WESTFÄLISCHE D. Frekers WILHELMS-UNIVERSTÄT MÜNSTER Novel approaches to the nuclear physics of bb**-decay:** chargex reactions, mass-measurements, μ -capture β \mathbf{v}

v INT- 2018

 β

Where do we stand in $\beta\beta$ **decay when putting together the pieces of the puzzle?**

- 1. General features
- 2. Chargex-reactions (³He,t) & (d,²He)
	- \triangleright perfect for $2\nu\beta\beta$ **NME's**
- 3. Chargex-reactions
	- \triangleright **limited for** $0\nu\beta\beta$ **NME's (here: 2 states and nuclear wave function)**
- 4. Mass measurements
	- \triangleright 0 $v\beta\beta$ **NME** > ⁹⁶Zr is a "golden" case **(PRL116, Feb-2016)**

- $96Zr (\beta^-)$ $\frac{1}{4u}$ $96Nb$, and g_A
- 5. Muon capture projects starting (MuSIC)
	- **a high-q transfer phenomenon !!** gives handle on **g_A quenching**

$-1-$ General features (2vBB/OvBB decay)

4 2 $2v$ **F** $5A$ $\cos(\omega)$ $\ln(2v)$ $\int_{E}^{2} f(\omega)$ $(\beta^{-}\beta^{-})$ $\overline{\mathbf{Q}_{\pi}^{-7}}$ $\overline{\mathbf{Q}_{\pi}^{-7}}$ $\overline{\mathbf{Q}_{\pi}^{-7}}$ $\overline{\mathbf{Q}_{\pi}^{-7}}$ \mathbf{C} **2** $2v$ (Ω) σ ⁴ $|\mathbf{M}(2v)|^2$ $\mathbf{g}_{\mathbf{A}}$ **DGT** $\frac{C}{Z} \left| \frac{G_F g_A}{C} \cos(\Theta_C) \right| \left| M_{DCT}^{(2\nu)} \right|^2 F_{(-)}^2 f(Q)$ **8** π' $\sqrt{2}$ $\sqrt{2}$ $=\mathbf{G}^{2V}(\mathbf{Q},\mathbf{Z})$ $g_{\mathbf{A}}^{4}$ $|\mathbf{M}_{\mathbf{DCT}}^{(2V)}|$ $\left| \frac{\partial V}{\partial u} \right| = \frac{C}{7} \left| \frac{\partial F \mathcal{B} A}{\partial u} \cos(\Theta_{\mathbf{C}}) \right| \left| \mathbf{M}_{\mathbf{DGT}}^{(2V)} \right| F_{(-)}^2 f(Q)$ $\beta^{-}\beta^{-}$ $8\pi^{7}$ $\sqrt{2}$ <u> () = { () </u> $\left(\frac{1}{\ln 9}\right)^4$ $\left(\frac{1}{2}\right)^4$ $\Gamma_{(Q^-\bar{Q}^-)}^{2V} = \frac{C}{7} \left| \frac{\text{OF SA}}{\Gamma} \cos(\Theta_C) \right| \left| \text{M}_{\text{DCT}}^{(2V)} \right| F_{(Q)}^2 f(Q)$ $\left(\sqrt{2}\right)$ $\left(\sqrt{2}\right)$ $F \left(\begin{matrix} 2 \\ 1 \end{matrix} \right)$ **f(O) !**

 $q_{tr} \sim 0.01$ fm⁻¹

$$
M_{\text{DGT}}^{(2n)} = \hat{\mathbf{a}} \frac{\left\langle \mathbf{0}_{g.s.}^{(f)} \middle| \hat{\mathbf{a}}_{k} \mathbf{s}_{k} \mathbf{t}_{k}^{-} \middle| \mathbf{1}_{m}^{+} \right\rangle \left\langle \mathbf{1}_{m}^{+} \middle| \hat{\mathbf{a}}_{k} \mathbf{s}_{k} \mathbf{t}_{k}^{-} \middle| \mathbf{0}_{g.s.}^{(i)} \right\rangle}{\frac{1}{2} Q_{\text{bb}}(\mathbf{0}_{g.s.}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{E}_{0}}
$$

$$
= \hat{\mathbf{a}} \frac{M_{m} (GT^{+}) M_{m} (GT^{-})}{\mathbf{E}_{m}}
$$

to remember:

