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Outline

Double-beta decay study

Neutrinoless double-£ decay and nuclear matrix elements
Theoretical framework: Realistic shell model

Testing the theoretical framework for °Ge, 3?Se, 13'Te, and 36Xe
(Gamow-Teller strength, two-neutrino double-£ decay)

Renormalization of the Gamow-Teller operator



Neutrinoless double S-decay

The inverse of the Ovj33-decay half-life is proportional to the
squared nuclear matrix element (NME).
This evidences the relevance to calculate the NME
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over the final-state spins;

@ (m,)=|>, mUZ | effective mass of the
Majorana neutrino, U, being the lepton
mixing matrix.




Detection of 0vfSf-decay

It is necessary to locate the nuclei that are the best candidates to

detect the Ov33-decay

@ The main factors to be taken into account are:

e the Q-value of the reaction;
e the phase-space factor G%;

e the isotopic abundance
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@ First group: "°Ge, ¥°Te, and
136Xe_

@ Second group: #Se, 1%°Mo,
and '6Cd.

@ Third group: *Ca, %7Zr, and
150Nd_



Our aim is to compute the 0v33-decay NME for "6Ge, 82Se,
130Te, and '3%Xe.
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Calculation of NME

The NME is given by
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The matrix elements M°” are defined, for a SM calculation, as follows:

MY = > TBTD (jofor, jnf Jx) {plprs T | 74 75 OF | finfi s J7T)
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with o = (GT, F, T).

The TBTD are the two-body transition-density matrix elements, and

the Gamow-Teller (GT), Fermi (F), and tensor (T) operators as

oYl = & -GaHar(r) ,
O, = He(r) ,
O, = [3(&-7)(&-F)—d1-d]Hr(r) .

These operators should be regularized
consistently with the NN potential J




Calculation of NME

To describe the nuclear properties detected in the experiments,
one needs to resort to nuclear structure models.

@ Every model is characterized by a certain number of
parameters.

@ The calculated value of the NME may depend upon the
chosen nuclear structure model.

All models may present advantages and/or shortcomings to
calculate the NME




Nuclear structure models for NME
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F. Iachello, Majorana Lectures 2016.

@ The spread of nuclear structure calculations evidences
inconsistencies among results obtained with different

models



Problem of g, and g,

The spread of theoretical NME depends on the calculated wave function (model
dependence), but also on the choice of the effective values of the axial and vector
coupling constants ga, gy

The quenching of ga, gy

There are different arguments to employ effective values of g4, gy .
They are necessary to take into account:

A —

@ the degrees of freedom that have been not taken explicitly into account because
of the truncation of the Hilbert space;

@ the corrections to the free values of g4, gy due to meson exchange currents;

@ the short-range correlations excluded to soften the NN force, in calculations
starting from realistic potentials.

_4
Renormalization of g4, gv

The standard approach is to renormalize g, by reproducing GT data (single- and
double -decay with neutrinos), but two main issues arises:

@ 2v3p3- and Ov B S-decay operators are quite different,

iAo i - ff ff
@ GT data may provide informations about g5, but not for g7,

A\




Realistic shell model

@ The derivation of the shell-model hamiltonian, starting from a
realistic nuclear potential V, and using the many-body theory,
may provide a reliable approach to the study of the Ov 33 decay

@ The model space may be “shaped” according to the
computational needs of the diagonalization of the shell-model
hamiltonian

@ In such a case, the effects of the neglected degrees of freedom
are taken into account by the effective hamiltonian H.i and the
effective transition operators O.¢ via the many-body theory



Workflow for realistic shell model calculations 9

@ Choose a realistic NN potential (NNN)
© Renormalize its short range correlations

© Determine the model space better tailored to study the system
under investigation

© Derive the effective shell-model hamiltonian and consistently
effective transition operators, expanding it up to third order in the
many-body perturbation theory.

@ Calculate the physical observables (energies, e.m. transition
probabilities, ...), using only theoretical SP energies, two-body
maitrix elements, and effective operators.



Realistic nucleon-nucleon potential 10

Strong short-range

repulsion

CD-Bonn, Argonne V18, Nijmegen, ...

