Weak Transitions in the IMSRG Framework

Heiko Hergert

Facility for Rare Isotope Beams & Department of Physics and Astronomy Michigan State University

Weak Transitions

- **interactions and transition operators** from Chiral EFT, **including currents**
- tune **resolution scale** of the Hamiltonian / Hilbert space
- **(MR-)IMSRG:** calculate ground (and excited) states or derive Shell Model interaction
- evaluate **1B, 2B** (, 3B,…) **transition operator**

(Multi-Reference) In-Medium SRG

H. H., Phys. Scripta **92**, 023002 (2017)

H. H., S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. Rept. **621**, 165 (2016)

H. H., S. Bogner, T. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. C **90**, 041302 (2014)

H. H., S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett **110**, 242501 (2013)

Large-Scale Diagonalization (TAC

 α The growth of the matrix dimension of the matrix \mathcal{L} The growth of number of \mathcal{L} from: C. Yang, H. M. Aktulga, P. Maris, E. Ng, J. Vary, Proceedings of NTSE-2013

- basis-size "explosion": **factorial growth** Figure 1: The characteristics of the CI projected Hamiltonian Hˆ for a variety of
- **importance truncation** etc. cannot fully compensate this growth as A increases nuclei.

Transforming the Hamiltonian

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian $H = E_0 + \sum$ $f_l^k:A_l^k: +$ - $\overline{\mathcal{A}}$ \blacktriangledown Γ^{kl}_{mn} : A^{kl}_{mn} : $+$ - 36 \blacktriangledown ijklmn W_{lmn}^{ijk} : A_{lmn}^{ijk} : $E_0 =$ () + () + two-body formalism with in-medium contributions from $f =$ + $\left(\begin{array}{cc} \end{array} \right)$ + $\Gamma = \times +$ W

three-body interactions

Single-Reference Case

- reference state: **Slater determinant**
- normal-ordered operators **depend on occupation numbers (one-body density)**

Decoupling in A-Body Space

aim: decouple reference state $|\Phi\,\rangle$ from excitations

Flow Equation

 $\frac{d}{ds}H(s) = [\eta(s), H(s)],$ e.g., $\eta(s) \equiv [H_d(s), H_{od}(s)]$

Flow Equation

Decoupling

Decoupling

Decoupling

• absorb correlations into **RG-improved Hamiltonian**

$$
U(s) H U^{\dagger}(s) U(s) \left| \Psi_n \right. \rangle = E_n U(s) \left| \Psi_n \right. \rangle
$$

• reference state is ansatz for transformed, **less correlated** eigenstate:

$$
U(s)\left|\Psi_n\right\rangle\stackrel{!}{=}\left|\Phi\right\rangle
$$

"**standard" IMSRG:** build correlations on top of Slater determinant (=**independent-particle state**)

MR-**IMSRG:** build correlations on top of **already correlated** state (e.g., from a method that describes static correlation well)

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

. . .

MR-IMSRG: build correlations **already correlated** state (e.g., from describes static correlation. **use generalized normal ordering with 2B,… densities**

MR-IMSRG References States

- **available future** available
- Slater determinants (uncorrelated)
- **•** number-projected Hartree-Fock Bogoliubov vacua
- **•** Generator Coordinate Method (with projections)
- **•** small-scale No-Core Shell Model
- symmetry-adapted NCSM, clustered states, Density Matrix Renormalization Group, tensor networks e^{t-} **SA-NCSM: see**

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

talk by K. Launey

MR-IMSRG References States

- **available futureIdelieve**
- **• Slater determinants (uncorrelated)**
- **• number-projected Hartree-Fock Bogoliubov vacua**
- **•** Generator Coordinate Method (with projections)
- **•** small-scale No-Core Shell Model
- symmetry-adapted NCSM, clustered states, Density Matrix Renormalization Group, tensor networks etc.

Oxygen Isotopes

HH et al., PRL 110, 242501 (2013), ADC(3): A. Cipollone et al., PRL 111, 242501 (2013)

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

Oxygen Radii

V. Lapoux, V. Somà, C. Barbieri, HH, J. D. Holt, and S. R. Stroberg, PRL 117, 052501 (2016)

Titanium Isotopes

E. Leistenschneider et al., PRL 120, 062503 (2018)

E. Leistenschneider et al., PRL 120, 062503 (2018)

N=32 sub-shell **closure too pronounced**: combined effect of **method & interaction** !