- **1. 2 sequential & "allowed" β--decays of "Gamow-Teller" type**
- **2. "1, 2, 3, ... forbidden" decays negligible**
- **3. Fermi–transitions do no contribute (because of different isospin-multiplets)**

Can be determined via chargeexchange reactions in the (n,p) and (p,n) direction (e.g. (d,2He) or (3He,t))

 $G_{(b-b)}^{0n} = G^{0n} (Q,Z) g_A^4 M_{DGT}^{0n}$ $\frac{\mathfrak{E}g_V}{g_A \frac{1}{\mathfrak{F}}} M_{DF}^{0n}$ $\sqrt{m_{\rm n_{e}}}$ Majorana-v !

 $q_{tr} \sim 0.5$ fm⁻¹ !!

The situation of the Nuclear Matrix Elemets for neutrinoless ββ decay

$-2-$ Charge-exchange reactions GT-part (2vBB decay)

Charge-exchange reactions

Grand Raiden Magnetic Spectrometer

Resolution is the key !!!

almost 70 !! resolved single states up to 5 MeV identified as GT 1+ transitions !!!

\mathbf{u} **to** \mathbf{u} *the* **other leg (BGT +): ⁷⁶Se(d, ²He)⁷⁶As** $(\Delta E = 120 \text{ keV})$

up to 5 MeV !!! Proper the other legale the other leg (BGT +): ⁷⁶Se(d, ²He)⁷⁶As $(\Delta E = 120 \text{ keV})$

a surprise:

yield/(5 keV msr)
2
2
2
2 ■ 0.0° < Θ_{lab} < 0.5° 76Ge(3He,t)76As **IAS** $0.5^{\circ} < \Theta_{lab} < 1.0^{\circ}$ $E = 420$ MeV $1.0^{\circ} < \Theta_{\text{lab}} < 1.5^{\circ}$ $\Delta E = 30$ keV $1.5^{\circ} < \odot$ _{lab} < 2.0° **low-E part of NME makes up 2.0°** < Θ_{lab} < 2.5° **IAS GTR SDR** 8.0 $2¹$ E_{x} [MeV] **~100% of total** 2νββ-ME 10 $12 \t14$ 16 18 20 3 22 24 26 28 E_x [MeV] $2\nu\beta\beta$ $(given by T_{1/2}²)^P = 1.4 × 10²¹yr)$ **no need for**

GT giant resonance contribution

Nuclear matrix elements and deformation

13

 \int_{0}^{76} **Ge:** $\beta \sim +0.1$ 76 **Se :** $\beta \sim -0.2$

reduction of the NME due to deformation is theoretically confirmed

but

expm'lly it seems to manifests i **itself** (in $2\nu\beta\beta$ decay) by a lack **of correlation between the two different B(GT) "legs", rather than a reduction of individual strength**

From: T. R. Rodriguez, et al, PRL105 (2010)

100 Mo $N-Z=16$ $T_{1/2}^{2\nu\beta\beta}$ = 6.9 x 10¹⁸ yr has the largest NME $(NME \sim 0.24/MeV)$

136 Xe $T_{1/2}^{2\nu\beta\beta}$ = 2.2 x 10²¹ yr has the smallest NME question: why so stable !!! (lives 300 times longer than 100Mo)

What's the size of the NME?

