Weak Transitions in the IMSRG Framework

Heiko Hergert

Facility for Rare Isotope Beams & Department of Physics and Astronomy Michigan State University

Weak Transitions

- interactions and transition operators from Chiral EFT, including currents
- tune resolution scale of the Hamiltonian / Hilbert space
- (MR-)IMSRG: calculate ground (and excited) states or derive Shell Model interaction
- evaluate **1B, 2B** (, 3B,...)
 transition operator

(Multi-Reference) In-Medium SRG

H. H., Phys. Scripta **92**, 023002 (2017)

H. H., S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tuskiyama, Phys. Rept. 621, 165 (2016)

H. H., S. Bogner, T. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. C 90, 041302 (2014)

H. H., S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett **110**, 242501 (2013)

Large-Scale Diagonalization

from: C. Yang, H. M. Aktulga, P. Maris, E. Ng, J. Vary, Proceedings of NTSE-2013

- basis-size "explosion": factorial growth
- importance truncation etc. cannot fully compensate this growth as A increases

Transforming the Hamiltonian

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian

Г = 🖌 +

W

two-body formalism with in-medium contributions from three-body interactions

Single-Reference Case

- reference state: **Slater determinant**
- normal-ordered operators depend on occupation numbers (one-body density)

Decoupling in A-Body Space

aim: decouple reference state $|\Phi\,\rangle$ from excitations

Flow Equation

 $\frac{d}{ds}H(s) = [\eta(s), H(s)], \quad \text{e.g.,} \quad \eta(s) \equiv [H_d(s), H_{od}(s)]$

Flow Equation

Decoupling

Decoupling

Decoupling

absorb correlations into RG-improved Hamiltonian

$$U(s)HU^{\dagger}(s)U(s)\left|\Psi_{n}\right\rangle = E_{n}U(s)\left|\Psi_{n}\right\rangle$$

 reference state is ansatz for transformed, less correlated eigenstate:

$$U(\mathbf{s}) \left| \Psi_n \right\rangle \stackrel{!}{=} \left| \Phi \right\rangle$$

"standard" IMSRG: build correlations on top of Slater determinant (=independent-particle state)

MR-IMSRG: build correlations on top of already correlated state (e.g., from a method that describes static correlation well)

MR-IMSRG: build correlations use generalized already correlated state (e.g., fro describes static correlation 2B,... densities

MR-IMSRG References States

- available
- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- Generator Coordinate Method (with projections)
- small-scale No-Core Shell Model
- symmetry-adapted NCSM, clustered states, Density Matrix Renormalization Group, tensor networks e⁺⁻ SA-NCSM: see

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

talk by K. Launey

MR-IMSRG References States

- available
- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- Generator Coordinate Method (with projections)
- small-scale No-Core Shell Model
- symmetry-adapted NCSM, clustered states, Density Matrix Renormalization Group, tensor networks etc.

Oxygen Isotopes

HH et al., PRL 110, 242501 (2013), ADC(3): A. Cipollone et al., PRL 111, 242501 (2013)

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

Oxygen Radii

V. Lapoux, V. Somà, C. Barbieri, HH, J. D. Holt, and S. R. Stroberg, PRL 117, 052501 (2016)

Titanium Isotopes

E. Leistenschneider et al., PRL 120, 062503 (2018)

E. Leistenschneider et al., PRL 120, 062503 (2018)

N=32 sub-shell **closure too pronounced**: combined effect of **method & interaction** !

H. Hergert - "Progress in Ab Initio Techniques in Nuclear Physics", TRIUMF, Vancouver, March 1, 2018

Calcium Isotopes

H. Hergert - "Progress in Ab Initio Techniques in Nuclear Physics", TRIUMF, Vancouver, March 1, 2018

Calcium Isotopes

HH, in preparation

H. Hergert - "Progress in Ab Initio Techniques in Nuclear Physics", TRIUMF, Vancouver, March 1, 2018

Ground-State to Ground-State Decay

with J. Yao, J. Engel, ...

Nuclear Matrix Elements

ЗN

- inputs tailored to specific methods: phenometric interactions, ...
 EDFs, Shell Model interactions, ...
 comparing apples and oranges
- quenched g_A , "renormalization" of operator,

Many-Body Approaches

MR-IMSRG References States

- available
- Slater determinants (uncorrelated)
- number-projected Hartree-Fock Bogoliubov vacua
- Generator Coordinate Method (with projections)
- small-scale No-Core Shell Model
- symmetry-adapted NCSM, clustered states, Density Matrix Renormalization Group, tensor networks etc.

Example: ²⁰Ne

SM (0⁺₂): -33.735 MeV

···Δ····· β=0.0

β**=0.1**

β=0.2

β=0.3

β**=0.4**

-32

(MeV)

^ш-36

-40

J. Yao, T. D. Morris, HH, J. Engel, in prep.

- reference: particlenumber & angularmomentum projected **HFB**
- range of deformed reference states flow to the ²⁰Ne ground state
- deviation from Shell model result: correlations beyond MR-IMSRG(2)

²⁰Ne

USD

Approximate MR-IMSRG(3)

- approximate MR-IMSRG(3): induced 3B terms recover bulk of missing correlation energy
- expected to be reference-state dependent

direct MR-IMSRG (Magnus) calculation of initial and final states:

$$\left|\Psi_{I,F}\right\rangle = e^{\overline{\Omega}_{I,F}} \left|\Phi_{I,F}\right\rangle$$

 evaluate NME for transition operator in closure approximation:

$$M_{0\nu\beta\beta} = \left\langle \left. \Phi_F \right| e^{-\Omega_F} O_{0\nu\beta\beta} e^{\Omega_I} \left| \Phi_I \right. \right\rangle$$