H. Hergert - "Progress in *Ab Initio* Techniques in Nuclear Physics", TRIUMF, Vancouver, March 1, 2018

Calcium Isotopes

H. Hergert - "Progress in Ab Initio Techniques in Nuclear Physics", TRIUMF, Vancouver, March 1, 2018

Calcium Isotopes

HH, in preparation

H. Hergert - "Progress in Ab Initio Techniques in Nuclear Physics", TRIUMF, Vancouver, March 1, 2018

Ground-State to Ground-State Decay

with **J. Yao**, J. Engel, …

Large difference in matrix element calculations, factor 2-3-3-4 and 2-3-3-5 and 2-3-3 and 2-3-3 and 2-3-3 and 2-3-3 and 2-3 an Nuclear Matrix Elements

J. Yao et al., PRC 91, 024316 (2015) $y \circ 2 \cdot 3 \cdot 3 \cdot 2 \cdot 3 \cdot 3$ 10 **REDF NREDF PHFB** 8 (R)QRPA IBM₂ **ISM** 6 $\sum_{i=1}^{\infty}$ 10% $\overline{\mathbf{4}}$ 3 $\overline{2}$ NME 2 $\boldsymbol{0}$ ⁴⁸Ca⁷⁶Ge⁸²Se⁹⁶Zr¹⁰⁰Mo¹¹⁶Cd¹²⁴Sn¹³⁰Te¹³⁶Xe¹⁵⁰Nd 1

- EDI 9, ONCH MOUGH MICROGENS, ...
and orange s Shell Model interactions: What is the effect of the small valence space? **and oranges**RPA IBM ED<mark>B</mark>N 0 **comparing apples** inputs tailored to specific methods: phenomenology EDFs, Shell Model interactions, …
- duenched q_A , "renormalization" of operators. Suchonoutin 1989, Tononnanzation or operators, • quenched g_A , "renormalization" of operators,

Many-Body Approaches

MR-IMSRG References States

- **available futureIdelieve**
- Slater determinants (uncorrelated)
- **•** number-projected Hartree-Fock Bogoliubov vacua
- **• Generator Coordinate Method (with projections)**
- **•** small-scale No-Core Shell Model
- symmetry-adapted NCSM, clustered states, Density Matrix Renormalization Group, tensor networks etc.

Example: 20Ne

β=0.0

 $β=0.1$

A AAAAAM

 β =0.2

 $β = 0.3$

 $\beta = 0.4$

 $SM(0)$ ⁺

 $_{\rm 2}^{\rm *}$): -33.735 MeV

-40

-36

 $\overline{\mathsf{H}}$ \checkmark $\boldsymbol{\Sigma}$ $\bf \Phi$ $>$ \curvearrowright

-32

J. Yao, T. D. Morris, HH, J. Engel, in prep.

- reference: particlenumber & angularmomentum projected HFB
- **• range of deformed reference states flow to the 20Ne ground state**
- deviation from Shell model result: **correlations beyond MR-IMSRG(2)**

 20 Ne

USD

Approximate MR-IMSRG(3)

- **approximate MR-IMSRG(3):** induced 3B terms recover bulk of missing correlation energy
- expected to be **reference-state dependent**

• **direct** MR-IMSRG (Magnus) calculation of **initial and final states**:

$$
\left|\Psi_{\textit{I},\textit{F}}\,\right\rangle=e^{\overline{\Omega}_{\textit{I},\textit{F}}}\left|\Phi_{\textit{I},\textit{F}}\,\right\rangle
$$

• evaluate NME for transition operator in **closure approximation**:

$$
M_{0\nu\beta\beta}=\left\langle \left.\Phi_{\digamma}\right|\text{e}^{-\overline{\Omega}_{\digamma}}O_{0\nu\beta\beta}\text{e}^{\overline{\Omega}_{\digamma}}\left|\Phi_{\digamma}\right.\right\rangle
$$

explore possible expansions and check consistency, e.g.,

$$
e^{-\overline{\Omega}_F}=e^{-(\overline{\Omega}_I+\delta\overline{\Omega})}=e^{-\delta\overline{\Omega}}e^{-\overline{\Omega}_I}+\ldots
$$

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

in progress

 $^{76}Ge \rightarrow ^{76}Se$

proof of principle: MR-IM-SRG based on **(intrinsically** deformed) GCM state converges ⁷⁶Ge, ⁷⁶Se ground-state energies

Explicit Treatment of Excited States

N. M. Parzuchowski, **S. R. Stroberg**, P. Navratil, H. H., S. K. Bogner, PRC **96**, 034324 (2017)

S. R. Stroberg, A. Calci, H. H., J. D. Holt, S. K. Bogner, R. Roth, A. Schwenk, PRL **118**, 032502 (2017)

S. R. Stroberg, H. H., J. D. Holt, S. K. Bogner, A. Schwenk, PRC93, 051301(R) (2016)

S. K. Bogner, H. H., J. D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. Lett. 113, 142501 (2014)

Valence Space Decoupling

Valence Space Decoupling

Ground-State Energies

S. R. Stroberg, A. Calci, HH, J. D. Holt, S. K.Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017)

- (initial) normal ordering and IMSRG decoupling in the **target nucleus**
- **consistent with (MR-)IMSRG ground state energies** (and CC, SCGF, …) for the **same Hamiltonian**

