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Motivation Normal ordering P=0 Exact P Summary

Why three-body forces?

They are key to explain and predict the nuclear chart
Medium-mass nuclei properties in good agreement with experiment

Promising results for heavy nuclei

Otsuka et al.,PRL 105, 032501 (2010)

Oxygen dripline

Wienholtz et al., Nature 498, (2013)
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Why three-body forces?
They are key to explain and predict the nuclear chart
Medium-mass nuclei properties in good agreement with experiment
Promising results for heavy nuclei

Binder et al., PLB 736, (2014)
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Why three-body forces?

They are key to explain and predict the nuclear chart
Medium-mass nuclei properties in good agreement with experiment
Promising results for heavy nuclei

Tichai et al., PLB 756, (2016)
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Chiral EFT

Chiral EFT: expansion in powers
of Q/Λb. Q ∼ mπ ∼ 100 MeV;
Λb ∼ 500 MeV
Long-range physics: given
explicitly (no parameters to fit) by
pion exchanges.
Short-range physics: contact
interactions with low-energy
constants (LECs) fit to πN, NN,
3N, ... data.
Many-body forces and currents
enter systematically.
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Chiral EFT
An effective way to treat 3NF is through normal ordered matrix elements,
performed in single-particle basis.

Challenges to overcome:

→ improvement of the Hamiltonian.
→ expansion of the reachable many-body space.
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Chiral EFT

An effective way to treat 3NF is through normal ordered matrix elements,
performed in single-particle basis.
→ Residual three-body forces are small.

Challenges to overcome:

→ improvement of the Hamiltonian.
→ expansion of the reachable many-body space.
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Chiral EFT
An effective way to treat 3NF is through normal ordered matrix elements,
performed in single-particle basis.
Very good agreement for different methods in medium-mass nuclei and with
experiment.
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Challenges to overcome:

→ improvement of the Hamiltonian.
→ expansion of the reachable many-body space.
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Challenges to overcome:
→ improvement of the Hamiltonian.
→ expansion of the reachable many-body space.
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Many-body space
E1 + E2 + E3 ≤ E3max → Currently E3max ≈ 16 ~ω

∆ = E3max − 3Eocc

The space of interaction between three particles is reduced for heavy nuclei!

Difference of relative errors for E3max = 12~ω and E3max = 14~ω in ground
state energies (∆E3max)

α = 0.02 fm4

, α = 0.04 fm4, α = 0.08 fm4

∆E3max grows with A. Convergence is challenging for heavy nuclei.
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Normal ordered matrix elements
To determine the normal-ordered interaction, we need the matrix elements
evaluated at single-particle coordinates.

〈
ab|Veff |a′b′

〉
=
∑
c

〈
abc|V3N |a′b′c

〉
Matrix elements are stored in Jacobi basis.

〈V3N 〉stored =
〈

pq|V3N |p′q′
〉

Regular strategy:
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Normal ordered matrix elements

Challenges:
Transformation to
m-scheme basis is slow.
Storage of matrix elements
is challenging
memory-wise.
Expansion of the model
space following the regular
strategy is difficult!

Roth et al., Phys. Rev. C 90 (2013)
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Normal ordered matrix elements

Our goal: perform 2BNO in Jacobi basis.

Key points of the derivation:

Start with 3rd particle in
single particle basis
Expression involving〈

kakbkc|V3N |k′ak′bk
′
c

〉
Transformation to Jacobi basis
Only approximation:
P = ka + kb = 0
Partial wave decomposition.

〈
kakb|Veff|k′ak′b

〉
=∑

c

〈
kakbc|V3N |k′ak′bc

〉
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Normal ordered matrix elements

Our goal: perform 2BNO in Jacobi basis.

Key points of the derivation:
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c

〉
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Only approximation:
P = ka + kb = 0
Partial wave decomposition.

〈
kakb|Veff|k′ak′b

〉
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dk3dk′3
∑
c

〈c|k3〉
〈

k′3|c
〉

〈
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Normal ordered matrix elements

Our goal: perform 2BNO in Jacobi basis.

Key points of the derivation:

Start with 3rd particle in
single particle basis
Expression involving〈

kakbkc|V3N |k′ak′bk
′
c

〉
Transformation to Jacobi basis
Only approximation:
P = ka + kb = 0
Partial wave decomposition.

〈
pP|Veff|p′P′

〉
=∫

dk3dk′3
∑
c

〈c|k3〉
〈

k′3|c
〉

〈
pq|V3N |p′q′

〉
δ3(P + k3 −P′ − k′3)
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Normal ordered matrix elements

Our goal: perform 2BNO in Jacobi basis.

Key points of the derivation:

Start with 3rd particle in
single particle basis
Expression involving〈

kakbkc|V3N |k′ak′bk
′
c

〉
Transformation to Jacobi basis
Only approximation:
P = ka + kb = 0
Partial wave decomposition.

Drischler et al., Phys. Rev. C 93 (2016)
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Normal ordered matrix elements
Final result

〈p(LS)JT |Veff
∣∣p′(L′S′)JT〉 =

(−i)L−L′

(4π)2(2π)3

∑
nc,lc

occupied

∑
J ,jc,T

2J + 1
2J + 1

2T + 1
2T + 1

∫
k2

3dk3

∫
k

′2
3 dk

′
3

∫
dcos(θk′

3
)

×
2lc + 1

4π
Plc

(
cos(θk′

3
)
)
Rnclc (k3)Rnclc (k′3)

〈
p,

2
3
k3, α

∣∣∣V 3N
∣∣∣p′, 1

3
|(k3 + k′3)|, α′

〉

→ effective two-body matrix
elements (relative quantum
numbers).

