and the phase-space factor G0 ( 10 15 yr
1)

from Ref. [14].
48Ca

76Ge
82Se

100Mo 130Te
136Xe

150Nd

m 2.92 0.20 1.00 0.38 0.33 0.11 1.76

T 0

1 2
0.058 30 0.36 1.1 2.8 34 0.018

G0 24.81 2.363 10.16 15.92 14.22 14.58 60.03

for comparison. Here, only the calculations considering the

SRC e ect with the UCOM (except for the IBM2 calculation

with the coupled-cluster model (CCM)) and using the radius

parameter R 1 2A1 3 fm are adopted for comparison. Our

results are amongst the largest values of the existing calcula-

tions in most cases, except for
100Mo-Ru,

124Sn-Te and 130Te-

Xe. Moreover, the NME for
96Zr in both EDF-based calcu-

lations is significantly larger than the other results, which can

be traced back to the overestimated collectivity. If the ground

state of 96Zr was taken as the pure spherical configuration, the

NME becomes 5.64 (PC-PK1) and 3.94 (D1S), respectively.

We note that the consideration of higher-order deformation in

nuclear wave functions, such as octupole deformation in
150Sm-

Nd [53, 54], and triaxiality in
76Ge-Se [50, 51] and 100Mo-

Ru [55], is expected to hinder the corresponding NMEs further

in the DFT calculation.

Table 2 lists the upper limits of the e ective neutrino mass

m based on the present calculated NMEs for the nuclei

whose lower limits of the half-life T 0

1 2
for the 0 -decay have

been recently measured [56, 10, 57, 58, 9, 59]. The smallest

value ( 0 11 eV) for the upper limit m is found based on the

combined results from KamLAND-Zen [9] and EXO-200 [8]

collaborations for the0 -decay half-life (T 0

1 2
3 4 1025 yr

at 90% confidence level) of 136Xe. This value is closest to but

still larger than the estimated value (20 50 meV based on the

inverted hierarchy for neutrino masses [19]) by a factor of 2 5.

Summary and outlook. In summary, we have reported a

5

Shell model small matrix elements:
What is the effect of the small valence space?

Yao et al. PRC91 024316 (2015)

EDF, IBM, QRPA
large matrix elements:
How well they include nuclear
structure correlations?

N
M

E

QRPA      IBM       EDF       SM         SM        SM
(pf)     (MBPT)   (sdpf)

0

1

2

3
Ca48

Javier Menéndez (JSPS / U. Tokyo) Constraining �� decay Matrix Elements Santa Fe, 28 October 2015 8 / 24

Nuclear Matrix Elements

• inputs tailored to specific methods: phenomenological 
EDFs, Shell Model interactions, … 


• quenched gA , “renormalization” of operators, etc.
H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

J. Yao et al., PRC 91, 024316 (2015)

comparing apples 
and oranges



Many-Body Approaches

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018
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MR-IMSRG References States

• Slater determinants (uncorrelated)


• number-projected Hartree-Fock Bogoliubov vacua


• Generator Coordinate Method (with projections)


• small-scale No-Core Shell Model


• symmetry-adapted NCSM, clustered states, Density Matrix 
Renormalization Group, tensor networks etc.

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018
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Example: 20Ne

• reference: particle-
number & angular-
momentum projected 
HFB

• range of deformed 
reference states flow 
to the 20Ne ground 
state

• deviation from Shell 
model result: 
correlations beyond 
MR-IMSRG(2)

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018
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J. Yao, T. D. Morris, HH, J. Engel, in prep.



Approximate MR-IMSRG(3)

• approximate MR-IMSRG(3): induced 3B terms recover 
bulk of missing correlation energy

• expected to be reference-state dependent
H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018
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J. Yao, T. D. Morris, HH, J. Engel, in prep.



• direct MR-IMSRG (Magnus) calculation of initial and final 
states:

• evaluate NME for transition operator in closure 
approximation:

• explore possible expansions and check consistency, e.g.,

Direct DBD Calculation

�� I,F
�

= e I,F
�� I,F

�

e� F = e�( I+� ) = e�� e� I + . . .