Several realistic potentials x?/datum ~ 1: J
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How to handle the short-range repulsion ? v o K
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@ EFT inspired approaches v M K
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Nucleon potential from chiral EFT | Future plan 11

Three-body matrix elements (3BBMEs)

Our approach Regulator (non-local form)

We have developed our own code for wy (b1, K1, A) = exp [_ (%) ]
3BMEs.
CM separation, antisymmetrization, and o
calculations for ¢ and ¢, MEs have been §§§
performed based on previous techniques. %0 7

P. Navratil e al., Phys. Rev. C 61, 044001 (2000). i — 2"

E. Epelbaum et al., Phys. Rev. C 66, 064001 (2002). £

P. Navratil, Few-Body Syst. 41, 117 (2007). S

New (brute-force) formalism for two-pion exchange term

(Lo W] S ]

=> > > (coeff) > ¢, ten 3j, eight 6j, five 9j symbols, etc.
19 summations

////dkldKldk’dK’k:Q Ab—Ap+As—Ag k;’A +X+1K2 AetAp =AY +A3 =23 K/AC+A”+X'+1

X Faxans (k1 by, Ky K) Pyt (K1) Por i (BY) Py (K1) P (K) wy (ky, Ky A) wy, (K, K, A)




3BME of chiral N2LO | Contribution of each term 12

A few examples of 3BMEs (p-shell) ([(«],, ., ¢| |vi||[ab],,1.¢| )
The ¢, MEs play largest contribution, almost universally.
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3BME of chiral N2LO | Contribution of each term 13

A few examples of 3BMEs (p-shell) ([[¥],, .| [viv|[[@],,0.] )

The . MFE< nlav larcest contribuition _almost iinivercallv

LECs
C1 = —0.81 GeV_l, C3 = —3.20 Gev_l’ Cy = 5.40 Gev—l

D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R) (2003).

cp = — 1 .07 CEp = —0.34 P. Navratil ef al., Phys. Rev. Lett. 99, 042501 (2007).
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Chiral N2LO 3NF | Benchmark cale. of p-shell nuclei 14

No empirical input Model space hw =19 MeV
. i 0
Interactions and LECs Particle P12 0p.
2NF: Chiral EFT N3LO, 3NF: Chiral EFT N2LO Hole 0s,
D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R) (2003).

P. Navratil et al., Phys. Rev. Lett. 99, 042501 (2007). 2 valence nucleons with ‘He core
Normal-ordered SPE (15t order) Normal-ordered 2BME (15t order)
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Many-body perturbation theory Renormalization

2NF: Up to the 3"-order of the folded-diagram expansion _y :
3NF: Up to the 1%-order, at this moment Our realistic forces are NOT renormalized.




Chiral N2LO 3NF | Benchmark cale. of p-shell nuclei
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2NF only

Comparison with no-core shell model (NCSM) P Navritil ef al., Phys. Rev. Lett. 99, 042501 (2007).
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Chiral N2LO 3NF | Benchmark cale. of p-shell nuclei 16

2NF + 3NF (very preliminary)

Comparison with no-core shell model (NCSM) P Navritil ef al., Phys. Rev. Lett. 99, 042501 (2007).
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Chiral N2LO 3NF | Benchmark cale. of p-shell nuclei

17

2NF + 3NF (very preliminary)

Li Lz— e iz

Comparison between RSM and NCSM are satisfactory
for the 2NF only. |

Comparison between SM and NCSM are satisfactory
for low-lying spectra when including 3NF, —
less satisfactory for higher-energy states. iosm

RSM calculations with three-body forces are very preliminary,
there are more correlations to be considered:

— Include contributions beyond the first order.

— Include the many-body correlations induced by the 3NF.
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Comparison with no-core shell model (NCSM) P Navritil ef al., Phys. Rev. Lett. 99, 042501 (2007).



Shell model effective Hamiltonian

18

We start from the many-body hamiltonian H defined in the full Hilbert
space:

H:HO+H1:Z Ti+ U)+ ) (VN -

i<j

/ \ H=X"THX ( \

PHP | PHQ PHP | PHQ

—

QHP | QHQ B 0 QHQ
\ ) QHP =0 \ )

Her = PHP

. e B 0 \O
Suzuki & Lee = X = ¢ W'thw_(QwP\O)

’
e — QHQ

1 eff
e—QHQwH ()

H;"(w) = PH{P + PH;Q QH; P—
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Shell model effective Hamiltonian 19

Folded-diagram expansion

This recursive equation for H.¢ may be solved using iterative
techniques (Krenciglowa-Kuo, Lee-Suzuki, .