A. Poves (simultaneous to our publication):

there is no B(GT⁺) strength, except for lowest 1⁺ state

Shell model provides conclusive explanation for the deemed "pathologically" long half-life of 136Xe. Expt'l test: ¹³⁶Ba(d,²He)¹³⁶Cs

-3- Charge-exchange reactions spin-dipole part (0nbb **decay)**

Charge-exchange reaction towards the 0nbb **NME's**

Here: 2- states via chargex reactions

Low-energy spin-dipole (2) strength to test nuclear wave function for 0νββ decay NME's

$-4-$ **Mass measurements** and OvBB NMEs $96Zr$

b b **decay**

The b**-**b**- decay candidates with highest Q-value**

The b**-**b**- decay candidates with highest Q-value**

Idea

- measure **Q-value** for $96Zr \rightarrow 96Nb$ **single β-decay** by precision mass measurement
- measure the **single** b**-decay** rate
- \rightarrow ft-value
- determine the ⁹⁶Zr **4-fold forbidden B-decay NME** and confront with theory
- confront with same theories aimed at calculating $0\nu\beta\beta$ -decay NME for the **same nucleus!!**

Competition between β & $\beta\beta$ decay of ⁹⁶Zr

two conflicting half-lives:

NEMO-3: $T_{1/2}^{2\nu\beta\beta} = (2.3 \pm 0.2) \times 10^{19} \text{ y}$ 96Zr **geo-chem:** $T_{1/2} = (0.94 \pm 0.32) \times 10^{19} \text{ y}$ 1/2 $T_{1/2}^{\beta}$ 1/2

can this difference be reconciled ? yes , if single β competes with $\beta\beta$ decay

$$
\left(\mathrm{T}_{1/2}\right)^{-1} = \left(\mathrm{T}_{1/2}^{2\,\mathrm{v}\beta\beta}\right)^{-1} + \left(\mathrm{T}_{1/2}^{\beta}\right)^{-1} \qquad \qquad \boxed{\begin{array}{c}\mathbf{0}^{\star}\ \to\ \mathbf{4}^{\star}\ \mathbf{4}^{\star} \\
\hline\n\end{array}}
$$

expected $T_{1/2}^{\beta} = (1.6 \pm 0.9) \times 10^{19} \text{ y}$ $\textbf{experiment} \quad \text{T}^\beta_{1/2} > 2.6 \times 10^{19} \, \text{y} \quad \text{(2)} \qquad \qquad \textbf{96zr}$ **pred. (QRPA)** $T_{1/2}^{\beta} = 24 \times 10^{19} y$ 3 $^{-1}$ \propto $O(O^{13})g^2/(M^{4u})$

1 Wieser, PRC64,2001, 2 Barabash, JPG-NPP22, 1996 3 Heiskanen, JPG3,2007

Results

Ramsey excitation

Next: need $T_{1/2}$ of single β decay

Important side effect:

single β decay depends on \mathbf{g}_A^2 $2v/0v\beta\beta$ decay depends on \mathbf{g}_A^4

A measurements of single b **decay gives expmtl** handle on the quenching of g_A

0nbb **NMEs**

- **1. what about getting the OvBB NMEs ?**
- **2. what about how to test the models ?**
- **3. what are the expmtl tools?**

investigate "higher-order forbidden" matrix elements of – type $\textbf{(0}^+ \rightarrow \textbf{2}^-; \hspace{3mm} 0^+ \rightarrow \textbf{3}^+; \hspace{3mm}) \rightarrow$ limited possibilities, not promising

are there nuclei, where b **and** bb **decay are in competition ? YES! ⁴⁸Ca and ⁹⁶Zr**

can muon-nuclear physics help?

YES m**-capture a potentially powerful tool**

Muon capture and OvBB NMEs

32S 24 Mg **56 Fe**

Motivations

- m**-cap features momentum transfers similar to** 0nbb **decay (qtr ~0.5fm-1 ~100MeV/c)**
- m**-cap processes to 1 states in A(**m **-,**n**)B may be compared with charge-ex reactions of (n,p) type.**
- m**-cap may give access to g^A quenching issue**

However

- **only the 0n-channel (~10%) is** relevant for 0νββ decay
- **level scheme of final odd-odd nucleus is extremely poorly known**

The muon capture and g_A in weak decays

Title

Exclusive μ -capture on ²⁴Mg, ³²S and ⁵⁶Fe populating low-lying 1^+ states to probe the weak axial current at high momentum transfer

M. Alanssari,¹ I. H. Hashim,² L. Jokiniemi,³ H. Ejiri,⁴ E. Ideguchi,⁴ A. Sato,⁴ J. Suhonen,³ and D. Frekers¹ ¹Institut für Kernphysik, Westfälische Wilhelms-Universität, D-48149 Münster, Germany ²Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia ³University of Jyvaskyla, Department of Physics, FI-40014, Finland ⁴Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

The amazing muon

There has not been any other elementary particle so "successful" in advancing our knowledge in so many different areas of physics.