• explore possible expansions and check consistency, e.g.,

$$\mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} = \mathbf{e}^{-(\overline{\Omega}_{\mathsf{I}} + \delta\overline{\Omega})} = \mathbf{e}^{-\delta\overline{\Omega}}\mathbf{e}^{-\overline{\Omega}_{\mathsf{I}}} + \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} = \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} + \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} = \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} + \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} + \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\overline{\Omega}_{\mathsf{F}}} + \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}}} \mathbf{e}^{-\delta\overline{\Omega}_{\mathsf{F}$$

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

in progress

proof of principle: MR-IM-SRG based on (intrinsically deformed) GCM state converges ⁷⁶Ge,⁷⁶Se ground-state energies

Explicit Treatment of Excited States

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, H. H., S. K. Bogner, PRC 96, 034324 (2017)

S. R. Stroberg, A. Calci, H. H., J. D. Holt, S. K. Bogner, R. Roth, A. Schwenk, PRL **118**, 032502 (2017)

S. R. Stroberg, H. H., J. D. Holt, S. K. Bogner, A. Schwenk, PRC93, 051301(R) (2016)

S. K. Bogner, H. H., J. D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. Lett. 113, 142501 (2014)

Valence Space Decoupling

Valence Space Decoupling

Ground-State Energies

S. R. Stroberg, A. Calci, HH, J. D. Holt, S. K.Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017)

- (initial) normal ordering and IMSRG decoupling in the target nucleus
- consistent with (MR-)IMSRG ground state energies (and CC, SCGF, ...) for the same Hamiltonian

Excitation Spectra

S. K. Bogner et al., PRL113, 142501 (2014), S. R. Stroberg et al., PRC 93, 051301(R) (2016)

Equations-of-Motion for Excitations

 $\left|\Phi_{hh'}^{pp'}\right\rangle \left|\Phi_{hh'h''}^{pp'p''}\right\rangle$

N. M. Parzuchowski, T. D. Morris, S. K. Bogner, PRC 95, 044304 (2017)

 $|\Phi\rangle$

 describe excited states based on ground state:

 $\left|\Psi_{k}\right\rangle\equiv R_{k}\left|\Psi_{0}\right\rangle$

- apply **IMSRG transformation**: $U(s) |\Psi_k\rangle = U(s)R_kU^{\dagger}(s)U(s) |\Psi_0\rangle$ $= R_k(s) |\Phi\rangle$
- ansatz for excitation operator:

 $\left|\Phi_{h}^{p}\right\rangle$

$$R_{k} = \sum_{ph} R_{ph}^{(k)} : a_{p}^{\dagger} a_{h} : + \sum_{pp'hh'} R_{pp'hh'}^{(k)} : a_{p}^{\dagger} a_{p'}^{\dagger} a_{h'} a_{h} : + \dots$$

• solve EoM by diagonalization (polynomial effort): $[H(s), R_k(s)] = \omega_k R_k(s), \quad \omega_k = E_k - E_0$

E2 Transitions

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, HH, S. K. Bogner, PRC 96, 034324 (2017)

H. Hergert - Nuclear Ab Initio Theories and Neutrino Finance, INT, Seattle, Mar 7, 2018

E2 Transitions

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, HH, S. K. Bogner, PRC 96, 034324 (2017)

- non-zero B(E2) from Shell model: VS-IMSRG induces effective neutron charge
- B(E2) much too small: effect of intermediate (states that are truncated in IMSRG evolution

MR-IMSRG + EOM, CI, ...

M1 Transitions

N. M. Parzuchowski, S. R. Stroberg, P. Navratil, HH, S. K. Bogner, PRC 96, 034324 (2017)

 M1 transitions consistent between methods, but generally too large - include currents in initial operator

Epilogue

- towards *ab initio* NMEs: interaction, operators, many-body method with systematic uncertainties & convergence to exact result
- rapidly growing capabilities: g.s. energies, spectra, radii, transitions, ...

ingredients for NME calculation, plus validation through other observables

- uncertainty presently dominated by
 - **deficiencies** in current chiral Hamiltonians
 - **missing collectivity** in description of (certain) transitions

Acknowledgments

S. K. Bogner, K. Fossez, M. Hjorth-Thanks Hichigan State University

R. J. Furnstahl, N. M. Parzuchowski The Ohio State University

T. Duguet, V. Somà, A. Tichai Gunther, S. Reinhardt, R. Kothwenk, a Schwenk, a Stump, Kantinou, A. S. Binder, A. Calci, J. Langhammer^{C.} Barbieri Institut Führ Rer Rohlank at U Darmstadt TRIUMF, Canada J. Engel

S. Bog Beroberg

NSCL, Michigan State University

T. D. Morris

UT Knoxville & Oak Ridge National Laboratory

University of North Carolina - Chapel Hill

H. Hergert - Nuclear Ab Initio Theories and Neutrino Physics, INT, Seattle, Mar 7, 2018

NERSC

Supplements

Free-Space Evolution of Operators

from: Schuster et al., PRC90, 011301 (2014)

- derive operators from chiral EFT, including currents
- optimize LECs together with interaction
- evolve to desired resolution scale
- evaluate operator (1B+2B +...) in IM-SRG (and Shell Model)
- (most) existing ab initio & Shell model codes lack capabilities for many-body observables

³H rms matter radius

Improving the Interactions

J. Simonis, S. R. Stroberg et al., arXiv:1704.02915; also used in G. Hagen et al., PRL117, 172501 (2016)