M0��� =
�

F
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in progress

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018
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76Ge ⟶ 76Se

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018
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proof of principle: MR-IM-SRG based on (intrinsically 
deformed) GCM state converges 76Ge,76Se ground-state 
energies



Explicit Treatment of Excited States

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, H. H., 
S. K. Bogner, PRC 96, 034324 (2017)

S. R. Stroberg, A. Calci, H. H., J. D. Holt, S. K. Bogner, 
R. Roth, A. Schwenk, PRL 118, 032502 (2017)

S. R. Stroberg, H. H., J. D. Holt, S. K. Bogner, A. 
Schwenk, PRC93, 051301(R) (2016)

S. K. Bogner, H. H., J. D. Holt, A. Schwenk, S. Binder, A. 
Calci, J. Langhammer, R. Roth, Phys. Rev. Lett. 113, 
142501 (2014)




Valence Space Decoupling

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018
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Valence Space Decoupling

change definition of off-diagonal Hamiltonian:

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018
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Ground-State Energies

• (initial) normal ordering and IMSRG decoupling in the target 
nucleus

• consistent with (MR-)IMSRG ground state energies (and 
CC, SCGF, …) for the same Hamiltonian

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

S. R. Stroberg, A. Calci, HH, J. D. Holt, S. K.Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017)



Excitation Spectra

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

S. K. Bogner et al., PRL113, 142501 (2014), S. R. Stroberg et al., PRC 93, 051301(R) (2016)
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sd-shell spectra agree 
very well with experiment 

and USDA/B…

… for NN+3N(400)  
with cD = -0.2.



Equations-of-Motion for Excitations

• describe excited states based on                 
ground state:

• apply IMSRG transformation:

• ansatz for excitation operator:

• solve EoM by diagonalization (polynomial effort):
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E2 Transitions
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converged

VS-/EOM-IMSRG results 

consistent with  
NCSM



E2 Transitions

• non-zero B(E2) from Shell model: VS-IMSRG induces 
effective neutron charge

• B(E2) much too small: effect of intermediate 3p3h, … 
states that are truncated in IMSRG evolution

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

MR-IMSRG + 
EOM, CI, …

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, HH, S. K. Bogner, PRC 96, 034324 (2017)



M1 Transitions

• M1 transitions consistent between methods, but generally 
too large - include currents in initial operator
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FIG. 7. Convergence of the first 2+ excitation energy and
B(E2) (in e2fm4) to ground state of 14C. VS- and EOM-
IMSRG methods are compared with NCSM and experiment
[75].

FIG. 8. Convergence of the first 1+ excitation energy and
B(M1) (in µ2

N ) to ground state of 14C. VS- and EOM-IMSRG
methods are compared with NCSM and experiment [80].

respect to N
max

(again likely reflecting missing contin-
uum e↵ects). However, for the B(E2), there is serious dis-
agreement between all three. The NCSM result is much
lower than the experimental value, and shows no sign of
convergence with respect to N

max

. This is perhaps not
surprising, as the E2 operator is of long range, and there-
fore more sensitive to the halo e↵ects. The VS-IMSRG
result appears converged with respect to e

max

, but is
smaller than the NCSM result as well as experiment—
the latter by a factor of approximately 15—indicating
that the NO2B approximation is insu�cient in this case.

As a third test in the p shell, we consider 14C. Be-
cause this is a closed-shell nucleus, we may employ the
EOM-IMSRG as well as the VS-IMSRG, and a system
of 14 particles is still feasible with the NCSM. Fig-
ure 7 displays results for the 2+

1

excitation energy and
B(E2; 2+

1

! 0+
1

) for 14C. Here, we find excellent agree-
ment between NCSM and both variants of the IMSRG.
We remind the reader that the IMSRG calculations are
performed with an explicit center-of-mass trap, as in
eq. 32, using � = 1.0 for 14C. This treatment only serves
to remove spurious c.m. contamination of the 2+

1

state.
Of note are the excellent convergence properties of

FIG. 9. Convergence of 0+1 excitation energy, B(M1) (in µ2
N )

to ground state, and magnetic dipole moment of 14N. VS-
and EOM-IMSRG methods are compared with experiment
[80, 81].

the IMSRG calculations. For the EOM-IMSRG, observ-
ables are nearly independent of the specified ~! for the
single-particle basis. VS-IMSRG calculations have not
used the exhaustive model spaces of the EOM-IMSRG,
but they too demonstrate desirable convergence features.
The NCSM has begun to show convergence at N

max

=8,
but extrapolation methods must be used to reveal fully
converged values. Hence the utility of the IMSRG: For
light nuclei such as 14C, convergence is obtainable with-
out extrapolation, and for heavier nuclei, we expect to
be able to identify convergence trends clearly enough to
make extrapolation procedures relatively painless com-
pared to the prohibitively large uncertainties one would
incur when exact methods such as NCSM are used. Of
course, the e↵ect of the additional NO2B approximation
must be fully investigated.

