Westfälische Wilhelms-Universtät MÜNSTER Novel approaches to the nuclear physics of ββ-decay: chargex reactions, mass-measurements,μ-capture

INT- 2018

Where do we stand in $\beta\beta$ decay when putting together the pieces of the puzzle?

- 1. <u>General features</u>
- 2. Chargex-reactions (³He,t) & (d,²He)
 - > perfect for $2\nu\beta\beta$ NME's
- **3. Chargex-reactions**
 - > limited for $0\nu\beta\beta$ NME's (here: 2⁻ states and nuclear wave function)
- **<u>4. Mass measurements</u>**
 - > $0\nu\beta\beta$ NME > ^{96}Zr is a "golden" case (PRL116, Feb-2016) $^{96}Zr(\beta^{-})$ $_{4u}$ 96Nb, and g_{Δ}
- 5. Muon capture projects starting (MuSIC)
 - > a high-q transfer phenomenon !! gives handle on g_A quenching

-1-General features (2νββ / Ονββ decay)

 $\Gamma_{(\beta^{-}\beta^{-})}^{2\nu} = \frac{C}{8\pi^{7}} \left(\frac{G_{F} g_{A}}{\sqrt{2}} \cos(\Theta_{C}) \right)^{4} \left| M_{DGT}^{(2\nu)} \right|^{2} F_{(-)}^{2} f(Q)$ $\mathbf{M}_{\mathbf{DGT}}^{(2\nu)}$ $= \mathbf{G}^{2\nu} (\mathbf{Q}, \mathbf{Z}) \quad g_{\mathbf{A}}^{4}$

q_{tr} ~ 0.01 fm⁻¹

$$M_{\text{DGT}}^{(2n)} = \overset{*}{a}_{m} \frac{\left\langle 0_{g.s.}^{(f)} \middle| \overset{*}{a}_{k} \mathbf{s}_{k} \mathbf{t}_{k}^{-} \middle| \mathbf{1}_{m}^{+} \right\rangle \left\langle \mathbf{1}_{m}^{+} \middle| \overset{*}{a}_{k} \mathbf{s}_{k} \mathbf{t}_{k}^{-} \middle| \mathbf{0}_{g.s.}^{(i)} \right\rangle}{\frac{1}{2} Q_{\text{bb}}(\mathbf{0}_{g.s.}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{E}_{0}}$$
$$= \overset{*}{a}_{m} \frac{M_{m} \left(GT^{+}\right) M_{m} \left(GT^{-}\right)}{\mathbf{E}_{m}}$$

to remember:

- 2 sequential & "allowed" β⁻-decays of "Gamow-Teller" type
- 2. "1, 2, 3, ... forbidden" decays negligible
- 3. Fermi-transitions do no contribute (because of different isospin-multiplets)

Can be determined via chargeexchange reactions in the (n,p) and (p,n) direction (e.g. (d,²He) or (³He,t))

 $G_{(b^{+}b^{+})}^{0n} = G^{0n} (Q,Z) g_{A}^{4} M_{DGT}^{(0n)} \frac{g_{A}^{2}}{g_{A}^{2}} M_{DF}^{(0n)}$ m_{ne} Majorana-v !

q_{tr} ~ 0.5 fm⁻¹ !!

The situation of the Nuclear Matrix Elemets for neutrinoless $\beta\beta$ decay

-2-Charge-exchange reactions GT-part (2νββ decay)

Charge-exchange reactions

Grand Raiden Magnetic Spectrometer

Resolution is the key !!!

almost 70 !! resolved single states up to 5 MeV identified as GT 1+ transitions !!!

the other leg (BGT⁺): ⁷⁶Se(d,²He)⁷⁶As (ΔE = 120 keV)

the other leg (BGT⁺): $^{76}Se(d,^{2}He)^{76}As$ ($\Delta E = 120 \text{ keV}$)

a surprise:

yield/(5 keV msr) 1 7 5 5 76Ge(3He,t)76As ■ 0.0° < ⊝_{lab} < 0.5° IAS $0.5^{\circ} < \Theta_{lab} < 1.0^{\circ}$ E = 420 MeV 10-³ yield/(5 ke/ 1.0° < Θ_{lab} < 1.5° $\Delta E = 30 \text{ keV}$ 1.5° < ⊖_{lab} < 2.0° low-E part of ■ 2.0° < ⊖_{lab} < 2.5° IAS GTR NME makes up SDR 8.0 E_x [MeV 2 ~100% of total $2\nu\beta\beta$ -ME 12 14 16 18 20 10 22 24 26 28 E_x [MeV] (given by $T_{1/2}^{2\nu\beta\beta} = 1.4 \times 10^{21} \text{yr}$) no need for