Excitation Spectra

S. K. Bogner et al., PRL113, 142501 (2014), S. R. Stroberg et al., PRC 93, 051301(R) (2016)

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

Equations-of-Motion for Excitations

 $\left|\Phi_{hh'h''}^{pp'p''}\right\rangle$

 $\vert j\,\rangle$

N. M. Parzuchowski, T. D. Morris, S. K. Bogner, PRC 95, 044304 (2017)

ι
Φρρ΄
Πή *p hhh*

 $\overline{\overline{}}$

Ǫ*pp hh*

 $\overline{}$

 Θ *p h*

 $\overline{}$

 Θ \diagup $|\Phi\rangle$ |

 ϕ_h^p

 \setminus

 $\big|\Phi_{hh'}^{\rho\rho'}\big|$

 \setminus |

• describe **excited states** based on ground state:

> $\begin{array}{c} \hline \end{array}$ $|\Psi_k$ $_{k}\left. \right\rangle \equiv$ R_{k} $\vert k \vert$ $\left|\Psi_{0}\right\rangle$

- apply **IMSRG transformation**: $U(s)$ $\left|\Psi_{k}\right\rangle =U(s)R_{k}U^{\dagger}(s)U(s)\left| \right.$ $\left|\Psi_0\right\rangle$ $= R_k(\mathsf{s}) \, \big|\mathsf{\Phi}\,\big>$
- ansatz for excitation operator:

 -⇤ ⇤ () ⁼ () : *-† -* : + () : *-† -† --*: + *...*

• solve EoM by diagonalization (**polynomial effort**): $[H(s), R_k(s)] = \omega_k R_k(s), \quad \omega_k = E_k - E_0$

E2 Transitions

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, HH, S. K. Bogner, PRC 96, 034324 (2017)

H. Hergert - Nuclear Ab Initio Theories and Neutrino **Physics, INT, Seattle, Mar 7, 2018**

E2 Transitions

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, HH, S. K. Bogner, PRC 96, 034324 (2017)

- non-zero B(E2) from Shell model: **VS-IMSRG induces effective neutron charge**
- **B(E2) much too small:** effect of intermediate 3 states that are truncated in IMSRG evolution

MR-IMSRG + EOM, CI, …

M1 Transitions *B*(*E*2) (in *e*²fm⁴) to ground state of ¹⁴C. VS- and EOM- \blacksquare IMSRG methods are compared with \blacksquare

[75].

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, HH, S. K. Bogner, PRC 96, 034324 (2017)

• M1 transitions **consistent** between methods, but **generally too large** - include currents in initial operator **bo large** - include currents in initial operator methods are compared with NCSM and experiment \mathbf{R}

Epilogue

- towards *ab initio* **NMEs:** interaction, operators, many-body method with **systematic uncertainties** & convergence to exact result
- rapidly **growing capabilities**: g.s. energies, spectra, radii, transitions, …

■ ingredients for NME calculation, plus validation **through other observables**

- uncertainty presently dominated by
	- **deficiencies** in current chiral Hamiltonians
	- **missing collectivity** in description of (certain) transitions

Acknowledgments Acknowledgments Acknowledgmen

ersc

S. K. Bogner, K. Fossez, M. Hjorth-Jensen, **J. Yao** Thase to Yao state University or State Thanks to the Things of the University of The Magnetics:

R. J. Furnstahl, **N. M. Parzuchowski** The Ohio State University

K. Hebeler, S. König, R. Roth, R. K. Habe**lo**r, S. König, R. Roth, in ou, A. Gunther, S. Reinhardt, TU Darmstadt, Germany C. Barbieri Institut Für Rernphysik, THE Darmstadt TRIUMF, Canada T. Duguet, V. Somà, A. Tichai GEA Saclay, France Reinhardt, S. Binder, A. Carci, J. Langhammer^{C. Barbieri} J. Engel

S. Bognerioberg

NSCP College, Canada
NSCL, Michigan State University

T. D. Morris superionenforschung f öl

UT Knoxville & Oak Ridge National Laboratory

University of North Carolina - Chapel Hill

Supplements

Free-Space Evolution of Operators three-opace cvolution: (1) Bar operator; (2) SRG evolution of the operator in the two-body

from: Schuster et al., PRC90, 011301 (201A) functions from two Hamiltonians: *NN* + 3N-induced (blue [gray] (2014)

- derive operators from chiral EFT, including currents
- optimize LECs together with interaction
- evolve to desired resolution scale
- evaluate operator (1B+2B +...) in IM-SRG (and Shell Model)
- (most) existing ab initio & Shell model codes lack capabilities for many-body observables

³H rms matter radius

performed including the initial three-nucleon force in the

(2) space; and (3) SRG evolution of the operator in the opera

Improving the Interactions FRGC

 t_{F} also used in C , lease at al. DDI 117, 170501 (0010) σ , also used in G. Hagen et al., ITIETIT, IT 2001 (2010) *J. Simonis, S. R. Stroberg et al., arXiv:1704.02915; also used in G. Hagen et al., PRL117, 172501 (2016)*

functions using NN forces only.

