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Introduction

Neutrino Oscillation 
Measurements are 
b a s e d o n t h e 
incoming neutrino 
energy

KamLAND, PRL 100, 221803 (2008)
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Introduction
Neutrino side 

The incoming energy is reconstructed from the final state  
Highly dependent on the nuclear model 
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Introduction
Neutrino side 

This problem can be addressed by:

- Improving the theories
- Use near detector 

- Where we wish to probe nuclear physics and no oscillation effects
- But the flux model and the nuclear model are convoluted  

- External constraints on nuclear model 
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Introduction
Nuclear physics input 

We suggest looking at wide phase space ELECTRON DATA:
- In the semi classical regime the final state is similar. 
- We know the incoming energy and can test its reconstruction. 

Keeping in mind:
EM and not weak interaction is the dominant. 
Different radiative effects.
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CLAS
Incoming Electron beam 1 - 5 GeV

Large acceptance  

Sub detectors:
- Tracking in a toroidal field
- TOF scintillators
- Cherenkov detector
- EM calorimeter

Detection threshold: 300 MeV/c

Open Trigger
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CLAS Data

E2 experiment: 
Beam energies :  2.2, 4.4 GeV
Targets:              3He, 4He, 12C, 56Fe 

E2G experiment (less statistics):
Beam energy:    5 GeV
Elements:          2D, 12C, 27Al, 56Fe, 208Pb
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CLAS Data 
Acceptance

CLAS acceptance is 
large but not complete 

21

FIG. 17: Fiducial region for electrons. Black: All events. Red: After applying the

fiducial cuts. Green: After applying the fiducial cuts and demanding x
B

> 1. The

e↵ect of the fiducial cuts on the edge of the � distribution (Red vs. Black points)

is clear. The missing section in sector 3 is due to dead wires on the region 3 drift

chamber.



9

CLAS Data 
Acceptance - Available for all

For each:
- target width 
- target location
- outgoing particle type
- outgoing particle direction
 
The  CLAS  detector  has  a 
different efficiency, which we 
wish to publish as acceptance 
maps for public use.

Axel Schmidt, Reynier Cruz Torres, Barak Schmookler

preli
minary
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CLAS Data 
Event Selection

To focus on QE events:
  1 proton with momentum larger than 300 MeV/c  
  no additional charged hadrons
  CLAS Fiducial cuts for proton and electron
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CLAS Data 
Scaling 

Due to the difference between the neutrino vs. electron differential cross 
section 

We’re applying an event by event weight:

To make sure we’re looking at the kinematically interesting regions  

1/�
Mott
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CLAS Data 
Event Selection

Given the detector acceptance map, 
Any event with an additional hadron, implies more events of its kind where 
one of the hadron was not detected. 

To focus on QE events:
  1 proton above 300 MeV/c  
  no additional charged hadrons
  CLAS Fiducial cuts for proton and electron

Mariana Khachatryan
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CLAS Data 
Background subtraction

Two proton / pion subtraction method:

Using events with two hadrons,
rotating the two outgoing hadron system 
around the q vector, each time checking if 
only the proton was detected 
Subtract contribution to QE-like events from 
the final distributions
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CLAS Data
Incoming Energy Reconstruction 

Two methods for calculating the incoming energy:

Eν
kin = 2Mε + 2MEl −ml

2

2(M − El + kl cosθ )
ε ≈ 20 MeV single nucleon separation energy
M-nucleon mass
ml  outgoing lepton mass
kl − lepton three momentum
θ − lepton scattering angle

ECalorimetric = Ee
' + Tp∑ + EBinding + Eπ∑

EBinding − Binding energy 

Tp − kinetic energy of knock out proton

Ee
' − energy of scattered electron

Eπ − energy of produced meson
We	ignore	the	kine&c	energy	of	A-1	system.	

Tracking detectors:

•  Charged particles +π0


•  Neutron detection is challenging


E" Reconstruction from lepton kinematics 
[(e,e’) or       ] (assumes QE)


E" Reconstruction from ‘full’ final state 


MINERvA (Fermilab)


Scintillator based 
detector

Study:

q  Neutrino 

oscillations

q  nuclear effects 

q  nuclear 

structure 
functions.