Production:
$$
p + A \rightarrow X + \pi^{-}
$$

\n $(26 \text{ns}) \quad \mapsto \mu^{-} + \bar{\nu}_{\mu}$
\n $(2.2 \mu \text{s}) \quad \mapsto e^{-} + \bar{\nu}_{e} + \nu_{\mu}$
\nE_{proton} ~ 500 MeV

Surface muons: produced from stopped (usually negative) pions at end of target

 μ (1 α) (2.1060) μ τ 100 3 μ is 2π ε) = (2,190981(2) μ Sec) $(\varepsilon \approx 10^{-5})$ τ_{μ} 192 π ^o $\Gamma_{u} = \frac{1}{2} = \frac{1}{2} \frac{\mu}{c} (1 - \varepsilon) = (2.196981(2) \mu \sec^{-1} (\varepsilon \approx 10^{-3}))$ $2 \cdot 5$ $1 / 10^{-3}$ $3'$ (\rightarrow \rightarrow \rightarrow \cdot \sim \rightarrow 1 G $\bar{\epsilon}m_{\mu}^{2}$ (1) 10 $(1 - \varepsilon)$ = (2,196981(2) μ sec)⁻¹ (ε \approx 10⁻³) 192 π ³ *G*²*m*³_{*H*} (*A*₁₀₆ G_{\digamma} = 1,16637(2) \cdot 10 $^{-5}$ GeV $^{-2}$ m_{μ} = 105.658374 $p \rightarrow -\pi$ μ $\overline{\mathsf{V}}$ $\mathsf{E}_\mu \sim$ 4.1 MeV $\rm q_{\mu} \sim 30$ MeV/c **Life-time:** $m_{\mu}^{} =$ 105.6583745 $(24)\,$ MeV $\overline{}$ 105.6583745 ²⁴) **Muonium:** $\left(\mu^+ + e^-\right)$ an exotic hydrogen I ~ 13.6 eV

The issue of g_A queching

The issue of g_A queching

The issue of g_A queching

Schematics of set-up

 $\mu_{\text{stop}} = C0 \wedge C1 \wedge C2 \wedge C3$

 $#$ of μ –stop = $8 - 25 \times 10^3$ with 20 – 30 MeV/c

target can be used for solids and gas

Schematics of set-up muon beam line facility "MuSIC" + "CAGRA" at RCNP Osaka

The issue of g_A queching

But: Hold your horses !!! things are a bit more complicated

there is a pseudo-scalar coupling effective in μ -capture with a constant g_{ρ} (also badly known !!)

What is this ????

Inside the nucleus the muon can decay back into a virtual pion (lots of energy available!!), and the pion generates a final state imprinting it with the parity of the pion. ($P(\pi) = -1$)

The effect depends on how many protons there are. 24 Mg \rightarrow 12 protons

- 32 **S** \rightarrow 16 protons
- 56 **Fe** \rightarrow 26 protons

Conclusion

- **Charge-ex reactions:**
	- $-$ **useful tool** for $2\nu\beta\beta$ decay **NME's**.
- **Spin-dipole excitation via charge-ex:**
	- **used for first time, low-E spin-dipole strength mirrors ground-state properties**
- **Precision mass measurement:**
	- **⁹⁶Zr is a golden case for testing** 0n**NME's** and getting experimental handle on g_A
- m**-cap:**
	- **maybe the only viable tool to study weak response at high momentum transfer and to fix** the g_A problem by comparing with $(d, {}^2He)$