As a further test in 14C, we analyze the first 1+ state
and corresponding M1 transition to the ground state in
Figure 8. Again, rapid convergence properties are ex-
hibited by both IMSRG methods, and consistency with
NCSM is observed. The 1+

1

excitation energy is consis-
tent between methods and shows reasonable reproduc-
tion of experiment. While B(M1) values computed by
the many-body methods are in excellent agreement, they
are larger than the experimental value by a significant
amount. A possible source of this discrepancy are con-
tributions from two-body currents which originate from
chiral EFT. These inclusion of these currents in our cal-
culations is straightforward, since we already provide for
two-body transition operators, and further work in this

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, HH, S. K. Bogner, PRC 96, 034324 (2017)



Epilogue



Summary

• towards ab initio NMEs: interaction, operators, many-body 
method with systematic uncertainties & convergence to 
exact result

• rapidly growing capabilities: g.s. energies, spectra, radii, 
transitions, …

➡ ingredients for NME calculation, plus validation 
through other observables

• uncertainty presently dominated by

• deficiencies in current chiral Hamiltonians

• missing collectivity in description of (certain) transitions

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018
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Supplements



Free-Space Evolution of Operators

• derive operators from chiral 
EFT, including currents

• optimize LECs together with 
interaction

• evolve to desired resolution 
scale

• evaluate operator (1B+2B
+...) in IM-SRG (and Shell 
Model)

• (most) existing ab initio & 
Shell model codes lack 
capabilities for many-body 
observables

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018
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directly compute the unitary matrix, Ûs [26],

Ûs =
∑

α

|ψα(s)⟩⟨ψα(0)|, (4)

where |ψα(0)⟩ and |ψα(s)⟩ are the eigenvectors of the Hamil-
tonian before and after SRG evolution, respectively. The
transformation of Eq. (3) is then given by a simple matrix
multiplication.

Evolution of operators is one of the frontiers of the
similarity renormalization group method [22] and extending
this technique to any operator is an important goal. A study of
M1 and E2 transitions using the Okubo-Lee-Suzuki unitary
transformation [40] shows significant renormalization at the
two-body cluster level, especially for short-ranged operators.
Previous work using the SRG has focused on how the operators
change in momentum space [41]. The work presented here
aims to evolve operators via the SRG, including up to induced
three-body terms, and, for the first time, test the consistency
of the expectation values as a function of evolution.

We are interested in (1) dependence of operator expectation
values on the SRG parameter, λ, when applied to SRG evolved
wave functions, and (2) the effect of range on the amount
of renormalization that an operator undergoes. We perform
these studies in the three- and four-nucleon systems, where
we can obtain accurately converged results for a variety of
observables [42]; because of the very large model spaces
accessible with the Jacobi-coordinate basis, our results are
robust against variations in !$.

Our investigation focuses on two observables, the root mean
square (rms) radius of the chosen nucleus, and the total strength
of the dipole transition, given by ⟨%0|D̂2|%0⟩, where D̂ is the
dipole operator,

D̂ =
A∑

i

τ z
i

2
r⃗i , (5)

|%0⟩ is the ground-state wave function of the nucleus, τ z
i

is the third component of isospin, and r⃗i is the position
vector of the ith particle in the center-of-mass frame. We
choose the total dipole strength because of its relationship
with important observables such as photoabsorption cross
sections [43] and electric polarizabilities [33]. In addition,
by virtue of Siegert’s theorem [44], in light nuclei the dipole
operator allows us to implicitly include the leading effects of
meson-exchange currents [45,46], making our investigation of
the SRG evolution more transparent. Our second investigation
focuses on operator renormalization as a function of range,
following a prescription similar to that of Ref. [40].