GT giant resonance contribution

Nuclear matrix elements and deformation

⁷⁶Ge: $β \sim + 0.1$ ⁷⁶Se: $β \sim -0.2$

reduction of the NME due to deformation is theoretically confirmed

but

expm'lly it seems to manifests itself (in $2\nu\beta\beta$ decay) by a lack of correlation between the two different B(GT) "legs", rather than a reduction of individual strength

From: T. R. Rodriguez, et al, PRL105 (2010)

100 MO**N-Z=16** $T_{1/2}^{2\nu\beta\beta} = 6.9 \times 10^{18} \text{ yr}$ has the largest NME (NME ~ 0.24/MeV)

$136 \times e$ $T_{1/2}^{2\nu\beta\beta} = 2.2 \times 10^{21} \text{ yr}$ has the smallest NME question: why so stable !!! (lives 300 times longer than ¹⁰⁰Mo)

What's the size of the NME?

A. Poves (simultaneous to our publication):

there is no $B(GT^+)$ strength, except for lowest 1^+ state

Shell model provides conclusive explanation for the deemed "pathologically" long half-life of ¹³⁶Xe. Expt'l test: ¹³⁶Ba(d,²He)¹³⁶Cs

-3-Charge-exchange reactions **spin-dipole part** (0vββ decay)

Charge-exchange reaction towards the $0v\beta\beta$ NME's

Here: 2⁻ states via chargex reactions

Low-energy spin-dipole (2⁻) strength to test nuclear wave function for $0\nu\beta\beta$ decay NME's

-4-Mass measurements and 0vββ NMEs 96Zr

$\beta^{-}\beta^{-}$ decay

1. ⁴⁸ Ca	7∙ ¹³⁰ Te
2. ¹⁵⁰ Nd	8. ¹³⁶ Xe
3. ⁹⁶ Zr	9. ¹²⁴ Sn
1. ¹⁰⁰ Mo	10. ⁷⁶ Ge
2. ⁸² Se	11. ¹¹⁰ Pd
3. ¹¹⁶ Cd	

The β-β- decay candidates with • highest Q-value

1. ⁴⁸ Ca	7∙ ¹³⁰ Te
2. ¹⁵⁰ Nd	8. ¹³⁶ Xe
3. ⁹⁶ Zr	9. ¹²⁴ Sn
1. ¹⁰⁰ MO	10. ⁷⁶ Ge
2. ⁸² Se	11. ¹¹⁰ Pd
3. ¹¹⁶ Cd	

The β-β- decay candidates with highest Q-value

Idea

- measure Q-value for ⁹⁶Zr → ⁹⁶Nb single β-decay by precision mass measurement
- measure the single β-decay rate
- \rightarrow ft-value
- determine the ⁹⁶Zr 4-fold forbidden
 β-decay NME and confront with theory
- confront with same theories aimed at calculating 0vββ-decay NME for the same nucleus!!

Competition between β & ββ **decay of** ⁹⁶Zr

two conflicting half-lives:

NEMO-3: $T_{1/2}^{2\nu\beta\beta} = (2.3 \pm 0.2) \times 10^{19} \text{ y}$ geo-chem: $T_{1/2} = (0.94 \pm 0.32) \times 10^{19} \text{ y}$

can this difference be reconciled ? yes, if single β competes with $\beta\beta$ decay

$$\left(T_{1/2}^{}\right)^{-1} = \left(T_{1/2}^{2\nu\beta\beta}^{}\right)^{-1} + \left(T_{1/2}^{\beta}^{}\right)^{-1}$$

expected $T_{1/2}^{\beta} = (1.6 \pm 0.9) \times 10^{19} \text{ y}$ experiment $T_{1/2}^{\beta} > 2.6 \times 10^{19} \text{ y}$ 2 pred. (QRPA) $T_{1/2}^{\beta} = 24 \times 10^{19} \text{ y}$ 3 BUT $(T_{1/2}^{\beta})^{-1} \propto 0(Q^{13}) g_A^2 \langle M_{\beta}^{4u} \rangle^2$