Her = @ — /O+Q/Q/Q Q/Q/Q/Q

Q-box vertex function

. 1
Q(e) = PHi P+ PHi Q—2-= QH1 P




Perturbative approach to H

20

’
e — QHQ

Exact calculation of the Q-box is computationally prohibitive for many-
body system = we perform a perturbative expansion

1 _53 (QH; Q)"
e~ QHQ ~ 2= (c— QR Q)"

Q(e) = PH, P + PH;Q QH; P

The diagrammatic expansion of the Q-box




Shell model effective operators 21

Consistently, any shell-model effective operator may be calculated

It has been demonstrated that, for any bare operator ©, a non-Hermitian
effective operator ©.; can be written in the following form:

O = (P4 O+ @O+ B0+ OB+ )xo +
F¢ A= e R o0 )

where

A 1 d™Q(e)
Qm = m! dem ’

€E=¢€p

eo being the model-space eigenvalue of the unperturbed hamiltonian
Ho

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93 , 905 (1995)



Shell model effective operators

We arrest the \ series at the leading term y(, and then expand
It perturbatively:

One-body operator

a a a a a
+ ., *
h
X | = —*+ L+
b* b b b b

Two-body operator




Choice of cutoff A = 2.6 fm™!
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Nuclear models and predictive power

24

Accurate reproduction

Nuclear model :
of experimental data

Predictive power

Realistic SM calculations for 6Ge, 82Se, 30Te, and '36Xe

4

Check this approach calculating observables related to the GT

strengths and 255 decay and compare the results with data.
—1

T - e M




Shell-model calculations

25

@ "°Ge,%?Se: four proton and neutron orbitals outside
double-closed “6Ni

Of5/2,1P3/2,1P1 /2,099 /2

@ 139Tg,136Xe: five proton and neutron orbitals outside
double-closed 99Sn *
097/2,105/2,103/2,2571/2,0h41 /2

v

* L. Coraggio, L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, Phys.
Rev. C 95, 064324 (2017)



Spectroscopic properties
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GT" running sums
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2vBB8 NME
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Blue dots: bare GT operator
Decay Expt. Bare
76Ge 76 se 0.140 + 0.005 0.297
82ge 82 k¢ 0.098 + 0.004 0.262
130, 130 xe 0.034 -+ 0.003 0.142
186xe 136 B, 0.0218 + 0.0003  0.0975
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2vpH NME
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Experiment

Blue dots: bare GT operator
Black triangles: effective GT

operator
Decay Expt. Eff.
76Ge —76 se 0.140 + 0.005 0.100
82ge 482 Ky 0.098 + 0.004 0.082

180 4130 x¢ 0.034 + 0.003 0.044
186xe 136 B, 0.0218 + 0.0003  0.0285
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“Quenching”

30

Matrix elements of the neutron-proton effective GT— operator

Nalaja Nplpjp 3rd order GT‘;f quenching Nalaja Nplpjp 3rd order GT(;f quenching
Of5/2 Of5/2 -0.977 0.37 097/2 0g7/2 -1.239 0.50
0f5/2 1,03/2 -0.143 097/2 1d5/2 -0.019
1p3/2 0f5/2 0.046 1d5/2 097/2 0.131
1p3/2 1p1 /2 -1.621 0.55 1d5/2 1d3/2 -1.891 0.61
19172 101 /2 -0.697 0.67 1055 1d3 /5 -1.023 0.66
0g9/2 099/2 3.121 0.70 1d3/2 231 /2 -0.093
231/2 1d3/2 0.117
231 /2 231 /2 1.598 0.65
0hy1 72 OBy /2 2.597 0.69




Perturbative properties of effective operator 31
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Outlook
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@ 2v5[

@ Role of real three-body forces and two-body currents
(present collaboration with Pisa group)

e Evaluation of the contribution of many-body correlations
(blocking effect)

@ Ovips

e Derivation of the two-body effective operator
e SRC calculated consistently with Vi, _«



