Realistic shell-model calculations for double-beta decay based on chiral three-body forces

Tokuro Fukui¹,

L. Coraggio¹, L. De Angelis¹, A. Gargano¹, Y. Ma², and N. Itaco^{1,3}

¹Istituto Nazionale di Fisica Nucleare, Sezione di Napoli ²School of Physics, Peking University ³Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli"

Outline

Double-beta decay study

- **Neutrinoless double-\beta decay** and nuclear matrix elements
- Theoretical framework: Realistic shell model
- Testing the theoretical framework for 76 Ge, 82 Se, 130 Te, and 136 Xe (Gamow-Teller strength, two-neutrino double- β decay)
- Renormalization of the Gamow-Teller operator

Neutrinoless double β -decay

The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element (NME).

This evidences the relevance to calculate the NME

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \langle m_{\nu}\rangle^2 ,$$

- $G^{0\nu}$ is the so-called phase-space factor, obtained by integrating over she single electron energies and angles, and summing over the final-state spins;
- $\langle m_{\nu} \rangle = |\sum_{k} m_{k} U_{ek}^{2}|$ effective mass of the Majorana neutrino, U_{ek} being the lepton mixing matrix.

Detection of $0\nu\beta\beta$ -decay

It is necessary to locate the nuclei that are the best candidates to detect the $0\nu\beta\beta$ -decay

- The main factors to be taken into account are:
 - the Q-value of the reaction;
 - the phase-space factor $G^{0\nu}$;
 - the isotopic abundance

- First group: ⁷⁶Ge, ¹³⁰Te, and ¹³⁶Xe.
- Second group: ⁸²Se, ¹⁰⁰Mo, and ¹¹⁶Cd.
- Third group: ⁴⁸Ca, ⁹⁶Zr, and ¹⁵⁰Nd.

Detection of $0\nu\beta\beta$ -decay

Our aim is to compute the $0\nu\beta\beta$ -decay NME for 76 Ge, 82 Se, 130 Te, and 136 Xe.

The **NME** is given by

$$M^{0
u} = M^{0
u}_{GT} - \left(rac{g_V}{g_A}
ight)^2 M_F^{0
u} - M_T^{0
u} \;\;,$$

The matrix elements $M_{\alpha}^{0\nu}$ are defined, for a SM calculation, as follows:

$$M_{\alpha}^{0\nu} = \sum_{j_{p}j_{p'}j_{n}j_{n'}J_{\pi}} TBTD(j_{p}j_{p'}, j_{n}j_{n'}; J_{\pi}) \langle j_{p}j_{p'}; J^{\pi}T \mid \tau_{1}^{-}\tau_{2}^{-}O_{12}^{\alpha} \mid j_{n}j_{n'}; J^{\pi}T \rangle ,$$

with $\alpha = (GT, F, T)$.

The TBTD are the two-body transition-density matrix elements, and the Gamow-Teller (GT), Fermi (F), and tensor (T) operators as

$$\begin{array}{rcl}
O_{12}^{GT} & = & \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} H_{GT}(r) , \\
O_{12}^{F} & = & H_{F}(r) , \\
O_{12}^{T} & = & [3 (\vec{\sigma}_{1} \cdot \hat{r}) (\vec{\sigma}_{1} \cdot \hat{r}) - \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}] H_{T}(r) .
\end{array}$$

These operators should be regularized consistently with the NN potential

To describe the nuclear properties detected in the experiments, one needs to resort to nuclear structure models.

- Every model is characterized by a certain number of parameters.
- The calculated value of the NME may depend upon the chosen nuclear structure model.