1 Wieser, PRC64,2001, 2 Barabash, JPG-NPP22, 1996 3 Heiskanen, JPG3,2007

Results

Ramsey excitation

Next: need $T_{1/2}$ of single β decay

Important side effect:

single β decay depends on g_A^2 $2\nu/0\nu\beta\beta$ decay depends on g_A^4

A measurements of single β decay gives expmtl handle on the quenching of g_A

0νββ NMEs

- 1. what about getting the $0\nu\beta\beta$ NMEs ?
- 2. what about how to test the models ?
- 3. what are the expmtl tools?

investigate "higher-order forbidden" matrix elements of $\sigma\tau$ -type $(0^+ \rightarrow 2^-; 0^+ \rightarrow 3^+; \dots) \rightarrow$ limited possibilities, not promising

are there nuclei, where β and $\beta\beta$ decay are in competition ? \rightarrow YES! ⁴⁸Ca and ⁹⁶Zr

can muon-nuclear physics help?

 \rightarrow YES μ -capture a potentially powerful tool

Muon capture and $0\nu\beta\beta$ NMEs

32S 24Mg56Fe

Motivations

- μ-cap features momentum transfers similar
 to 0vββ decay (q_{tr} ~0.5fm⁻¹ ~100MeV/c)
- μ-cap processes to 1⁺ states in A(μ⁻, ν)B may be compared with charge-ex reactions of (n,p) type.
- μ -cap may give access to g_A quenching issue

However

- only the On-channel (~10%)
 is relevant for 0vββ decay
- level scheme of final odd-odd nucleus is extremely poorly known

The muon capture and g_A in weak decays

$\underline{\text{Title}}$

Exclusive μ -capture on ²⁴Mg, ³²S and ⁵⁶Fe populating low-lying 1⁺ states to probe the weak axial current at high momentum transfer

M. Alanssari,¹ I. H. Hashim,² L. Jokiniemi,³ H. Ejiri,⁴
E. Ideguchi,⁴ A. Sato,⁴ J. Suhonen,³ and D. Frekers¹
¹Institut für Kernphysik, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
²Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
³University of Jyvaskyla, Department of Physics, FI-40014, Finland
⁴Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

The amazing muon

There has not been any other elementary particle so "successful" in advancing our knowledge in so many different areas of physics.

Production:
$$p + A \rightarrow X + \pi^{-}$$

(26ns) $\mapsto \mu^{-} + \overline{v}_{\mu}$
(2.2 μ s) $\mapsto e^{-} + \overline{v}_{e} + v_{\mu}$ $E_{\text{proton}} \sim 500 \text{ MeV}$

Surface muons: produced from stopped (usually negative) pions at end of target

$$\frac{p}{v} = \frac{\pi}{v_{\mu}} = \frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} (1-\varepsilon) = (2,196981(2) \ \mu \sec)^{-1} \ (\varepsilon \approx 10^{-3})$$

$$G_F = 1,16637(2) \cdot 10^{-5} \ GeV^{-2} \qquad m_{\mu} = 105.6583745(24) \ MeV$$

Muonium: $\mu^+ + e^-$ an exotic hydrogen I ~ 13.6 eV

The issue of g_A queching

The issue of g_A queching

The issue of g_A queching

Schematics of set-up

 $\mu_{stop} = C0 \wedge C1 \wedge C2 \wedge C3$

 $\# \text{ of } \mu - \text{stop} = 8 - 25 \times 10^3 \text{ with } 20 - 30 \text{ MeV/c}$

target can be used for solids and gas

Schematics of set-up muon beam line facility "MuSIC" + "CAGRA" at RCNP Osaka

The issue of g_A queching

But: Hold your horses !!! things are a bit more complicated

there is a pseudo-scalar coupling effective in $\mu\text{-capture}$ with a constant g_P (also badly known !!)

What is this ????

Inside the nucleus the muon can decay back into a virtual pion (lots of energy available!!), and the pion generates a final state imprinting it with the parity of the pion. ($P(\pi) = -1$)

The effect depends on how many protons there are. $^{24}Mg \rightarrow 12$ protons

- ³²S \rightarrow 16 protons
- ⁵⁶Fe \rightarrow 26 protons

Conclusion

- Charge-ex reactions:
 - useful tool for $2\nu\beta\beta$ decay NME's.
- Spin-dipole excitation via charge-ex:
 - used for first time, low-E spin-dipole strength mirrors ground-state properties
- Precision mass measurement:
 - ^{96}Zr is a golden case for testing $0\nu-NME's$ and getting experimental handle on g_A
- μ-cap:
 - -maybe the only viable tool to study weak response at high momentum transfer and to fix the g_A problem by comparing with (d,²He)