Scintillator based detector

Study:

q  Neutrino interaction cross 

sections

q  nuclear effects 


Water Cherenkov detector

Study: Solar neutrino problem

Art McDonald Nobl prize in 2015




SNO	(Sudbury	Neutrino	Observatory,	Canada,	Ontario)	
•  1000	ton	heavy	water	D20	and	3000		
ton	normal	water	
•  Detect	neutrinos	via	CCQE,	NCQE	and	CC	

and	NC	e--	neutrino		elas&c	sca4ering	
	

D20	

H20	

Transparent	
Acrylic	vessel	

9546	PMTS	
12m	

(ν ,l) [(e,e ' pX) or (ν ,lX)]

Problem:	assumes	QE	

Eν
kin = 2Mε + 2MEl −ml

2

2(M − El + kl cosθ )
ε ≈ 20 MeV single nucleon separation energy
M-nucleon mass
ml  outgoing lepton mass
kl − lepton three momentum
θ − lepton scattering angle

ECalorimetric = Ee
' + Tp∑ + EBinding + Eπ∑

EBinding − Binding energy 

Tp − kinetic energy of knock out proton

Ee
' − energy of scattered electron

Eπ − energy of produced meson
We	ignore	the	kine&c	energy	of	A-1	system.	

Tracking detectors:

•  Charged particles +π0


•  Neutron detection is challenging


E" Reconstruction from lepton kinematics 
[(e,e’) or       ] (assumes QE)


E" Reconstruction from ‘full’ final state 


MINERvA (Fermilab)


Scintillator based 
detector

Study:

q  Neutrino 

oscillations

q  nuclear effects 

q  nuclear 

structure 
functions.


Scintillator based detector

Study:

q  Neutrino interaction cross 

sections

q  nuclear effects 


Water Cherenkov detector

Study: Solar neutrino problem

Art McDonald Nobl prize in 2015




SNO	(Sudbury	Neutrino	Observatory,	Canada,	Ontario)	
•  1000	ton	heavy	water	D20	and	3000		
ton	normal	water	
•  Detect	neutrinos	via	CCQE,	NCQE	and	CC	

and	NC	e--	neutrino		elas&c	sca4ering	
	

D20	

H20	

Transparent	
Acrylic	vessel	

9546	PMTS	
12m	

(ν ,l) [(e,e ' pX) or (ν ,lX)]

Problem:	assumes	QE	

In use in Cherenkov detectors
Assuming QE interaction

In use in Tracking detectors
Need good hadronic reconstruction
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CLAS Data 
Results

(e,e’p)	ECalorimetric	

15	

ECalorimetric=Ee’+Tp+Ebinding



	

2.261	GeV		

3He
 56Fe


ECalorimetric[GeV]	 ECalorimetric[GeV]	

Mariana Khachatryan
3He 56Fe

preliminary
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Pmiss
⊥

3He	 56Fe	

Nπ = 0Nπ = 0

Pmiss
⊥ = P

e−
⊥ + Pp

⊥ = Pinit
⊥

18

CLAS Data 
Results

Mariana Khachatryan

9

Pmiss
┴ 

Plot

miss
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ECalorimetric	and	Ekin	for	all	targets	at	2.261	GeV	in	,		 P⊥

miss  slices

Ekin		 ECalorimetric		

1.  Increase in 
non-QE 
background 
with 
increasing 


2.  Radiative tail 
in Ecalorimetric


3.  Worse peak 
resolution for 
Ekin


4.  Increase in 
non-QE 
background 
for heavier 
targets


Pmiss
⊥

19

CLAS Data 
Results  2.2 GeV -  Calorimetric Energy

Mariana Khachatryan

Increased tail for heavier nucleis.

Increased non QE background for 
higher values of missing transverse 
momentum.

preliminary
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ECalorimetric	and	Ekin	for	all	targets	at	2.261	GeV	in	,		 P⊥

miss  slices

Ekin		 ECalorimetric		

1.  Increase in 
non-QE 
background 
with 
increasing 


2.  Radiative tail 
in Ecalorimetric


3.  Worse peak 
resolution for 
Ekin


4.  Increase in 
non-QE 
background 
for heavier 
targets


Pmiss
⊥

25	

Energy	reconstruc&on	in	 P⊥

miss  slices

Ekin		 ECalorimetric		

1.  The peak at 
beam energy 
broader than 
at 2GeV


2.  Background 
tail is the 
smallest with 
respect to 
the peak for 
Ecalorimetric 
at 2 GeV and 
<200MeV/c


3.  EReconstructed  
can be 
improved by 
cut
 Pmiss⊥

Pmiss
⊥
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CLAS Data 
Results  -  Calorimetric Energy - different energies

Mariana Khachatryan

Ee = 4.4 GeV Ee = 2.2 GeV

preliminary
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ECalorimetric	and	Ekin	for	all	targets	at	2.261	GeV	in	,		 P⊥

miss  slices

Ekin		 ECalorimetric		

1.  Increase in 
non-QE 
background 
with 
increasing 


2.  Radiative tail 
in Ecalorimetric


3.  Worse peak 
resolution for 
Ekin


4.  Increase in 
non-QE 
background 
for heavier 
targets


Pmiss
⊥
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CLAS Data 
Results 2.2 GeV - Leptonic Energy 

Mariana Khachatryan

Worse resolution for leptonic energy.