All models may present advantages and/or shortcomings to calculate the NME

F. Iachello, Majorana Lectures 2016.

 The spread of nuclear structure calculations evidences inconsistencies among results obtained with different models

Problem of g_A and g_V

The spread of theoretical NME depends on the calculated wave function (model dependence), but also on the choice of the effective values of the axial and vector coupling constants g_A , g_V

The quenching of g_A, g_V

There are different arguments to employ effective values of g_A , g_V . They are necessary to take into account:

- the degrees of freedom that have been not taken explicitly into account because of the truncation of the Hilbert space;
- the corrections to the free values of g_A , g_V due to meson exchange currents;
- the short-range correlations excluded to soften the NN force, in calculations starting from realistic potentials.

Renormalization of g_A, g_V

The standard approach is to renormalize g_A by reproducing GT data (single- and double β -decay with neutrinos), but two main issues arises:

- $2\nu\beta\beta$ and $0\nu\beta\beta$ -decay operators are quite different,
- GT data may provide informations about g_{\perp}^{eff} , but not for g_{V}^{eff} .

- The derivation of the shell-model hamiltonian, starting from a realistic nuclear potential V_{NN} and using the many-body theory, may provide a reliable approach to the study of the $0\nu\beta\beta$ decay
- The model space may be "shaped" according to the computational needs of the diagonalization of the shell-model hamiltonian
- In such a case, the effects of the neglected degrees of freedom are taken into account by the effective hamiltonian H_{eff} and the effective transition operators O_{eff} via the many-body theory

Workflow for realistic shell model calculations

- Choose a realistic NN potential (NNN)
- Renormalize its short range correlations
- Oetermine the model space better tailored to study the system under investigation
- Oerive the effective shell-model hamiltonian and consistently effective transition operators, expanding it up to third order in the many-body perturbation theory.
- Calculate the physical observables (energies, e.m. transition probabilities, ...), using only theoretical SP energies, two-body matrix elements, and effective operators.

Realistic nucleon-nucleon potential

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Our choice

How to handle the short-range repulsion?

- Brueckner G matrix
- EFT inspired approaches
 - V_{low-k} , our choice
 - SRG
 - chiral potentials

Nucleon potential from chiral EFT | Future plan

Three-body matrix elements (3BMEs)

Our approach

- We have developed **our own code** for 3BMEs.
- CM separation, antisymmetrization, and calculations for c_E and c_D MEs have been performed based on previous techniques.

P. Navrátil *et al.*, Phys. Rev. C **61**, 044001 (2000).

E. Epelbaum et al., Phys. Rev. C 66, 064001 (2002).

P. Navrátil, Few-Body Syst. 41, 117 (2007).

Regulator (non-local form)

New (brute-force) formalism for two-pion exchange term

3BME of chiral N²LO | Contribution of each term

A few examples of 3BMEs (p-shell) $\left\langle \left[\left[a'b' \right]_{J_{12}'T_{12}'}c' \right]_{JT} \middle| V_{3N} \middle| \left[\left[ab \right]_{J_{12}T_{12}}c \right]_{JT} \right\rangle_{A}$

• The c_4 MEs play largest contribution, almost universally.

3BME of chiral N²LO | Contribution of each term

A few examples of 3BMEs (p-shell) $\left\langle \left[\left[a'b' \right]_{J_{12}'T_{12}'}c' \right]_{JT} \middle| V_{3N} \middle| \left[\left[ab \right]_{J_{12}T_{12}}c \right]_{JT} \right\rangle_{A}$

- The c. MFs nlav largest contribution almost universally
 - LECs

$$c_1 = -0.81 \text{ GeV}^{-1}, c_3 = -3.20 \text{ GeV}^{-1}, c_4 = 5.40 \text{ GeV}^{-1}$$

D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R) (2003).

$$c_D = -1.0, \ c_E = -0.34$$

P. Navrátil *et al.*, Phys. Rev. Lett. **99**, 042501 (2007).

No empirical input

Interactions and LECs

2NF: Chiral EFT N³LO, **3NF**: Chiral EFT N²LO

D. R. Entem and R. Machleidt, Phys. Rev. C **68**, 041001(R) (2003). P. Navrátil *et al.*, Phys. Rev. Lett. **99**, 042501 (2007).

