Electrons for Neutrinos

08/03/2018

INT Workshop INT-18-1a - Nuclear ab initio Theories and Neutrino Physics

Or Hen, Larry Weinstein, Afroditi Papadopoulou ,Mariana Khachatryan, Luke Pickering, Adrian Silva, Axel Schmidt, Reynier Cruz Torres, Barak Schmookler, Erez Cohen, <u>Adi Ashkenazi</u>

l liit

Introduction

Neutrino Oscillation Measurements are b a s e d o n t h e incoming neutrino energy

Introduction Neutrino side

The incoming energy is reconstructed from the final state Highly dependent on the nuclear model

Introduction Neutrino side

This problem can be addressed by:

- Improving the theories
- Use near detector
 - Where we wish to probe nuclear physics and no oscillation effects
 - But the flux model and the nuclear model are convoluted
- External constraints on nuclear model

Introduction Nuclear physics input

We suggest looking at wide phase space ELECTRON DATA:

- In the semi classical regime the final state is similar.
- We know the incoming energy and can test its reconstruction.

Keeping in mind:

EM and not weak interaction is the dominant.

Different radiative effects.

CLAS

Cerenkov Counters Superconducting Incoming Electron beam 1 - 5 GeV Toroidal Magnet Large acceptance Drift Chambers 3 Regions Sub detectors: Tracking in a toroidal field _ **TOF** scintillators _ Cherenkov detector _ EM calorimeter _ Detection threshold: 300 MeV/c **Open Trigger** Time-of-Flight Scintillators

6

Electromagnetic Shower Counters

E2 experiment:

Beam energies : 2.2, 4.4 GeV

Targets: ${}^{3}\text{He}, {}^{4}\text{He}, {}^{12}\text{C}, {}^{56}\text{Fe}$

E2G experiment (less statistics):

Beam energy: 5 GeV

Elements: ²D, ¹²C, ²⁷Al, ⁵⁶Fe, ²⁰⁸Pb

Acceptance

CLAS acceptance is large but not complete

Acceptance - Available for all

For each:

- target width
- target location
- outgoing particle type
- outgoing particle direction

The CLAS detector has a different efficiency, which we wish to publish as acceptance maps for public use.

Carbon - Electron θ vs ϕ Acceptance, Sector 2, 1 GeV/c < P < 4GeV/c

Event Selection

To focus on QE events:

- 1 proton with momentum larger than 300 MeV/c
- no additional charged hadrons
- CLAS Fiducial cuts for proton and electron

CLAS Data Scaling

Due to the difference between the neutrino vs. electron differential cross section

We're applying an event by event weight:

 $1/\sigma_{
m Mott}$

To make sure we're looking at the kinematically interesting regions

2.2 GeV on ³He

CLAS Data 2.2 GeV on ³He

⊿′

()

~'

80

Given the detector acceptance map,

Any event with an additional hadron, implies more events of its kind where one of the hadron was not detected.

Background subtraction

Two proton / pion subtraction method:

Using events with two hadrons,

rotating the two outgoing hadron system around the q vector, each time checking if only the proton was detected

Subtract contribution to QE-like events from the final distributions

CLAS Data Incoming Energy Reconstruction

Two methods for calculating the incoming energy:

$$E_{v}^{\text{kin}} = \frac{2M\varepsilon + 2ME_{1} - m_{l}^{2}}{2(M - E_{1} + |k_{1}|\cos\theta)}$$

 $\varepsilon \approx 20$ MeV single nucleon separation energy M-nucleon mass

- m_1 outgoing lepton mass
- k_1 lepton three momentum
- θ lepton scattering angle

In use in Cherenkov detectors Assuming QE interaction [(e,e'pX) or (v, $E_{\text{Calorimetric}} = E'_e + \sum T_p + E_{\text{Binding}} + \sum E_{\pi} \int_{\pi}^{\pi} E_{\text{Binding}} - \text{Binding energy}$ $T_p - \text{kinetic energy of knock out proton}$ $E'_e - \text{energy of scattered electron}$ $E_{\pi} - \text{energy of produced meson}$

In use in Tracking detectors Need good hadronic reconstruction

Results

Results 2.2 GeV - Calorimetric Energy

Increased tail for heavier nucleis.

Increased non QE background for higher values of missing transverse momentum.

Results - Calorimetric Energy - different energies

-

Results 2.2 GeV - Leptonic Energy

Worse resolution for leptonic energy.

Increased tail for heavier nucleis.

⁴He slices PГ miss and higher ¹²C slices 4 and higher ⁵⁶Fe PL slices miss 0-0.22-0.40.4 and higher Prel. 1.5 2 2.5 E [GeV

Mariana Khachatryan

Mariana Khachatryan

CLAS Data

Results 4.4 GeV - Leptonic Energy

1200 slices He ⁴He PL PL slices miss 5000 0-0.2 0.2-0.4 0.4 and higher 1000 0.4 and higher 26.62 Ee = 2.2 GeVEe = 4.4 GeV¹²C miss slices С slices 0-0.2 0.2-0.4 -0.4 and higher 2000 0.4 and higher 2580 ⁵⁶Fe ⁵⁶Fe 450 slices PL miss PL slices 400 350 0-0.2 0-0.2 300 0.2-0 0.2-0.4 m188 250 ∞ = 0.4 and higher prelimite 200 150 100 50 4.5 5 E_[GeV] 2.5 3.5 1.52 з 4 1.5 2.5 E 2 [GeV

Simulation GENIE

Nuclear model	Correlated fermi gas model
QE	Lewellyn Smith for neutrino
	Rosenbluth CS for electrons
MEC	Empirical Dytman model
Resonances	Rein Sehgal
FSI	data driven

Currently 1M events with EM QE and MEC only

Event Selection

Reminder:

1 proton above 300 MeV/c

no additional charged hadrons

CLAS Fiducial cuts for proton and electron

Additional Kinematics:

 $Q^2 > 0.5 \text{ GeV}^2/c^2$

 $W < 2 \text{ GeV/}c^2$

 $|X_B - 1| < 0.2$

Electron Kinematic Variables

Afroditi Papadopoulou

Electron Kinematic Variables

Afroditi Papadopoulou

Background subtraction effect

Simulation

Data

Afroditi Papadopoulou

Missing transverse momentum

Missing transverse momentum C and Fe

Summary

Presenting electron data to test the reconstruction energy method for neutrino experiments.

For QE-like events both leptonic and hadronic have bad resolution

- for heavier nuclei
- for high missing transverse momentum

We wish to compare the data to MC to obtain constraints on the nuclei models and show implication on oscillation measurements.

In addition we would like to make this data available for everyone by publishing CLAS acceptance maps.

 $CH_2 = 0.07 \\ 0.005$

Future Plans

With CLAS12 Ten times more luminosity Keeping the low threshold 300 MeV/c

Targets: ⁴He, ¹²C, ¹⁶O, ⁴⁰Ar, ⁵⁶Fe

with incoming electron energies 1.1, 2.2, (3.3), 4.4, 6.6 GeV

Thank you for your attention