Our calculations adopt the Idaho N3LO nucleon-nucleon
(NN) interaction [47] and N2LO three-nucleon (3N ) forces
from Ref. [48] with the low-energy constants adjusted to
reproduce the triton half-life and the binding energies of 3H
and 3He [49]. We perform these calculations with the NCSM in
a Jacobi harmonic oscillator basis [15]. This is a translationally
invariant, antisymmetric basis truncated at Nmax!$ above the
lowest many-body configuration, where $ is the harmonic
oscillator parameter and Nmax is the maximum number of ex-
citations. We use ground-state wave functions calculated from
three Hamiltonians: (1) NN-only, two-body Hamiltonian from

the SRG evolution of the NN force in the two-nucleon space;
(2) NN + 3N -induced, three-body Hamiltonian from the SRG
evolution of the NN force in the three-nucleon space; and
(3) NN + 3N , SRG Hamiltonian obtained from evolving the
NN plus initial 3N forces in the three-nucleon system. We con-
struct these Hamiltonians in the same manner as Ref. [27]. The
difference between NN + 3N -induced and NN + 3N is the in-
clusion of the initial three-body interaction in the latter, which
simply shifts the mean values calculated over their eigenstates
for 3H and 4He, similar to that found in energies [27,28].

Because we work in relative coordinates, all operators
considered here are written as two-body operators. We start
by evolving Ĥs , hence calculating Ûs , in the A = 2 system
and determining the matrix elements of the two-body evolved
operator, ⟨Ô(2)

s ⟩, through Eq. (3). Next, we repeat the operation
in the A = 3 system, thus computing ⟨Ô(3)

s ⟩, and then isolate
the induced three-body components of the evolved operator
via subtraction, ⟨Ô(3)

s ⟩ − ⟨Ô(2)
s ⟩, where the second term corre-

sponds to the two-body evolved operator embedded in the
three-nucleon basis. This allows us to accurately calculate
and separate the two- and three-body matrix elements of
the evolved operator, which we can then use unchanged in
calculations for any nucleus. The second step can also be
performed including the initial three-nucleon force in the
Hamiltonian. Similar (but not quite parallel) to our three
classes of Hamiltonian, this procedure leads to the following
three stages of operator evolution: (1) Bare or unevolved
operator; (2) SRG evolution of the operator in the two-body
(2B) space; and (3) SRG evolution of the operator in the
three-body (3B) space, allowing the induction of three-body
terms.

We first verified that the two- and three-body SRG trans-
formations of external operators are unitary in the two- and
three-nucleon systems, respectively. To this end we calculated
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FIG. 1. (Color online) 3H rms radius as a function of the SRG
evolution parameter, λ. Shown are results obtained with wave
functions from two Hamiltonians: NN + 3N -induced (blue [gray]
dashed line) and NN + 3N (red [gray] solid line), and three levels
of operator evolution: bare operator (circles), operator evolved in the
two-body space (squares), and operator evolved in the three-body
space (triangles). The dotted line is the rms radius calculated using
the bare Hamiltonian and bare operator.
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perturbative for low-momentum interactions, at least in the
particle-particle channel [10]. The difference at small densities
is not surprising: the presence of a two-body bound state
necessitates a nonperturbative summation in the dilute limit.
We note that below saturation density, the ground state is not
a uniform system, but breaks into clusters (see, for example,
Ref. [24]).

In chiral EFT without explicit deltas, 3N interactions start at
N2LO [21] and their contributions are given diagrammatically
by

π π π

c1, c3, c4 cD cE

We assume that the ci coefficients of the long-range
two-pion-exchange part are not modified by the RG. At
present, we rely on the N2LO 3NF as a truncated “basis”
for low-momentum 3N interactions and determine the cD and
cE couplings by a fit to data for all cutoffs [22]. In the future,
fully evolved three- and four-body forces in momentum space
starting from chiral EFT will be available (see Ref. [25] for
an application of evolved 3NF in a harmonic-oscillator basis).
The fit values of Table I are natural and the predicted 4He
binding energies are very reasonable. We have also verified
that the resulting 3NF becomes perturbative in A = 3, 4 (see
also Refs. [10,15,22]), i.e., the calculated individual 3NF
contributions are largely unchanged if evaluated for wave
functions using NN forces only.