Normal-ordered SPE (1st order)

Many-body perturbation theory

2NF: Up to the 3rd-order of the folded-diagram expansion

3NF: Up to the 1st-order, at this moment

Model space $\hbar\omega = 19 \text{ MeV}$

Normal-ordered 2BME (1st order)

Renormalization

Our realistic forces are **NOT** renormalized.

2NF only

© Comparison with no-core shell model (NCSM) P. Navrátil et al., Phys. Rev. Lett. 99, 042501 (2007).

2NF + 3NF (very preliminary)

© Comparison with no-core shell model (NCSM) P. Navrátil et al., Phys. Rev. Lett. 99, 042501 (2007).

2NF + 3NF (very preliminary)

© Comparison with no-core shell model (NCSM) P. Navrátil et al., Phys. Rev. Lett. 99, 042501 (2007).

Shell model effective Hamiltonian

We start from the many-body hamiltonian *H* defined in the full Hilbert space:

$$H = H_0 + H_1 = \sum_{i=1}^{A} (T_i + U_i) + \sum_{i < j} (V_{ij}^{NN} - U_i)$$

$$\begin{pmatrix}
PHP & PHQ \\
\hline
QHP & QHQ
\end{pmatrix}
\begin{array}{c}
\mathcal{H} = X^{-1}HX \\
\Longrightarrow \\
Q\mathcal{H}P = 0
\end{array}
\begin{pmatrix}
P\mathcal{H}P & P\mathcal{H}Q \\
\hline
0 & Q\mathcal{H}Q
\end{pmatrix}$$

$$H_{
m eff} = P \mathcal{H} P$$
Suzuki & Lee $\Rightarrow X = e^{\omega}$ with $\omega = \left(\begin{array}{c|c} 0 & 0 \\ \hline Q \omega P & 0 \end{array} \right)$

$$H_{1}^{\text{eff}}(\omega) = PH_{1}P + PH_{1}Q \frac{1}{\epsilon - QHQ}QH_{1}P - PH_{1}Q \frac{1}{\epsilon - QHQ}\omega H_{1}^{\text{eff}}(\omega)$$

Shell model effective Hamiltonian

Folded-diagram expansion

This recursive equation for H_{eff} may be solved using iterative techniques (Krenciglowa-Kuo, Lee-Suzuki, ...)

$$H_{ ext{eff}} = \hat{Q} - \hat{Q}' \int \hat{Q} + \hat{Q}' \int \hat{Q} \int \hat{Q} - \hat{Q}' \int \hat{Q} \int \hat{Q} \int \hat{Q} \cdots,$$

 \hat{Q} -box vertex function

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ}QH_1P$$

Perturbative approach to H_{eff}

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ}QH_1P$$

Exact calculation of the \hat{Q} -box is computationally prohibitive for many-body system \Rightarrow we perform a perturbative expansion

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

Shell model effective operators

Consistently, any shell-model effective operator may be calculated

It has been demonstrated that, for any bare operator Θ , a non-Hermitian effective operator Θ_{eff} can be written in the following form:

$$\Theta_{\text{eff}} = (P + \hat{Q}_1 + \hat{Q}_1 \hat{Q}_1 + \hat{Q}_2 \hat{Q} + \hat{Q} \hat{Q}_2 + \cdots)(\chi_0 + \chi_1 + \chi_2 + \cdots),$$

where

$$\hat{Q}_m = \frac{1}{m!} \frac{d^m \hat{Q}(\epsilon)}{d\epsilon^m} \bigg|_{\epsilon=\epsilon_0} ,$$

 ϵ_0 being the model-space eigenvalue of the unperturbed hamiltonian H_0

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93, 905 (1995)

Shell model effective operators

We arrest the χ series at the leading term χ_0 , and then expand it perturbatively:

L. Coraggio, A. Gargano, and N. Itaco, JPS Conf. Proc. 6, 020046 (2015)

Nuclear models and predictive power

Realistic SM calculations for ⁷⁶Ge, ⁸²Se, ¹³⁰Te, and ¹³⁶Xe

Check this approach calculating observables related to the GT strengths and $2\nu\beta\beta$ decay and compare the results with data.