Increased tail for heavier nucleis.

preliminary
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ECalorimetric	and	Ekin	for	all	targets	at	2.261	GeV	in	,		 P⊥

miss  slices

Ekin		 ECalorimetric		

1.  Increase in 
non-QE 
background 
with 
increasing 


2.  Radiative tail 
in Ecalorimetric


3.  Worse peak 
resolution for 
Ekin


4.  Increase in 
non-QE 
background 
for heavier 
targets


Pmiss
⊥
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CLAS Data 
Results 4.4 GeV - Leptonic Energy 

Mariana Khachatryan

25	

Energy	reconstruc&on	in	 P⊥

miss  slices

Ekin		 ECalorimetric		

1.  The peak at 
beam energy 
broader than 
at 2GeV


2.  Background 
tail is the 
smallest with 
respect to 
the peak for 
Ecalorimetric 
at 2 GeV and 
<200MeV/c


3.  EReconstructed  
can be 
improved by 
cut
 Pmiss⊥

Pmiss
⊥

Ee = 4.4 GeV Ee = 2.2 GeV

preliminary
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Simulation 
GENIE

Nuclear model      Correlated fermi gas model
QE                         Lewellyn Smith for neutrino 

           Rosenbluth CS for electrons
MEC                      Empirical Dytman model
Resonances            Rein Sehgal
FSI                         data driven

Currently 1M events with EM QE and MEC only
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Event Selection
Reminder: 
1 proton above 300 MeV/c  
no additional charged hadrons
CLAS Fiducial cuts for proton and electron

Additional Kinematics:
Q2 > 0.5 GeV2/c2

W < 2 GeV/c2

|XB -1 | < 0.2 
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Data vs. GENIE MC comparison 
Electron Kinematic Variables

Afroditi Papadopoulou
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Data vs. GENIE MC comparison 
Electron Kinematic Variables

Afroditi Papadopoulou
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Data vs. GENIE MC comparison 
Background subtraction effect

7

Proton Energy

Simulation Data

Afroditi Papadopoulou

Simulation Data

preliminary
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Data vs. GENIE MC comparison 
Missing transverse momentum 

Afroditi Papadopoulou

9

Pmiss
┴ 

Plot

miss

preliminary
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Pmiss
┴ 

Plot

miss
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6

Pmiss
┴ 

Plot

miss

Afroditi Papadopoulou

Data vs. GENIE MC comparison 
Missing transverse momentum C and Fe 

12C 56Fe

preliminary
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Summary
Presenting electron data to test the reconstruction energy method for neutrino 
experiments. 

For QE-like events both leptonic and hadronic have bad resolution
- for heavier nuclei 
- for high missing transverse momentum

We wish to compare the data to MC to obtain constraints on the nuclei 
models and show implication on oscillation measurements. 

In addition we would like to make this data available for everyone by 
publishing CLAS acceptance maps. 
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Summary

Current available data: 3He, 4He, 12C, 56Fe 
with incoming 2.2 GeV and 4.4 GeV

Electron	sca4ering	data	
Have	analyzed	3He	,	4He,	12C,	56Fe	4.461,	2.261	GeV			
e2a	experiment		data	
Other	data	available			3He,	4He,	C,	Fe	1.1	GeV		
	
																																										

7	

  2.2GeV	(e,e’)	 2.2GeV	(e,e’p)	 4.4GeV	(e,e’)	 4.4GeV	(e,e’p)	
3He	 29	 12	 3.9	 1.4	
4He	 46	 17	 8	 2.6	
12C	 29	 11	 5	 1.5	
56Fe	 1.5	 0.5	 0.4	 0.1	

Current neutrino

1.1GeV	

2.2GeV	 4.4GeV	

E2a	target	proper&es	

Good (e,e’) and (e,e’p) events *106	
 with e and p PID, vertex and fiducial cuts and W<2  
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Future Plans

With CLAS12
Ten times more luminosity
Keeping the low threshold
   300 MeV/c

Targets:  4He, 12C, 16O, 40Ar, 56Fe 
with incoming electron energies 1.1, 2.2, (3.3), 4.4, 6.6 GeV



Thank you for your attention
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