The evolution of the cutoff ! to smaller values is accompa-
nied by a shift of physics. In particular, effects due to iterated
tensor interactions are replaced by three-body contributions.
The role of the 3NF for saturation is demonstrated in Fig. 2. The
two pairs of curves show the difference between the nuclear
matter results for NN-only and NN plus 3N interactions. It is
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FIG. 2. (Color online) Nuclear matter energy of Fig. 1 at the
third-order level compared to NN-only results for two representative
NN cutoffs and a fixed 3N cutoff.

evident that saturation is driven by the 3NF [10,15]. Even for
! = 2.8 fm−1, which is similar to the lower cutoffs in chiral
EFT potentials, saturation is at too high a density without
the 3NF. Nevertheless, as in previous results [10,15], the 3N
contributions and the cD, cE fits are natural, and the same is
expected for the ratio of three- to four-body contributions.

The smooth RG evolution used in the results so far is
not the only choice for low-momentum interactions. A recent
development is the use of flow equations to evolve Hamiltoni-
ans, which we refer to as the similarity renormalization group
(SRG) [27–29]. The flow parameter λ, which has dimensions
of a momentum, is a measure of the degree of decoupling
in momentum space. Few-body results for roughly the same
value of SRG λ and smooth Vlow k ! have been remarkably
similar (see, for example, Ref. [11]). With either RG method,
we can also change the initial interaction. The results presented
so far all start from a chiral EFT potential at a single order
with one choice of EFT regulator implementation and values.
There are several alternatives available [8,19,30], which are
almost phase-shift equivalent (but the χ2 is not equally
good up to Elab ≈ 300 MeV). Universality for phase-shift
equivalent chiral EFT potentials as ! decreases was shown for
smooth-cutoff Vlow k interactions in Refs. [9,20] in the form of
the collapse of different initial potentials to the same matrix
elements in each partial wave channel. An analogous collapse
has been found for N3LO potentials evolved by the SRG to
smaller λ [9].

Based on this universal collapse for low-momentum inter-
action matrix elements, it is natural to expect a similar collapse
for the energy per particle in nuclear matter. We consider
four different chiral NN potentials: the N3LO potential by
Entem and Machleidt [19] for two different cutoffs 500 and
600 MeV, and the N3LO NN potential by Epelbaum et al. [30]
(EGM) for two different cutoff combinations 550/600 MeV
and 600/700 MeV. The results for the energy are presented in
Fig. 3. The upper panel shows the energies for Vlow k NN-only
interactions derived from different chiral NN potentials (solid
lines) in comparison to Brueckner-Hartree-Fock (BHF) (which
means resummed particle-particle ladder) results based on
unevolved chiral potentials (dashed lines). For clarity, we
only display the two extreme BHF results. As shown in the
lower panel we find a model dependence of about 13 MeV for
the unevolved N3LO potentials around saturation density and
approximately 2 MeV for the Vlow k and SRG low-momentum
interactions, comparable to the cutoff variation in Fig. 1. The
latter spread reflects the residual RG/SRG dependence on the
initial interactions.

By supplementing the low-momentum NN interactions
with corresponding 3NFs we can probe the sensitivity of
the energy to uncertainties in the ci coefficients (see also
Refs. [16,31,32]). We consider three different cases: first, we
take low-momentum interactions evolved from the N3LO NN
potential EM 500 MeV (EM ci’s: c1 = −0.81 GeV−1, c3 =
−3.2 GeV−1, c4 = 5.4 GeV−1); second, low-momentum
interactions from the EGM 550/600 MeV potential (EGM ci’s:
c1 = −0.81 GeV−1, c3 = −3.4 GeV−1, c4 = 3.4 GeV−1);
and third, low-momentum interactions from the EM
500 MeV potential combined with the central ci values
obtained from the NN partial wave analysis [33] (PWA ci’s:
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“hybrid” chiral NN+3N interaction  
Hebeler et al., PRC83, 031301

J. Simonis, S. R. Stroberg et al., arXiv:1704.02915; also used in G. Hagen et al., PRL117, 172501 (2016)
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