→ occupation number regulated by
harmonic oscillator wave function.

→ three-body matrix elements in
Jacobi basis as a function of kc and
k′c.
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Normal ordered matrix elements

Extra steps towards single-particle basis:
Transformation to harmonic oscillator basis〈

n(LS)JT |Veff|n′(L′S′)JT
〉

=
∫

dpp2RnL(p)dp′p′2Rn′L′ (p′)
〈
p|V |p′

〉
Talmi-Moshinsky transformation.

〈
n(LS)JT |Veff|n′(L′S′)JT

〉
→〈

n1n2

[
(l1

1
2

)j1(l2
1
2

)j2
]
J |Veff|n′1n

′
2

[
(l′1

1
2

)j′1(l′2
1
2

)j′2
]
J

〉
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Comparison with exact matrix elements
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Inclusion of center-of-mass degrees of freedom

Get rid of the approximation P = 0.
Simplified expression feasible for an S-wave interaction (cE term of the
Hamiltonian)

〈pP [(LS)jrelLcm]JT |Veff| p′P ′[(L′S′)j′relL
′cm]JT 〉cE ∝∑

c

∑
J

∑
T

∑
s3s′

3

2J + 1
2S + 1

2T + 1
2T + 1

∫
d(cos θP ′ )PLcm (cos θP ′ )

×
∫

d3k3Rnclc (k3)Rnclc (k′3)
2lc + 1

4π
Plc (cos(k̂3 · k̂′3))

×
〈
p,

∣∣∣23 k3 −
P
3

∣∣∣ , α ∣∣V 3N
∣∣ p′, ∣∣∣23 k3 +

2
3

P−P′
∣∣∣ , α′〉

→ effective two-body matrix elements (relative and center-of-mass quantum
numbers).
→ center-of-mass angular contribution.
→ occupation number regulated by harmonic oscillator wave function.
→ three-body matrix elements in Jacobi basis as a function of kc, P and P′.
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Normal ordered matrix elements

Extra steps towards single-particle basis:
Transformation to harmonic oscillator basis〈
Nn[(LS)jrelLcm]J |Veff|N ′n′[(L′S′)j′relL

′
cm]J

〉
=∫

dPP 2RNLcm (P )
∫

dP ′P ′2RN′L′
cm

(P ′)
∫

dpp2RnL(p)
∫

dp′p′2RnL′ (p′)〈
Pp[(LS)jrelLcm]J |Veff|P ′p′[(L′S′)j′relL

′
cm]J

〉
.

(Modified) Talmi-Moshinsky transformation including center-of-mass
degrees of freedom as input.〈

nN [(LS)jrelLcm]JT |Veff|n′[(L′S′)j′relL
′
cm]JT

〉
→〈

n1n2

[
(l1

1
2

)j1(l2
1
2

)j2
]
J |Veff|n′1n

′
2

[
(l′1

1
2

)j′1(l′2
1
2

)j′2
]
J

〉
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Results for S-wave Hamiltonians

Reference state: 4He.
energy of particles in
reference state: ers = 0
eMax =6.
Perfect agreement with
reference matrix elements.
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Results for S-wave Hamiltonians

Reference state: 16O.
Energy of particles in
reference state: ers = 0, 1
eMax =6.
For the 2BNO taken as
reference, the condition
E3N = ea + eb + ec ≤ 12 is
applied.
Perfect agreement with
reference matrix elements
with energy up to 12.
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Inclusion of center-of-mass degrees of freedom: general

〈pP [(LS)jrelLcm] J |V
∣∣p′P ′ [(L′S′)j′relL′cm] J〉 ∝∑

c

∑
α,α′

∑
M′

cm,M′
j
,MJ

∑
T

∑
J ,MJ

∑
mj ,m

′
j

× CJMJ
jrelMjLcmMcm

CJMJ

j′
rel
M′

j
L′

cmM′
cm
CJMJ
jrelMjjmj

Cjmj

lml1/2msc
CJMJ
j′

rel
M′

j
j′m′

j

C
j′m′

j

l′m′
l
1/2msc

×

√
1 + 2Lcm

4π

∫
dθP ′ sin θP ′YL′

cmM′
cm

(θP ′ , 0)Y ∗lml
(q̂)Yl′m′

l
(q̂′)

×
∫

dk3

(2π)3

∑
nc,lc

Rnclc (k3)Rnclc (k′3)
2lc + 1

4π
Plc (k3 · k′3)

〈
pqα|V3N |p′q′α′

〉
→ effective two-body matrix elements (relative and center-of-mass quantum
numbers).
→ center-of-mass angular contribution.
→ occupation number regulated by harmonic oscillator wave function.
→ three-body matrix elements in Jacobi basis as a function of kc, P and P′.
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Summary

Current limitations in treatment of three-body forces will lead to significant
truncation effects in calculations for heavy nuclei.
The approximtion P=0 is not applicable to finite nuclei calculations.
Purely S-wave interaction normal ordered matrix elements including
center-of-mass degrees of freedom agree with reference calculations.
Generalization of the input Hamiltionian in progress...

Thank you for your attention!

Victoria Durant - INT, 02/03/2018
17/17


	Motivation
	Normal ordering
	P=0
	Exact P
	Summary