$$\left[T_{1/2}^{2\nu}\right]^{-1} = G^{2\nu} \left|M_{2\nu}^{\text{GT}}\right|^{2}$$

- ⁷⁶Ge,⁸²Se: four proton and neutron orbitals outside double-closed ⁵⁶Ni 0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2}
- 130 Te, 136 Xe: five proton and neutron orbitals outside double-closed 100 Sn * $0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2}$

^{*} L. Coraggio, L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, Phys. Rev. C 95, 064324 (2017)

Spectroscopic properties

GT- running sums

Blue dots: bare GT operator

Decay	cay Expt.	
$^{76}\mathrm{Ge} \rightarrow ^{76}\mathrm{Se}$	0.140 ± 0.005	0.297
82 Se \rightarrow 82 Kr	0.098 ± 0.004	0.262
$^{130}\mathrm{Te} \rightarrow ^{130}\mathrm{Xe}$	0.034 ± 0.003	0.142
136 Xe \rightarrow 136 Ba	0.0218 ± 0.0003	0.0975

Blue dots: bare GT operator Black triangles: effective GT operator

Decay	Expt.	Eff.
76 Ge \rightarrow 76 Se	0.140 ± 0.005	0.100
82 Se \rightarrow 82 Kr	0.098 ± 0.004	0.082
$^{130}\mathrm{Te} \rightarrow ^{130}\mathrm{Xe}$	0.034 ± 0.003	0.044
136 Xe \rightarrow 136 Ba	0.0218 ± 0.0003	0.0285

Matrix elements of the neutron-proton effective GT- operator

n _a l _a j _a n _b l _b j _b	3rd order GT_{eff}^-	quenching	n _a l _a j _a n _b l _b j _b	3rd order GT_{eff}^-	quenching
$\begin{array}{c} n_{a}l_{a}J_{a} \ n_{b}l_{b}J_{b} \\ \\ 0f_{5/2} \ 0f_{5/2} \\ 0f_{5/2} \ 1p_{3/2} \\ 1p_{3/2} \ 0f_{5/2} \\ 1p_{3/2} \ 1p_{3/2} \\ 1p_{3/2} \ 1p_{1/2} \\ 1p_{1/2} \ 1p_{3/2} \\ 1p_{1/2} \ 1p_{1/2} \\ 0g_{9/2} \ 0g_{9/2} \end{array}$	-0.977 -0.143 0.046 2.030 -1.621 1.713 -0.697 3.121	0.37 0.62 0.55 0.58 0.67 0.70	$n_{a}l_{a}l_{a} \ n_{b}l_{b}l_{b}$ $0g_{7/2} \ 0g_{7/2}$ $0g_{7/2} \ 1d_{5/2}$ $1d_{5/2} \ 0g_{7/2}$ $1d_{5/2} \ 1d_{5/2}$ $1d_{5/2} \ 1d_{5/2}$ $1d_{3/2} \ 1d_{5/2}$ $1d_{3/2} \ 1d_{3/2}$ $1d_{3/2} \ 1d_{3/2}$ $1d_{3/2} \ 1d_{3/2}$	-1.239 -0.019 0.131 1.864 -1.891 1.794 -1.023 -0.093 0.117	0.50 0.64 0.61 0.58 0.66
			$2s_{1/2} 2s_{1/2}$	1.598	0.65
			$0h_{11/2} 0h_{11/2}$	2.597	0.69

Perturbative properties of effective operator

- $2\nu\beta\beta$
 - Role of real three-body forces and two-body currents (present collaboration with Pisa group)
 - Evaluation of the contribution of many-body correlations (blocking effect)
- \bullet $0\nu\beta\beta$
 - Derivation of the two-body effective operator
 - SRC calculated consistently with V_{low-k}